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UNDERSTANDING THE EFFECT OF SPACE CHARGE ON
INSTABILIIES∗

M. Blaskiewicz† , BNL, Upton NY 11973 USA
A. Chao, SLAC, Stanford University, Stanford CA 94309 USA

Y.H. Chin, KEK, Ibaraki, Japan
Abstract

The combined effect of space charge and wall impedance
on transverse instabilities is an important consideration
in the design and operation of high intensity hadron ma-
chines as well as an intrinsic academic interest. This study
explores the combined effects of space charge and wall
impedance using various simplified models in an attempt
to produce a better understanding of their interplay.

TWO PARTICLE MODEL
The simplest nontrivial model including the space charge

force requires two macroparticles [1, 2]. We consider ver-
tical motion and useθ = s/R as the dynamical variable, it
increases by2π each turn. When particle two leads particle
one during the synchrotron oscillation one has:

y′′

1 = −ν2y1 + K(y1 − y2) + Wy2 (1)

y′′

2 = −ν2y2 + K(y2 − y1), (2)

whereν is the unperturbed betatron tune,′ denotesd/dθ,
K creates the space charge tune shift andW is the wake
strength. Indicies are reversed during the second half of
the synchrotron oscillation. To proceed we use the single
sideband approximation. Assume

yi(θ) = ŷi(θ) exp(−iAθ),

insert these in eq (1) and(2), and neglect terms proportional
ŷ′′

i
. SettingA2 = ν2 − K gives

ŷ′

1 = −i
K − W

2A
ŷ2 (3)

ŷ′

2 = −i
K

2A
ŷ1 (4)

Setκ =
√

(K − W )/K andb0 = Kκ/2A so that

ŷ1(θ) = cos(b0θ)ŷ10 − iκ sin(b0θ)ŷ20 (5)

ŷ2(θ) = cos(b0θ)ŷ20 −
i

κ
sin(b0θ)ŷ10, (6)

whereŷ10 andŷ20 are intial conditions.Whenb0 is imagi-
nary we usecos(ix) = cosh(x) andsin(ix) = i sinh(x).
Settingθ = π/νs with νs the synchrotron tune yields the
map for the first half of the synchrotron oscillation. Re-
versing the roles of particle 2 and 1 yields the map for the
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second half. Concatenating the maps yields a two by two
matrix with unit determinant. The trace of the full matrix
is

Tr(M0) = 2 cos2(b0π/νs) −
{

κ2 + 1/κ2
}

sin2(b0π/νs).
(7)

Let λ be an eigenvalue ofM . ThenTr(M) = λ+1/λ and
the system is unstable if|Tr(M)| > 2.

AN ALTERNATE SOLUTION
By neglecting the terms proportional tôy′′ in the previ-

ous section we introduced errors in the tunes appearing in
the transport matrix. These can be avoided without sacri-
ficing a simple closed form solution. We start off by diag-
onalizing equations (1) and (2). Setz = y1 + αy2, where
α is an unknown constant. One gets

z′′ = −A2z − αKκy1 − (K − W )y2.

Now introduce another unknown constantβ and demand
βz = αKκy1 − (K − W )y2. This givesα = ±κ and
β = αK.The new equations of motion are

z′′1 = −(A2 + Kκ)z1 z′′2 = −(A2 − Kκ)z2 (8)

with z1 = y1 + κy2 andz2 = y1 − κy2. Define

B1 =
√

A2 + Kκ, B2 =
√

A2 − Kκ.

Now, assumeκ is real and positive along with the Bs. We
deal with imaginaryκ later. Approximate

ẑm(θ) ≡ zm(θ) + iz′m(θ)/A = ẑm(0)e − iBmθ, (9)

where we would divide byBm instead ofA for an exact
solution. To the same level of approximation one has

ŷ1 = (ẑ1 + ẑ2)/2, ŷ2 = (ẑ1 − ẑ2)/2κ.

Now define

B̄ = (B1 + B2)/2, b = (B1 − B2)/2.

The map during the first half of the synchrotron oscillation
is

ŷ1(θ) = e−iB̄θ [cos(bθ)ŷ10 − iκ sin(bθ)ŷ20] (10)

ŷ2(θ) = e−iB̄θ

[

cos(bθ)ŷ20 −
i

κ
sin(bθ)ŷ10

]

.(11)

Apart from the overall phase evolution due toexp(−iB̄θ)
and the small difference betweenb andb0 these equations



are the same as equations (5) and (6). It follows that the
eigenvalues (λ) determining stability satisfyTr(M) = λ+
1/λ with

Tr(M) = 2 cos2(bπ/νs) −
{

κ2 + 1/κ2
}

sin2(bπ/νs).
(12)

For K > W equation (12) should give better answers
than equation (7), since only normalization errors associ-
ated with the definitions of the eigenvectors are involved in
equation (12). WhenW > K andκ becomes imaginary
things are not as clear. On the other hand note that

b − b0 ≈ (b0/8)(K(K − W )/A4) ∼ b0(∆ν/ν)2,

so the effects are very small for any reasonable accelera-
tor parameters. This small difference reinforces the utility
of the single sideband approximation and allows us to use
equation (7) with renewed confidence.

RESULTS
Equations (7) and (12) are amenable to significant analy-

sis. We defer the details to a subsequent publication [3] and
present some highlights. WhenTr(M0) > −2 the system
is stable. Rearranging equation (7) yields the stability con-
dition

tan2

(

π

√
K(K−W )

2Aνs

)

4K(K−W )
W 2

≡ tan2(xΥ/2)

x2 < 1, (13)

whereΥ = πW/2Aνs, x = 2
√

K(K − W )/W . For
x = 0 and smallΥ, Υ = 2π∆νW /νs with ∆νW the tune
shift due toW . WhenW > K, x is imaginary and we
usetan(iz) = i tanh(z). Firstly note that there is no in-
stability if W = 0. In this case the equations of motion do
not change when particle 1 and 2 are interchanged and we
have coupled oscillators with uniform focusing, like cou-
pled pendulums. WhenW > 0 the equations of motion
cannot be obtained from a Hamiltonian and instability is
possible. Figure 1 shows a plot of equation (7) for fixed
wake strength and synchrotron tune as a function of space
charge tune shift. The unstable regions as a function ofΥ
and∆νsc/νs are shown in Figure 2. Note that instability
occurs for smallΥ whenb0π/νs ≈ (2n + 1)π/2. We have
Tr(M0) = −2 whenΥ = 0 andb0π/νs = (2n + 1)π/2
and the unstable regions are continuously connected. It fol-
lows that all instabilities occur whenTr(M0) < −2 and
none occur withTr(M0) > 2.

While Υ and∆νsc/νs are natural physical units the sys-
tem stability is somewhat more clear in the unitsU =
π(K − W/2)/2Aνs andV = πW/4Aνs. In these units

Tr(M0) = 2 cos2
√

U2 − V 2

−2(U2 + V 2)
sin2

√
U2 − V 2

U2 − V 2
. (14)

Clearly, Tr(M0) is symmetric in bothU and V and the
power series expansion inU andV is well behaved over
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Figure 1: TrM0 for W/2A = 0.06 andνs = 0.10 as a
function of∆νsc = K/2A.

Figure 2: Unstable regions as a function ofΥ = πW/2Aνs

and∆νsc/νs.

the wholeUV plane. Sincesin2(ix)/(ix)2 = sinh2(x)/x2

and|U2 − V 2| ≤ U2 + V 2| it is also clear that instability
only occurs forTr(M0) < −2, verifying the argument in
the previous paragraph. Figure 3 shows a contour plot of
the growth rate in these variables. There are several insta-
bility regions with each region somewhat weaker than the
one below it. It is interesting to note that the lineU = 0
hasTr(M0) = 2. ForV > U we have

Tr(M0) = 2 − 4U2 sinh2
√

V 2 − U2

V 2 − U2
≈ 2 − U2e2V /V 2,

where the approximations holds ForV ≫ U . The sys-
tem goes from stable withTr(M0) = 2 to unstable with
Tr(M0) < −2 for very small values ofU . The lineV = 0
is stable owing toW = 0 so there is no wall impedance to
drive instability.ForV ≪ U we have

Tr(M0) = (2 + 4V 2/U2) cos(2U) − 2V 2/U2,

so whencos(2U) ≈ −1 only a small value ofV is needed
to make the system unstable.

The simplest continuum model describing this physics is
an air bag distribution in a square well [4, 5]. While ana-
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Figure 3: ln |λ|max as a function ofU and V .For U =
0, Tr(M0) = 2 and the system is stable. ForV = 0,
Tr(M0) = 2 cos(2U) and the system is stable.
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Figure 4: Growth rates for the air bag bunch in a square
well as a function of∆νsc/νs andΥ = 2π∆νW /νs. All
growth rates were≤ 1 × 10−8 outside the single bump
with peak of order 1.

lytic results are not available it is possible to solve the rele-
vant eigenvalue problem to machine precision on a com-
puter. Figure 4 shows the growth rate as a function of
∆νsc/νs andΥ Note that the threshold value for instability
with no space charge isΥ ≈ 3.5. For no space charge the
two particle model hasΥ = 2 at threshold. Barring un-
stable regions of extent less than0.02 × 0.02, the air bag
model has only one unstable region in the parameter range
plotted in Figure 3
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