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A novel transport-of-intensity equation (TIE) based phase retrieval method is proposed with putting an arbitrarily-shaped 
aperture into the optical wavefield. In this arbitrarily-shaped aperture, the TIE can be solved under non-uniform illuminations 
and even non-homogeneous boundary conditions by iterative discrete cosine transforms with a phase compensation 
mechanism. Simulation with arbitrary phase, arbitrary aperture shape, and non-uniform intensity distribution verifies the 
effective compensation and high accuracy of the proposed method. Experiment is also carried out to check the feasibility of 
the proposed method in real measurement. Comparing to the existing methods, the proposed method is applicable for any 
types of phase distribution under non-uniform illumination and non-homogeneous boundary conditions within an arbitrarily-
shaped aperture, which enables the technique of TIE with hard aperture become a more flexible phase retrieval tool in 
practical measurements. © 2014 Optical Society of America 
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Phase is not easy to directly detect as the intensity by 
energy-based sensors, but sometimes it contains the really 
desired information. In optical metrology, phase retrieval 
is a well-known terminology for either optical fringes [1] 
or optical wavefield [2]. As one important class of the 
noninterferometric propagation-based phase retrieval 
techniques for optical wavefield, the Transport-of-
Intensity Equation (TIE) [3] has gained increased interest 
in many applications, including x-ray diffraction [4], 
electron microscopy [5], wavefront sensing [6, 7], and 
quantitative phase microscopy [8-10]. 

Fig. 1. Energy conservation is required in TIE. (a) Energy is 
conserved when phase derivatives in the normal directions at 
boundary edges 0d dφ =n . (b) Energy is not conserved when

0d dφ ≠n . (c) A hard aperture is added in the optical wavefield 
to make sure the energy conservation. 

The TIE is a second order elliptic partial differential 
equation which provides quantitative phase using only 
axially defocused intensity information, allowing for 
simple and flexible experimental setups. The uniqueness 
of the TIE solution, however, requires a strictly positive 
intensity and, more importantly, the precise knowledge of 
(Dirichlet, Neumann) boundary conditions [11]. To avoid 
the complexity of obtaining such boundary conditions, the 
TIE is usually solved under simplified homogeneous 
boundary conditions or periodic boundary conditions, with 

use of the Fast Fourier transform (FFT) based TIE solver 
[12, 13]. This method works well when the phase is “flat” 
at the boundary of the image field of view (FOV) as shown 
in Fig. 1(a) [14], in which case the energy (intensity) 
conservation is fulfilled inside the FOV at different image 
recording locations. Nevertheless, this configuration does 
not reflect general experimental conditions, and is 
impractical in many other applications, such as wavefront 
sensing. For example, as shown in Fig. 1(b), the energy 
inside the FOV is not conserved, as energy “leak” occurs 
at the FOV boundary during the recording distance is 
being changed. In this case, non-homogeneous boundary 
conditions are thus required for the correct phase 
reconstruction based on TIE. The first attempt to solve 
the TIE under non-homogeneous boundary conditions has 
been made by Roddier [6, 7] in adaptive optics. Recently, 
Zuo et al. [15] address the solution of the TIE in the case 
of non-homogeneous Neumann boundary conditions 
under non-uniform illuminations. By introducing a hard 
aperture to limit the wavefield under test shown in Fig. 
1(c), the energy conservation can be satisfied, and the non-
homogeneous Neumann boundary conditions are directly 
measured around the aperture edge. In the case of the 
rectangular aperture, the fast Discrete Cosine Transform 
(DCT) can be used to solve the TIE effectively and 
efficiently, which has been well demonstrated in 
application of microlens characterization [16]. However, 
one limitation of Zuo’s technique is that the fast solution is 
only available for a rectangular aperture because the DCT 
only applies to rectangular domains. In practice, it is quite 
challenging to add an aperture whose shape is exactly a 
rectangle due to the difficulties in aperture fabrication 
and system alignment, or the other existing pupils (e.g. 
reflecting telescopes) obstructing the system aperture to 

CCD
FOV

CCD
FOV

CCD
FOV

Hard
ApertureLeak

Mix

(a) (b) (c)

-z +z0 -z +z0 -z +z0
Energy

Conserved
Energy Not 
Conserved

Energy
Conserved

𝑑𝜙
𝑑𝒏

= 0
𝑑𝜙
𝑑𝒏

≠ 0𝒏

BNL-108116-2015-JA

mailto:huanglei0114@gmail.comthor_nine@uni-jena.de


be rectangular. Until now, the solution to the TIE under 
non-homogeneous boundary conditions in an arbitrarily-
shaped region has not been considered explicitly. 

In this work, we present a new iterative DCT (iter-DCT) 
method to solve the TIE with a hard aperture (in the case 
of Fig. 1(c)) but the aperture shape can be arbitrary. To 
develop the iter-DCT formalism, we define the complex 
amplitude of the paraxial beam to be measured as

, where  is the wave number , 
is the position vector representing the 2D spatial 
coordinates .  is the in-focus image intensity. 

 is the gradient operator over  which is normal to the 
beam propagation direction. The TIE is given by [3] 

  . (1) 

The TIE is conventionally solved under the so-called 
“Teague’s assumption” that the transverse flux 

 is conservative so that can be fully 
characterized by an a scalar potential  [3]. The 
substitution  transforms the TIE 
into a Poisson equation , with the 
solution of the phase taking the following form 

  (2) 

where  is the inverse Laplacian. For simplified 
homogeneous boundary conditions or periodic 
boundary conditions defined in a rectangular domain, 
the inverse Laplacian can be effectively implemented with 
the FFT [12]. For more general non-homogeneous 
Neumann boundary conditions defined on the 
rectangular domain (with the boundary signal 
enclosed), the FFT should be replaced by the DCT [15]. 
It should be noted that the DCT-based TIE solver can also 
be effectively implemented by combing the FFT-solver 
with a mirror padding scheme.  

Considering the optical field is limited by an arbitrary-
shaped aperture, the intensity captured at the in-focus 
plane  will contain a large number of zeros, 
precluding direct use of Eq. (2) for phase reconstruction 
(  appears in the denominator). Therefore, we “fix” 
these intensity values beyond the extent of the physical 
pupil with the average intensity inside, and then the 
DCT-based TIE solver can be used to get an initial 
estimation of the phase distribution  (extended over 
the full support size), as shown in the box in Fig. 2. Since 
the intensity extrapolation with the average value inside 
(referring to step D in Fig. 2) is not physically grounded, 
the  within the aperture is usually an inaccurate 
solution. Therefore, if we substitute  back to the 
right hand side of the TIE (Eq. (1)), the resultant intensity 
derivative on the left hand side (where we define 

for succinctness) will be inconsistent with the 
real measurement. This inconsistency can be treated as 
the error signal, which is used as the source term for 
another round of phase reconstruction. The solution 

 is taken as the “correction term”, which is added 
back to to get an updated phase estimate . The 
procedure is iteratively repeated until the “stopping 

criterion” is satisfied. The stopping criterion chosen to 
assess the convergence is shown in step 5 in Fig. 2. It 
should be noted that similar iterative algorithms have 
been proposed to compensate “phase discrepancy” owing 
to the “Teague’s assumption” [17, 18], while in this work 
we adapt it to solve the boundary condition problem 
instead. By doing so, our approach can directly obtain the 
“unbiased” solution of the TIE that free from any 
boundary error and “phase discrepancy”, simultaneously. 

 
Fig. 2. An iter-DCT-based TIE solver is illustrated for phase 
retrieval with an arbitrarily-shaped hard aperture. 

 
Fig. 3. TIE through a hard aperture, which is in an irregular 
shape (a), is simulated with calculated intensity at focus (b), true 
phase (c), calculated intensity at =−0.5mm (d) and =0.5mm 
(e), and (f). 

A simulation is carried out to verify the proposed 
method. The CCD FOV is 0.512 mm × 0.512 mm with 256 
× 256 pixels. The wavelength = 633 nm. An irregular 
aperture is generated to enhance the complexity. The 
aperture shape is generated with a combination of an 
ellipse while its central 



region is blocked 2 2( 0.00524288)x y+ >  and a knife edge 
( 0.1024 2)y < as shown in Fig. 3(a). 

The normalized non-uniform intensity is distributed as
( ) 2 2 2, exp[ ( ) (2 0.18 )]I x y x y= − + × . The in-focus image 

intensity is captured as Fig. 3(b). The true phase 
distribution can be theoretically arbitrary and here not 
purposely set as ( ) 2 2, 10 10 0.7 2 0.82x y x y x yφ = − + + + , 
which is distributed as shown in Fig. 3(c). Please note only 
the measurable values inside the aperture are of interest. 
Two oppositely-defocused ( 0.5 mm)z = ± images are shown 
in Fig. 3(d) and (e). Once the intensity images are 
obtained, the intensity derivative I z∂ ∂ can be calculated 
and shown in Fig. 3(f). The calculated :J k I z= − ∂ ∂ and the 
filled intensity shown in Fig. 4 (a) and (b) are used as the 
inputs to the DCT-based TIE solver, which results in the 
initial phase 0φ  shown in Fig. 4(c). 

 
Fig. 4. With the inputs of the calculated J (a) and filled intensity 
(b), the DCT-based TIE solver can estimate an initial phase (c).  

After employing the iterative compensations, the 
standard deviation (STD) of phase error (with piston term 
ignored) inside aperture is reduced rapidly (see Fig. 5) 
from the initial STD = 0.095 rad (Fig. 5(a)) down to STD = 
0.005 rad (Fig. 5(b)) in 10 iterations. In other words, the 
accuracy of the retrieved phase is significantly improved 
(about 19 times better) through the compensations. 

 
Fig. 5. The proposed iter-DCT method effectively reduces the 
errors of phase estimation from the initial errors (a) down to the 
updated ones (b), and the phase in FOV (c) and inside the 
aperture (d) can be retrieved as results. 

The estimated phase distribution in the complete FOV 
after iterative compensations is shown in Fig. 5(c). Of 
course, only the values inside the aperture are desired 
and reliable. The final phase distribution shown in Fig. 
5(d) with its corresponding error distributed in Fig. 5(b) 
indicates the high accuracy of the proposed method. 

In order to demonstrate its feasibility in practice, the 
proposed method is also tested with a set of real TIE data. 
As illustrated in Fig. 6, an inverted bright-field microscope 
(Olympus IX71) attached with an electronically tunable 
lens based TIE (TL-TIE) system is used to acquire the 
intensity images in and out of focus. The pixel size of the 
CCD (Imaging Source DMK 41AU02 1280×960) is 

4.65µm. In our experiment, the wavelength is 550 nm. 
The specimen is a piece of microlens array. At its image 
plane, a rectangle-like aperture is introduced. The in-focus 
image is shown in Fig. 7(a) with its intensity histogram in 
Fig. 7(b), which indicates it is not difficult to set an 
intensity threshold to separate the regions in and out of 
the aperture. By varying the focal length of the tunable 
lens, the defocused images are sequentially obtained at 
equivalent defocusing distances of −550 µm in Fig. 7(c) 
and +550 µm in Fig. 7(d). The intensity derivative I z∂ ∂ is 
shown in Fig. 7(e). 

 
Fig. 6 The TIE experiment is implemented by using an inverted 
bright-field microscope and a tunable lens based TIE module 
with placing an aperture at the image plane. 

 
Fig. 7. The experimentally captured intensity at focus (a) with its 
histogram (b), and the intensity at −550 µm (c) and +550 µm (d) 
as well as their intensity derivative I z∂ ∂  (e). 

In order to have a benchmark to compare the accuracy, 
Zuo’s DCT method [15] is implemented by using the data 
in a rectangular region Ω  (within dashed yellow lines) 
including the aperture boundary shown in Fig. 8(a). Due 
to its characteristics, the phase is only reconstructed 
within a slightly smaller rectangular region Ω (within 
solid green lines) instead of the wholeΩ . The retrieved 
phase in Fig. 8(b) is going to be a phase benchmark for the 
following comparison. The classical FFT-based TIE solver 
is implemented to retrieve the phase within the 
rectangular region Ω  (within solid green lines), whose 
result is shown in Fig. 8(c). The phase result within the 
whole irregular aperture shown in Fig. 8(d) is retrieved by 
the proposed method after 6 iterations. The difference 
between phase results from classical FFT method and the 
DCT method is very large (STD = 21.11 rad) as shown in 

(a) (b) (c)x 108-10 -5 0 5 0 0.2 0.4 0.6 0.8 1 -1 -0.5 0 0.5
Unit: rad

(d)

(c)

0 2 4 6 8 10
0

0.02

0.04

0.06

0.08

0.1

Iterations

0.095

0.039

0.019
0.008 0.005

(a)

Std. of Phase Errors (rad)

-0.2
-0.1
0
0.1
0.2

(b)

-0.2
-0.1
0
0.1
0.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

Collector 
Lens

Aperture 
Diaphragm

Condenser
Lens

Specimen

Objective

Tube Lens

Image 
Plane

L1 L2

M1

CCD

Olympus IX71 Aperture TL-TIE system

CCD FOV

Aperture
Region

CCD image

Electrically 
Tunable Lens 

Offset 
Lens

(a)

(c) (d) (e)

(b)

0 20 40 60 80 100 120 140 1600

1

2 x 105

Intensity

Number of Pixels



Fig. 8(e), and Fig. 8(f) shows the phase difference between 
the proposed iter-DCT method and Zuo’s DCT one is 
much smaller (STD = 1.25 rad only). The comparison 
indicates the proposed method can retrieve more accurate 
phase distribution than the classical FFT method does 
under non-homogeneous Neumann boundary conditions. 

 
Fig. 8. Zuo’s DCT method uses the information in “data regionΩ ” 
to retrieve phase in reconstruct region Ω  (a), and its result (b) is 
used as a benchmark to judge the results from classical FFT-
based TIE solver (c) and the result from the proposed iter-DCT 
method (d). The phase retrieved with the proposed method is 
much closer to the DCT result (f) than the FFT one does (e). 

Although the proposed phase retrieved is similar to that 
with the DCT method, it is worthy to note their 
differences. Theoretically, Zuo’s DCT method requires 
that a rectangular aperture is recorded with its 
boundaries parallel to the CCD pixel coordinates in order 
to take DCTs in the selected rectangular regions. 
Furthermore, the “reconstruction region” is determined 
based on the defocusing distance and wavelength in use. 
As a result, it may require some experience to select 
proper regions for a good result in practice. On the other 
hand, the method proposed in this work handles 
apertures in arbitrary shapes and does not care about the 
relations between aperture edges and image coordinates. 
Moreover, the proposed method treats input images as a 
whole piece of data without cutting any regions in 
advance, and consequently it is pretty straightforward to 
use in practice. When both methods are applicable, it is 
not easy to say which one is more accurate as many 
factors (e.g. noise, region selection) can influence the 
accuracy. 

In this work, an iter-DCT-based TIE solver is proposed 
for phase retrieval under non-uniform illuminations and 
non-homogeneous boundary conditions in an arbitrarily-
shaped region. In hardware, the added aperture can be in 
an arbitrary shape which results in a low requirement on 
aperture fabrication and alignment. In data processing, 

the procedure is extremely automatic and easy to use. 
These features of the proposed method significantly 
enhance the flexibility of TIE measurement with hard 
aperture in real applications. 
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