Kondo interactions from band reconstruction in YbInCu$_4$

I. Jarrige,1* A. Kotani,2 H. Yamaoka,3 N. Tsujii,4 K. Ishii,5
M. Upton,6 D. Casa,6 J. Kim,6 T. Gog,6 and J. N. Hancock7

1Photon Sciences Directorate, Brookhaven National Laboratory, Upton, NY 11973-5000, USA
2Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan
3RIKEN SPring-8 Center, Sayo, Hyogo 679-5148, Japan
4Quantum Beam Center, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba 305-0047, Japan
5Japan Atomic Energy Agency, SPring-8, Sayo, Hyogo 679-5148, Japan
6Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, USA
7Department of Physics and Institute for Materials Science, University of Connecticut, Storrs, CT 06269, USA

Submitted to Physical Review Letters

March 2015

NSLS II, Photon Science Division

Brookhaven National Laboratory

U.S. Department of Energy
DOE – Office of Science

Notice: This manuscript has been co-authored by employees of Brookhaven Science Associates, LLC under Contract No. DE-SC0012704 with the U.S. Department of Energy. The publisher by accepting the manuscript for publication acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes.
DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or any third party’s use or the results of such use of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof or its contractors or subcontractors. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
Kondo interactions from band reconstruction in YbInCu$_4$

I. Jarrige,1,* A. Kotani,2 H. Yamaoka,3 N. Tsujii,4 K. Ishii,5 M. Upton,6 D. Casa,6 J. Kim,6 T. Gog,6 and J. N. Hancock7

1Photon Sciences Directorate, Brookhaven National Laboratory, Upton, NY 11973-5000, USA
2Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan
3RIKEN SPring-8 Center, Sayo, Hyogo 679-5148, Japan
4Quantum Beam Center, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba 305-0047, Japan
5Japan Atomic Energy Agency, SPring-8, Sayo, Hyogo 679-5148, Japan
6Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, USA
7Department of Physics and Institute for Materials Science, University of Connecticut, Storrs, CT 06269, USA

We combine resonant inelastic X-ray scattering (RIXS) and model calculations in the Kondo lattice compound YbInCu$_4$, a system characterized by a dramatic increase in Kondo temperature and associated valence fluctuations below a first-order valence transition at $T \approx 42$ K. The bulk-sensitive, element-specific, and valence-projected charge excitation spectra reveal an unusual quasi-gap in the Yb-derived state density which drives an instability of the electronic structure and renormalizes the low-energy effective Hamiltonian at the transition. Our results provide long-sought experimental evidence for a link between temperature-driven changes in the low-energy Kondo scale and the higher-energy electronic structure of this system.

PACS numbers: 71.20.Eh, 78.70.Ck, 72.15.Qm, 75.20.Hr

The first-order isostructural valence transition in YbInCu$_4$ is one of the most intriguing localization-delocalization problems in correlated electron systems. Unlike model impurity systems and many Kondo lattice materials which are characterized by a single Kondo temperature T_K, YbInCu$_4$ undergoes a dramatic step-like increase of the Kondo coupling scale from $T_K=25$ K to $T_K=400$ K upon cooling below 42 K with associated changes in the Yb valence (2.96 to 2.83)1,2, pointing to an anomalous increase in screening of the local moment sublattice. While valence transitions in f electron systems can usually be explained on the basis of either of two possible theoretical approaches, the Kondo volume collapse (KVC) and the Mott transition, no such conclusive theoretical interpretation has yet been advanced for the transition in YbInCu$_4$. The strong coupling between volume and T_K assumed in the KVC is not supported by the relatively small value reported for the appropriate Gruneisen parameter3,4, and the Mott transition scenario is ruled out by the 0.5% increase in the volume at the transition5. A different theoretical approach attributes the enhancement of the Kondo coupling at the transition to a larger exchange interaction between the f and conduction-band electron spins resulting from an increase of the Coulomb interaction6.

During the past decade, a number of spectroscopic measurements have added valuable pieces to the puzzle of the nature of the electronic phase transition. Fine measurements of the Yb valence, enabled by the emergence of advanced hard x-ray core-level spectroscopies like resonant x-ray emission spectroscopy7, hard X-ray photoelectron spectroscopy7, and X-ray absorption spectroscopy (XAS) in the partial fluorescence yield mode8 highlight the sensitivity of X-ray probes to the valence transition in this system. Meanwhile, using softer photons, optical conductivity measurements revealed a mid-infrared peak associated with the Kondo resonance below T_K=$^{9-12}$, which appears to be a universal trait of Kondo lattice and heavy fermion systems. On the other hand, while detailed knowledge of the electronic structure is essential to understanding valence transitions13,14, the high electronic dimensionality and known surface sensitivity in mixed valence systems limit the effectiveness of traditional approaches2,12,15,16 to probing the electronic structure of YbInCu$_4$.

In order to fill this gap in our understanding, we used RIXS, a bulk-sensitive, orbital and element-selective probe of the electronic structure to explore the changes in low-energy states while crossing the valence transition. RIXS is a Raman process which generates low-lying excitations through resonant X-ray edge intermediate states of well-defined orbital character. In our measurements at the Yb-L_3 edge, a 2p core electron is photoexcited into a valence state of d character, followed by decay of a d-character valence electron into the core hole17. The nascent presence of the 2p core hole potential induces excitations among rare-earth 5d states, which are forbidden through direct dipole transitions relevant to optical conductivity. Here we observe several intense RIXS-active excitations, and use the valence selectivity of RIXS to uncover temperature-driven spectral changes up to several eV. These changes trend with an energy shift of itinerant 5d states, revealing the energetics of an underlying instability driving the transition.

Our experiments were performed at the MERIX endstation of the XOR-IXS 30-ID beamline at the Advanced Photon Source18. Single crystals of YbInCu$_4$ were grown using the flux method and cleaved12 before measurement.
with crystal facet along (111), YbInCu_4 has the cubic C15b (AuBe_5 type) structure. The horizontally polarized incident beam was monochromatized using a four-bounce scheme of asymmetrically cut Si(400) crystals, scattered from the sample, and energy analyzed with a 4° diameter diced Ge (008) spherical analyzer and a strip detector placed on a 1-m Rowland spectrometer. A resulting energy resolution of 0.2 eV was achieved in the horizontal scattering geometry, with a scattering angle of 90° and momentum transfer Q = (5.5,3.5,3.5) indexed to the cubic unit cell, which contains 4 formula units.

Figs. 1(a) and 1(b) show the XAS spectra as a white curve superimposed over the Yb L_3 RIXS planes for the high-temperature (HT, 70 K) and low-temperature (LT, 35 K) phases, respectively. The HT XAS spectrum displays prominent structures at 8961 eV and 8965 eV, which represent core-hole containing final states (RIXS intermediate states) with mainly 4f^{14} character (Yb^{2+}). The strong core hole potential is responsible for the forced energy ordering of these valence configurations relative to the lower energy (<10 eV) manifold. The excited core hole has many possible decay channels, one of which is the spectrally-resolved RIXS process. As indicated by the arrow in Fig. 1(b), the RIXS-active excitation around 3 eV strengthens when the incident energy is tuned near the Yb^{2+} feature in the LT phase. Figure 1(c) displays the intensity difference between the LT and HT RIXS planes of Figs. 1(b) and 1(a), highlighting additional changes in the <10 eV range, and revealing that scattering through the Yb^{3+} and Yb^{2+} resonances evolves in opposite ways across the valence transition.

To better understand the nature of the observed spectra, the incident energy dependent RIXS spectrum was calculated using the single-impurity Anderson model (SIAM) and is shown for the LT phase in Figure 1(d). The remarkable agreement with the experimental data of Fig. 1(b) was achieved using a detailed bare band structure of the Yb d density of states (DOS), which was calculated within the local-spin density approximation and includes on-site 4f Coulomb interaction (LSDA+U), and is reproduced as a histogram in Fig. 2(a). Fig. 2(b) depicts the radiative transitions for the XAS and RIXS processes in the many-body SIAM. The green rectangles represent the unoccupied part of the ligand band corresponding to the continuum of transitions between the multi-electronic 4f^{14} and 4f^{13}c levels, where c is an electron transferred to the ligand band. The RIXS intermediate and final state configurations respectively have a hole in the 2p level and in the 5d valence band, and there are four transition paths allowed. The calculated RIXS spectral functions in Fig. 2(b) explicitly illustrate the tunable valence state selectivity through the incident energy dependence of the RIXS cross section. The SIAM
unoccupied states (see Fig. 2(a)). The RIXS process permits assignment of the salient spectral features to specific electronic transitions among Yb 5d occupied and unoccupied states (see Fig. 2(a)). The RIXS process responsible for the small structure labeled (A) at ~1.5 eV involves photoexcitation of a core electron into the shoulder of the unoccupied 5d DOS around 1.5 eV above the Fermi level E_F, followed by coherent recombination of an electron from the 5d peak just below E_F into the core hole. A second, stronger feature centered around 3 eV, and two higher-energy excitations in the 6-10 eV range correspond respectively to the transitions signed by the lines labeled (B), (C) and (D) in Fig. 2(a).

We now show that the valence-selective nature of the RIXS probe provides unique insight into the dependence of the low-energy charge excitations on the f shell occupancy. Figs. 3(a) and 3(c) respectively show the incident-energy resolved RIXS spectra separately for the energy ranges corresponding to the Yb$^{2+}$ (8948.5 - 8952.5 eV) and Yb$^{3+}$ (8958.5 - 8962.5 eV) components in the LT XAS spectrum. To simplify presentation, these RIXS spectra were averaged over the energy windows around each intermediate valence state and are shown in Fig. 3(b) and 3(d) respectively, along with the corresponding SIAM summed intensity for the LT phase. Upon cooling across the transition, the spectra for the Yb$^{3+}$ intermediate states show only weak changes, while those for the Yb$^{2+}$ intermediate states reveal dramatic reconstruction, with a quasigap-like dip opening around 0.5 eV, and the shifts of the features (A) and (B) by respectively +0.2 and -0.2 eV.

The RIXS-enabled selectivity of excitations related to the divalent state reveals an unprecedentedly clear view of the temperature-induced changes in Yb 5d states. In the LT phase, the Yb mean valence drops to 2.83 and the Yb nuclear charge was found to cause a shift of the empty state, mimicking the LT phase, more effective screening of the Yb nuclear charge was found to cause a shift of the empty on-site Yb 5d band upwards towards lower binding energies, while off-site electronic states derived from high binding energy In 5p states are less sensitive to changes in screening efficiency. This effect was suggested to explain valence transition-induced shift observed in a set of In 5p → Yb 5d interband transitions which strongly resemble feature (A) in our RIXS spectra. The similar absolute energy, magnitude, and sign of the shift of the optical transitions and feature (A) suggests that the nuclear screening effect is also manifest in the Yb 5d → Yb 5d RIXS interband transitions.

Feature (B) was not observed in optical conductivity and is redshifted by 0.2 eV in the LT-RIXS spectrum. The opposite temperature-dependent behavior of the fea-
tion of these hybridized bands may play a role in partially
hybridized bands near transitions across the correlation-induced gap between
nance formation below 4(a).

Optical conductivity measurements have revealed the non-rigid 5
cupied 5
f
1b and 1d implies that a rigid-shift picture of the Yb
ment of these features within the LT phase shown in Figs.

We now turn to the quasigap observed around 0.5 eV in
Fig. 3(b), and its relation with the quasigap in the DOS around
E_F. As illustrated in Fig. 4(a), the shift of the Yb 5d occupied and unoccupied bands towards lower
binding energies is expected to push the quasigap away
from the Fermi level. To estimate the effect on param-
eters relevant to the macroscopic material behavior, we use the observed shift ~0.2 eV and calculated Yb 5d DOS to estimate N(E_F)_LT/N(E_F)_HT ~ 4 as a rough fractional change in 5d Fermi DOS upon cooling through the tran-
sition (see Fig. 4(b)). This is consistent with the jump in the carrier concentration observed below the transition and the observed lowering of RIXS intensity in this spectral region, and would cause the abrupt rise of T_K at LT, as discussed below. A link between a subtle change in the position of the DOS quasigap with respect to E_F and the transition had been previously hypothesized on the basis of Hall effect and Cu-2p_3/2 XAS spectra, and our results provide direct evidence for this relationship.

Within the SIAM, T_K can be expressed as k_B T_K = [(1 - n_h)/n_h] V^2, where V^2 = \rho(E_F) V^2, n_h is the number of 4f holes and N_f is the degeneracy of the 4f states. \rho(E_F) is the partial DOS of the relevant lig-
and band, which is primarily derived from extended In
5p orbitals. Yb 5d and In 5p bands have dominant contributions to the carrier concentration and are expected to be strongly hybridized with each other due to their large orbital extent and close physical proximity, a fact supported by the similarities between these partial DOS in energy band calculations. To es-

timate the DOS effect on T_K, we assume that the strong correlation between the Yb 5d DOS N(E_F) and ligand DOS \rho(E_F) is such that a variation in N(E_F) gives rise to a proportional variation in \rho(E_F). Under this assumption, the ratio \rho(E_F)_LT/\rho(E_F)_HT is approximately the same as N(E_F)_LT/N(E_F)_HT, ~ 4. In fact, using the experimentally derived values of n_h and T_K^{1,2} in the above expression of T_K, one estimates (V^2 \rho(E_F))_LT/(V^2 \rho(E_F))_HT = 3.2, which is reasonably close to our estimation of \rho(E_F)_LT/\rho(E_F)_HT, sug-
gesting that the first-order change in T_K is largely due to the jump in DOS at E_F, in stark contrast to the phe-
nomenologically similar \gamma-\alpha transition in Ce, which is usually interpreted in terms of a volume-induced change of V^{30}. We also note that related systems YbInCu_5^{31} and YbAgCu_3^{5} show continuous valence crossover behavior, and have relatively smooth and quasigap-free near-E_F DOS profiles, bolstering the key role of the strongly in-
dented profile of the DOS around E_F in the anomalous first-order transition in YbInCu_5.

We have carried out RIXS measurements of YbInCu_4
across the isostructural valence transition, which show pronounced electronic structure changes, particularly for excitations derived from divalent intermediate states. These changes indicate that the Fermi level migrates out of an unusual quasigap following the onset of the mixed-valence behavior at LT. The striking rise of T_K below the transition is a result of sharp contrast in the energy-
dependent state density near the Fermi level, a condition which is left out of common theoretical considerations of the Kondo effect. These results establish a link between the bare band structure and the Kondo scale at the heart of the valence transition. Through a novel application

FIG. 4. (Color online) (a) Schematic illustration of the non-
rigid shift of the Yb 5d band across the transition. The shift
towards lower binding energies is about twice for the shoulder
in the unoccupied states around 1.5 eV than for the occupied
states, as inferred from the 0.2 eV blueshift of (A) and 0.2 eV
redshift of (B) in the RIXS data. (b) The Fermi level moves
out of the quasigap while the Yb 5d Fermi DOS (Fig. 2(a))
sharply increases at LT.
of RIXS, we have clearly demonstrated how the valence sensitivity of this emerging spectroscopic technique can disclose subtle changes in electronic structure to reveal new physics in the context of Kondo interactions.

ACKNOWLEDGMENTS

We thank T. Fukuda for his help with aligning the single crystal.

* To whom correspondence should be addressed: E-mail: jarrige@bnl.gov

24. We note that the model is set to simulate the so-called direct RIXS process as described in ref. 17, which consists of an excitation from the core level 2p to an empty 5d state in the intermediate state followed by the filling of the 2p core hole by an electron from an occupied 5d state in the final state. The so-called indirect RIXS process, which occurs via a shake-up of the electronic system in presence of the core hole, is forbidden for a scattering angle of 90°−17, which we used in the experiment, and is therefore not included in the model.

