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Abstract

Self- and nitrogen-broadened line shape data for the Pe(11) line of the ν1 + ν3

band of acetylene, recorded using a frequency comb-stabilized laser spectrom-

eter, have been analyzed using the Hartmann-Tran profile (HTP) line shape

model in a multispectrum fitting. In total, the data included measurements

recorded at temperatures between 125 K and 296 K and at pressures between 4

and 760 Torr. New, sub-Doppler, frequency comb-referenced measurements of

the positions of multiple underlying hot band lines have also been made. These

underlying lines significantly affect the Pe(11) line profile at temperatures above

240 K and poorly known frequencies previously introduced errors into the line

shape analyses. The behavior of the HTP model was compared to the quadratic

speed dependent Voigt profile (QSDVP) expressed in the frequency and time

domains. A parameter uncertainty analysis was carried out using a Monte Carlo

method based on the estimated pressure, transmittance and frequency measure-

ment errors. From the analyses, the Pe(11) line strength was estimated to be

1.2014(50)×10−20 in cm.molecule−1 units at 296K with the standard deviation

in parenthesis. For analyzing these data, we found a reduced form of the HTP,

equivalent to the QSDVP, was most appropriate because the additional parame-

ters included in the full HTP were not well determined. As a supplement to this

work, expressions for analytic derivatives and a lineshape fitting code written
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in Matlab for the HTP, are available.

Keywords: Lineshape modeling, acetylene, C2H2, frequency comb referenced

spectroscopy, HTP

1. Introduction

The Voigt profile (VP) is the standard lineshape model used in high reso-

lution spectroscopy databases for its simplicity and its fast computation time.

However, with the ever increasing sensitivity and accuracy of measurement tech-

niques, more subtle effects on the experimental data are now commonly ob-

served. The VP does not account for second order effects in the lineshape such

as the speed dependence of the relaxation rate[1] or the collisional narrowing[2].

Particularly at low to moderate pressures, attempts to model measured line-

shapes with a VP typically leaves a ”w” shaped residual, associated with the

narrowing that is not represented in the VP[3]. A wide variety of models of

various degrees of complexity have been proposed in an attempt to account for

these deviations. Examples include the speed dependent Voigt (SDV)[4, 5], the

Galatry[3, 6] and Rautian[3, 7] profiles obtained assuming soft and hard col-

lisions respectively, and profiles using the Keilson-Storer function for velocity

changes[8, 9] to cite just a few.

In order to improve the quality and utility of the high resolution spectro-

scopic databases, an IUPAC (International Union of Pure and Applied Chem-

istry) task group has recommended[10] the adoption of the Hartmann-Tran

profile (HTP) as the new standard lineshape model. The HTP, also referred

to as partially Correlated quadratic Speed-Dependent Hard Collision Profile

(pCqSDHCP)[11] or partially Correlated quadratic Speed- Dependent Nelkin-

Ghatak Profile (pCqSDNGP)[12], has the advantage of incorporating both the

speed dependence of the relaxation rate and the velocity changing collision ef-

fects in a model that is very fast to compute, while maintaining the physi-

cal meaning of the parameters[11, 13, 14]. Other more sophisticated models

exist[15, 16, 17, 8, 9], but require much longer computational time to evaluate,
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and so are unsuitable for databases or analysis of large datasets. The HTP has

been tested on the simulated spectra of H2, H2O, CO2 and O2[11] to ensure

that it gives consistent results with other models and the errors were found to

be less than tenths of a percent. H2O has a challenging lineshape to fit and

the success of the HTP in doing so shows that this profile could be deployed to

model molecular lineshapes in spectroscopic databases.

Using a frequency comb referenced external cavity diode laser (ECDL)[18],

we recently measured the Pe(11) line of the ν1+ν3 combination band of acetylene[19,

20] to high accuracy over a range of pressures and temperatures. This line,

henceforth referred to as simply Pe(11), was chosen as a strong and relatively

isolated transition in a band of 12C2H2 located at 1.5 µm, that lies in an at-

mospheric window between strong interfering H2O and CH4 bands, enabling

its use for satellite remote sensing observations. Our data clearly exhibit speed

dependent and/or collisional narrowing effects, making the VP inadequate for

modeling the measurements. We tested the SDVP[4, 5] and the QSDVP[21, 22,

23, 24, 25] and settled with the latter because of its more physically realistic

properties[20]. With the decision of the IUPAC to standardize on the HTP, we

have revisited our analysis using a new Matlab-based lineshape fitting code. We

have also measured positions of several underlying hot band features that pre-

viously compromised the analysis due to their imprecisely known frequencies.

The aims of this work are to : 1) use our self-broadened and N2-broadened data

sets acquired across a wide range of pressures and temperatures at a signal to

noise of the order of 104 to further test the validity and utility of the HTP, 2)

make our data the most accessible and useful by conforming to the new standard

model, 3) provide a useful lineshape fitting code to the community.

2. The HTP model

A complete description of the HTP and appropriate references can be found

in other papers[10, 13, 14, 11] with a FORTRAN code generating the HTP

profile[13, 14]. Here, we summarize the main equations needed to code the
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profile. The global form of the HTP is :

HTP(ν) =
1

π
Re

{
A(ν)

1− [νVC − η(C0 − 3C2/2)]A(ν) + (ηC2/v2
a0)B(ν)

}
(1)

with :

A(ν) =

√
πc

ν0va0
[w(iZ−)− w(iZ+)] (2)

B(ν) =
v2
a0

C̃2

[
−1 +

√
π

2
√
Y

(1− Z2
−)w(iZ−)−

√
π

2
√
Y

(1− Z2
+)w(iZ+)

]
(3)

Notice that A and B depend on the complex probability function :

w(z) =
i

π

∫ +∞

−∞

e−t
2

z − t
dt = e−z

2

erfc(−iz) (4)

where erfc is the complex Gauss error function. w(z) is also known as

the Faddeyeva, Faddeeva or Kramp function and a publicly available Matlab

routine[26]for this function has been used in this analysis.

The other terms in eq.1-3 are :

Z± =
√
X + Y ±

√
Y

X =
i(ν0 − ν) + C̃0

C̃2

Y =

(
ν0va0

2cC̃2

)2

(5)

where

C̃0 = (1− η)(C0 − 3C2/2) + νVC

C̃2 = (1− η)C2

(6)

and
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Cn = Γn + i∆n, n = 0, 2

va0 =

√
2kBT

M
=

cΓD√
ln(2)ν0

(7)

ν0 is the center frequency of the transition; va0 is the most probable speed

of the active molecule of mass M at temperature T and kB is the Boltzmann

constant; c is the speed of light and ΓD is the Doppler width.

If C̃2 → 0, which happens when η → 1 or C2 → 0, then[13, 14]:

Z− =
i(ν0 − ν) + C̃0

ν0va0/c

A(ν) =

√
πc

ν0va0
ω(iZ−)

B(ν) =

√
πcva0

ν0

[
(1− Z2

−)ω(iZ−) +
Z−√
π

] (8)

These values can then be substituted into eq.1 to give the simpler, limiting

cases of the HTP[10, 11] when η = 0 or C2 = 0, such as the VP or the Rautian

profile (RP). No other limits were considered in this paper as they did not play

a role in our analysis.

In total, 8 parameters define the HTP: ν0, va0, Γ0, ∆0, Γ2, ∆2, νVC and η. ν0

and va0, which define the Doppler width ΓD according to eq.7, are not adjusted.

Γ0 and ∆0 are the usual broadening and shifting speed-independent coefficients

of the relaxation rate found in the VP. However, the apparent shifting and

broadening of a line depends as well on the relative collision speed between

the active molecule and its collider. When averaged over all possible colliding

speeds, Γ2 and ∆2 arise as phenomenological parameters accounting for the

chosen quadratic form of the relaxation rate[1, 21] in terms of the active molecule

speed va :

Γ(va) = Γ0 + Γ2

[
(va/va0)2 − 3/2)

]
∆(va) = ∆0 + ∆2

[
(va/va0)2 − 3/2)

] (9)

The frequency of the velocity-changing collisions, referred to as νVC, accounts

for collisional narrowing also referred to as the Dicke narrowing[27]. In the
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hard collision limit and taking into account speed dependent effects, the speed-

dependent velocity-changing collision frequency, or equivalently the frequency

of hard collisions can be defined as eq.10 [7, 11, 27, 28]:

ν̃V C(va) = νV C − η(Γ(va) + i∆(va)) (10)

in which η represents the correlation between velocity-changing + dephasing

and pure dephasing collisions of Γ(va) and ∆(va).

In more detail, three types of collisions are assumed to occur in a molecular

bath: the dephasing collisions (D), the velocity-changing collisions (VC) and

collisions leading to both velocity-change and dephasing (VCD)[29]. The relax-

ation rate coefficients Γ and ∆ and the collisional frequency νCF take the form

:

Γ(va) = ΓD(va) + ΓV CD(va)

∆(va) = ∆D(va) + ∆V CD(va)

νCF = νVC + νVCD

(11)

In the HTP, νCF is calculated assuming no correlation between velocity

changes and dephasing[11]. Therefore, νVCD = 0 and νCF = νVC.

Finally, if Γ(va) and ∆(va) are assumed to share a common, speed-independent

correlation factor η[7, 11, 27] then :

η(Γ(va) + i∆(va)) = ΓV CD(va) + i∆V CD(va)

(1− η)(Γ(va) + i∆(va)) = ΓD(va) + i∆D(va)
(12)

As a result, both the pure dephasing and dephasing+velocity changing parts

of each Γ and ∆ have the same speed dependence from eq.9.

3. Effective parameters in the multispectrum fitting

Eq.1-7 fully define the HTP. Our data were recorded in transmission and the

Beer-Lambert law is used to model the transmitted laser light following sample

absorption :
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HTPT (ν) = e−Amp×HTP (ν) (13)

The amplitude (Amp) is a known quantity which depends on the absorp-

tion path length lpath (in cm) and the line strength S. In the Hitran 2012

database[30], the line strength is assumed to be proportional to the density of

molecules N = P/(kBT ) (in molecule.cm−3) and Amp becomes:

Amp = SNν Nlpath (14)

Hitran 2012 reports SNν = 1.165 × 10−20 cm−1(molecule.cm−2)−1, at the

reference temperature of Tref = 296 K, for the Pe(11) line listed at a frequency

of 6529.171909 cm−1[31]. In order to use the line strength at different tempera-

tures, one has to convert SNν into a temperature-dependent quantity using[32]:

SNν (T ) = SNν (Tref)
Qtot(Tref)

Qtot(T )
e−c2E1(1/T−1/Tref)

[
1− e−c2ν/T

1− e−c2ν/Tref

]
(15)

where c2 = hc/kB is in cm.K with h the Planck constant and c the speed

of light. E1 is the energy, in cm−1, of the lower energy level. Finally, Qtot(T )

is the total internal partition sum of the active molecule, at temperature T. In

our case, E1 = 155.289 cm−1 is found in Hitran 2012 and the partition function

is given as a polynomial expansion in the temperature[33]:

Qtot(T ) = −8.3088 + 1.4484T − 2.5946× 10−3T 2 + 8.4612× 10−6T 3 (16)

Finally, experimental baseline drifts are modeled with a degree 2 polynomial.

The final expression used to model the transmitted beam after absorption is:

HTPT (ν) = e−Amp×HTP (ν)(b0 + (ν − ν0)× b1 + (ν − ν0)2 × b2) (17)

A code written in Matlab to generate and fit a HTP, as well as the derivatives

of the HTP explicitly written are given as a supplementary material. Note that

the routine needs the Faddeyeva function[26] to be placed in the same folder.

Eq.17 is valid for one line. However, it is not suitable for modeling a single

experimental transition measurement with all parameters floating because the

7



resulting high number of correlated parameters makes the fit unstable. We used

a multispectrum fitting approach[34] and used constraints on the pressure and

temperature-dependent parameters to reduce the number of free parameters.

While η is assumed independent of both the pressure and temperature[11], all

the other 5 fitted HTP parameters Γ0, Γ2, ∆0, ∆2 and νVC are linear in the

pressure. A power law temperature dependence, as used in the Hitran[30] rep-

resentation, was found to be suitable for all these parameters except ∆2, which

was freely adjusted at each temperature. Therefore, a typical pressure and

temperature dependent parameter X takes the form:

X(T, P ) = X(Tref = 296, Pref = 1 atm)

(
296

T

)nX ( P

Pref

)
= Xref

(
296

T

)nX
P

(18)

assuming the pressure is reported in atm. For each such pressure and temper-

ature dependent parameter X(T, P ), 2 pressure and temperature independent

parameters are reported: Xref and nX .

The quadratic baseline was floating for each measured spectrum data file,

and the possibility that a line was spread over several files was also allowed.

This happened particularly at higher pressures and temperatures where the

broadening of the lines was such that the spectrometer could not entirely scan

it in one pass. Since then, the spectrometer has been modified to scan much

longer regions and an example is given in the top trace in fig.1.

Since we can define a temperature and pressure dependent expression of the

amplitude which depends on the constant SNν (Tref), we used our self-broadened

data set to estimate this quantity in the multispectrum fit and compare it with

the Hitran 2012[30] value. The acetylene concentration in the N2-broadened

data set was on the order of only 1%, and subject to larger relative error, which

did not permit the use of only one floating parameter, SNν (Tref), to determine

the amplitude of the transitions in the same scheme. Instead, we allowed the

parameter Amp to float for each line in the N2-broadened data, to account for

any small acetylene concentration measurement error. The cell length variation
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lpath with the temperature is negligible[20] and has not been taken into account.

The HTP parameters also had to be modified to account for a mixture in

our N2-broadened data set. If we denote by χi the mole fraction of species i in

the mixture, then we have[11] :

νVC =
∑
i

χiν
i
VC

Cn =
∑
i

χiC
i
n

ηCn =
∑
i

χiη
iCin

(19)

Finally, for a more balanced treatment of the contributions from individual

lines to the total error to be minimized in the multispectum analysis, each line

has been scaled to a common transmission at line center, arbitrarily chosen to

be 0.5, following the approach taken by Ngo, et al.[11]. This was achieved by

retrieving the minimum transmission value (min) and applying the scaling:

scaled line = 1− (1− original line)× 0.5

1−min

=
0.5−min

1−min
+

0.5

1−min
× original line

= offset + α× original line

(20)

The corresponding synthetic line in the fitting routine was scaled with the

same values of α and offset prior to computing the partial contribution to the

residual from that line. This scaling has the effect of weighting the individual

lines so as to minimize the combined relative errors of all lines in the multi-

spectrum fit. This increases the weight of weak lines relative to strong lines

compared to an unscaled multispectral analysis. In addition, the fitting routine

made 2 passes through the data. The first one included all the data points

while the second excluded data points for which their residuals were more that

4 standard deviations away.
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4. Hot bands near Pe(11)

As measurement techniques become more and more sensitive, spectra reveal

features that were previously ignored. Hot bands in the region of interest are

500-5000 times weaker than Pe(11) but are clearly visible in fig.1. This spectrum

has been recorded after substantial improvements of the spectrometer to reduce

noise and to scan much longer spectral regions without having to reposition the

spectrometer in frequency space. Only a handful of such scans were recorded and

they have not been included in the overall multispectrum fitting because baseline

drifts over the long scans were difficult to account for using the quadratic form

described above.
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Figure 1: The top panel shows a low noise spectrum of Pe(11). The medium panel shows the

observed-calculated residuals after the line was fit with the HTP. The hot band lines clearly

appear visible. The bottom panel shows the fit after the hot band transitions have been

accounted for. A complete line list of the hot band transitions modeled in this work is given

in tables 1 and 2.

In order to model the Pe(11) lineshape accurately, five accessible nearby hot

band absorptions have been newly measured in the sub-Doppler limit using the

same spectrometer to record their rest frequencies[35]. The updated hot band

rest frequencies and their characteristics are given in tables 1 and 2, the param-

eter definition echoing eq.18. The lines are labeled according to Hitran 2012[30]

where Tref = 296K and in which the upper and lower states are denoted by at
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least 5 numbers referring to the vibrational quantum numbers ν1, ν2, ν3, ν4, ν5.

The 6th number indicates l = |l4 + l5|[36] where l4 and l5 refer to the bending

vibrational angular momenta[37]. If relevant, the 7th number indicates the rank

of the level, 1 being the highest level in energy[36]. The characteristics of the

hot band transitions were taken from Hitran 2012[30] although the Q branch

101101u-000101g is missing from the database. The frequencies of these missing

Q lines 101101u-000101g were determined by diagonalizing a Hamiltonian built

on the polyad scheme[38], while their line strengths were estimated by using the

line strengths of the P and R lines of the same vibronic transition scaled by the

proper Höln-London factors[39, 40].

The parameters defined in air were used for the N2 mixture data[30]. Note

that not all the needed parameters were available. When missing, the parame-

ters for Pe(11) were assumed.

Table 1: Characteristics of the hot band lines included in the Pe(11) lineshape modeling.

Line transition label

c rest frequency SNν (Tref) E1
d

cm−1 cm−1.(mol.cm−2)−1 cm−1

Qe(11)b 101101u-000101g 6528.8572 8.40.10−23 766.8079

Pf(15) 200101g-000011u 6528.897133a 2.070.10−23 1012.5316

Pe(25) 1102112u-000101g 6528.9311 2.481.10−24 1374.9612

Pe(15) 200101g-000011u 6528.9311 7.396.10−24 1011.4062

Qe(10)b 101101u-000101g 6529.0156 3.48.10−24 740.9595

Rf(6) 101022u-000022g 6529.057503a 7.465.10−24 1507.8826

Qf(6)b 101101u-000101g 6529.0577 2.49.10−23 661.2741

Re(6) 101022u-000022g 6529.0846 2.488.10−24 1507.8868

Re(9) 101110+g-000110+u 6529.1363 5.362.10−24 1434.2887

Qe(9)b 101101u-000101g 6529.1602 1.29.10−23 717.4596

Re(11) 101200+u-000200+g 6529.199830a 2.250.10−23 1386.3099

Rf(10) 101112g-000112u 6529.2514 5.847.10−24 1472.5646

Re(10) 101112g-000112u 6529.270875a 1.754.10−23 1472.5850

Qf(5)b 101101u-000101g 6529.2724 1.05.10−23 647.1089

Qe(8)b 101101u-000101g 6529.2900 5.37.10−24 696.3086

Qe(7)b 101101u-000101g 6529.4054 1.98.10−23 677.5068

Qf(4)b 101101u-000101g 6529.451001a 4.10.10−23 635.3042

a rest frequencies determined by sub-Doppler spectroscopy in our laboratory[35].

b Lines not listed in Hitran 2012[30]. Their rest frequencies have been

calculated using a polyad based Hamiltonian[38].

c upper state - lower state, see text for more details.

d lower state energy.
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Table 2: Lineshape parameters used to model the hot band transitions included in the Pe(11)

lineshape modeling.

Line transition labelb
Γair

0
nair

Γ

Γself
0

cm−1.atm−1 cm−1.atm−1

Qe(11)a 101101u-000101g 0.0800 0.75 0.150

Pf(15) 200101g-000011u 0.0756 0.75 0.138

Pe(25) 1102112u-000101g 0.0597 0.75 0.110

Pe(15) 200101g-000011u 0.0756 0.75 0.138

Qe(10)a 101101u-000101g 0.0800 0.75 0.150

Rf(6) 101022u-000022g 0.0852 0.75 0.166

Qf(6)a 101101u-000101g 0.0800 0.75 0.150

Re(6) 101022u-000022g 0.0852 0.75 0.166

Re(9) 101110+g-000110+u 0.0808 0.75 0.154

Qe(9)a 101101u-000101g 0.0800 0.75 0.150

Re(11) 101200+u-000200+g 0.0787 0.75 0.147

Rf(10) 101112g-000112u 0.0796 0.75 0.150

Re(10) 101112g-000112u 0.0796 0.75 0.150

Qf(5)a 101101u-000101g 0.0800 0.75 0.150

Qe(8)a 101101u-000101g 0.0800 0.75 0.150

Qf(7)a 101101u-000101g 0.0800 0.75 0.150

Qe(4)a 101101u-000101g 0.0800 0.75 0.150

a Lines not listed in Hitran 2012[30].

b Upper state - lower state, see text for more details.

Correctly modeling the hot band lines is critical to extract precise param-

eters for the main feature. For example, Re(11) of the 2ν4 hot band is listed

at 6529.196200 cm−1 in Hitran 2012[30], but turns out to be 100 MHz away at

6529.199830 cm−1 when remeasured. Moreover, it is a line which is very close

to the center of our line of interest Pe(11). Fig.2 shows the temperature depen-

dence of the line strength for selected hot band lines in the vicinity of Pe(11),

normalized to the line strength of Pe(11). A few hot band lines have relative

line strengths that begin to become appreciable compared to the experimental

sensitivity at a temperature of about 240 K, due to the higher energy of the

lower level involved compared to that of Pe(11). Re(11) of 2ν4 in particular

reaches values well above our experimental signal to noise ratio, determined to

be below 1 part in 104.

12



2.0x10
-3

1.5

1.0

0.5

0.0

L
in

e 
st

re
n

g
th

 n
o

rm
al

iz
ed

 t
o

 P
e(

11
)

300250200150
Temperature (in K)

Line strength temperature dependence, normalized to Pe(11)

 Re(9) 101110+g-000110+u
 Qe(9) 101101u-000101g
 Re(11) 101200+u-000200+g
 limit above which the hotbands become apparent

Figure 2: Line strengths of the hot band transitions in the vicinity of Pe(11), normalized to

the line strength of Pe(11). Only the closest hot band lines are represented, labeled according

to table 1 and 2.

5. Results

Before analyzing the experimental data, we compared our QSDVPt[20, 25]

(t denoting that the function was calculated in the time domain, as opposed to

using the QSDVP form of the HTP) and the HTP on a synthetic data set using

the multispectrum fitting approach, by setting νVC and η to 0. The QSDVPt

was calculated by taking the numerical Fourier transform of an analytic time-

domain correlation function. The maximum time considered and time interval

used to evaluate the correlation function were critical to ensure both reliable

and fast calculations. With the settings previously used[20], the two models

differ at the 10−6 level, much lower than our sensitivity and therefore yield the

same results, well within experimental limits. By taking larger maximum times

and smaller time intervals, we can reduce this difference at the cost of a higher

computation time when computing the QSDVPt in the time domain.

The self-broadened data set contains 64 lines acquired at temperatures rang-

ing from 150 K to 296 K and pressures from 4 to 355 Torr. The N2-broadened

data set contains 61 lines acquired at temperatures ranging from 125 K to 296 K

and pressures from 5 Torr to 1 atmosphere. The final results for both analyses

are presented in table 3 and table 4, respectively.
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Table 3: Lineshape constants for the self-broadened data set.

Parametera HTP QSDVP QSDVPt[20]

nΓ0
0.6917(23) 0.6866(30) 0.69(1)

Γ0 0.15383(16) 0.15472(20) 0.1548(11)

n∆0 0.0829(87) 0.0816(98) 0.05(1)

∆0 -0.008058(38) -0.008013(41) -0.00817(5)

nΓ2
0.832(24) 0.669(19) 0.66(4)

Γ2 0.01984(28) 0.02119(18) 0.0214(6)

nνVC
0.28(22) 0 0

νVC 0.0258(44) 0 0

η 0.124(30) 0 0

SNν (Tref) ×1020 f 1.2001(50) 1.2014(50) 1.165e

∆2
b

150.383(20) -0.00218(12) -0.001651(50) -0.00166(2)

155.373(30) -0.00199(11) -0.001489(54) -0.00156(4)

160.343(50) -0.001873(98) -0.001477(47) -0.00154(4)

165.373(12) -0.001716(99) -0.001410(59) -0.00148(5)

175.319(16) -0.001733(87) -0.001359(60) -0.00139(3)

200.298(49) -0.001536(86) -0.001232(55) -0.00134(6)

240.135(25) -0.00170(10) -0.001303(73) -0.00144(5)

295.715(19) -0.00180(13) -0.001324(98) -0.00169(6)

rmsec 1.7× 10−4 1.7× 10−4 0.9× 10−4 d

a All parameters in cm−1.atm−1, except for the exponents

and η which are dimensionless.

b Calculated for each temperature data set,

the average temperature being given in the adjacent column in Kelvin.

c Weighted rmse of the fit.

d rmse of fit to unscaled data, see text for details.

e fixed values from [30]

f in units of cm−1.(mol.cm−2)−1

Numbers in parentheses are 1σ uncertainties in the last digits.

From such a multispectrum analysis, the statistical error in the parameters

can be misleading in that they will be lower than one would expect due to

the the neglect of systematic measurement errors. For example, table 5 shows

results from fitting a synthetic data set to which noise similar, discussed in

more detail below, to the noise observed in the experiment was added. The

error bounds, calculated on the assumption that the noise is purely Gaussian,

are clearly too restrictive. In order to give a more realistic error bound on

our reported lineshape parameters, we adopted a Monte-Carlo method similar

to that described previously[20]. Multiple synthetic multispectrum data sets,

14



Table 4: Lineshape constants for the N2-broadened data set.

Parametera HTP QSDVP QSDVPt[20]

nΓ0
0.7373(29) 0.7378(25) 0.738(9)

Γ0 0.08834(10) 0.08937(10) 0.0894(5)

n∆0 0.5719(32) 0.5820(32) 0.583(6)

∆0 -0.009392(15) -0.009288(16) -0.00935(3)

nΓ2
0.207(41) 0.473(14) 0.46(4)

Γ2 0.01426(20) 0.013848(95) 0.0138(2)

nνVC
1.34(11) 0 0

νVC 0.0107(13) 0 0

η 0.129(16) 0 0

∆2
b

125.300(20) -0.00302(12) -0.002076(36) -0.00231(7)

140.117(44) -0.00218(10) -0.001371(34) -0.00126(7)

160.128(33) -0.001962(87) -0.001297(26) -0.00138(7)

175.281(96) -0.001203(82) -0.000515(41) -0.00074(7)

200.145(71) -0.001109(69) -0.000667(35) -0.00063(5)

240.080(20) -0.001008(54) -0.000588(24) -0.00041(6)

295.851(19) -0.001123(48) -0.000735(23) -0.00060(5)

rmsec 2.4× 10−4 2.5× 10−4 0.9× 10−4 d

a All parameters in cm−1.atm−1, except for the exponents

and η which are dimensionless.

b Calculated for each temperature data set,

the average temperature being given in the adjacent column in Kelvin.

c Weighted rmse of the fit.

d rmse of fit to unscaled data, see text for details.

Numbers in parentheses are 1σ uncertainties in the last digits.

similar to the self- and N2-broadened data sets, were generated such that each

experimentally measured quantity was varied over a range defined by a Gaussian

distribution centered at their measured values and in terms of the estimated

standard deviation of the measurement error.

Pressure measurement errors were accounted for by assuming a systematic

error equivalent to a standard deviation of 10 mT for each synthesized data

set. Within each data set, pressure measurement noise of 0.3% was assumed for

each measured line. For the frequency axis, a 50 kHz standard deviation was

assumed except for hot band lines whose frequencies have not been measured,

where 0.002 cm−1 was assumed. Lineshape parameters for the hot band lines

were assumed to have errors of 10%. The data were recorded by taking the

ratio of a reference channel and the absorbed channel, subject to random noise

15



as well, on the order of 10−4 and this was added in the synthetic model. Finally,

the baseline drift could not, in most cases, be entirely modeled by a second order

polynomial and so a cubic noise term was added with a standard deviation set

to reproduce the similar baseline drifts we observed.

500 data sets were generated and then fit, for each of the four scenarios: self-

and N2-broadened sets and each of the HTP and QSDVP lineshape functions.

The final parameter errors were defined as the standard deviation of each line-

shape parameter across the 500 fits of the synthetic data set and are reported

in tables 3 and 4. Note that the reported root mean square error (rmse) val-

ues for the present analysis that used scaled data and are therefoe not directly

comparable to the previous unscaled fits to the same data[20] shown in the final

column of tables 3 and 4.

6. Discussion

The velocity changing collision parameter νVC is related to the mass diffusion

coefficient through νVC = kBT/(2πMcD)[11] where M is the mass of the active

molecule, C2H2, and D is the mass diffusion coefficient which can be calculated

solely based on the molecular gas properties[41]. The HTP allows fits to both Γ2

and νVC simultaneously, which was not possible previously with the QSDVPt[20]

due to the high correlation between the parameters making the fit unstable.

One expects νVC to take the form of a power law in the temperature (cf eq.18)

with an exponent close to 1 because D is expected to vary approximately as

T2[11, 41]. Our exponents for the self- and N2-broadened data sets were found

to be 0.28 and 1.36 respectively, quite far from 1. However, there are substantial

correlations between the exponents of Γ2 and νVC still remaining and in order to

better measure the impact of νVC we used the RP form of the HTP to extract the

pressure and temperature independent parameters defining νVC. The exponents

came out closer to 1 at 0.63 and 0.80 respectively for the self- and N2-broadened

data sets, with values across the temperatures matching relatively well as shown

in table 6. However, we did not keep the Rautian form of the HTP because the
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Table 5: Fit of a synthetic data set subject to similar noise found in the self- and N2-broadened

data sets.
Parametera HTP True values

nΓ0
0.67715(31) 0.68

Γ0 0.149542(25) 0.15

n∆0 0.0474(46) 0.053

∆0 -0.008028(15) -0.008

nΓ2
0.476(12) 0.6

Γ2 0.01969(13) 0.02

nνVC
0.790(15) 0.7

νVC 0.0329(12) 0.03

η 0.2130(79) 0.2

SNν (Tref) ×1020 d 1.16185(10) 1.165

∆2
b

150 -0.002594(74) -0.0024

155 -0.002590(78) -0.0024

160 -0.002548(67) -0.0024

165 -0.002559(100) -0.0024

175 -0.002709(85) -0.0024

200 -0.002628(62) -0.0024

240 -0.002558(54) -0.0024

295 -0.002552(68) -0.0024

rmsec 1.9× 10−4 N/A

a All parameters in cm−1.atm−1, except for the exponents

and η which are dimensionless.

b Calculated for each temperature data set, the average

temperature being given in the adjacent column in Kelvin.

c Weighted rmse of the fit.

d in units of cm−1.(mol.cm−2)−1

Numbers in parentheses are 1σ uncertainties in the last digits.

rmse of the fit is 2 times worse than for the full HTP or QSDVP form.

The difference in the quality of the fit between the QSDVP and the Rautian

form of the HTP suggests that the collisional processes happening in our cell are

mostly due to speed dependent and dephasing effects. This conclusion is further

supported by the low correlation parameter η of the full HTP form, suggesting

that the collisions are mostly purely dephasing.

The speed dependent parameter ∆2 did not follow a power law distribu-

tion in the temperature. The downward trend past 200 K observed in our

previous work[20] could be reproduced by simulating multispectra datasets in

which the hot band lines were not accounted for. This is consistent with fig.2
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Table 6: Velocity changing rate coefficients for the HTP and the RP at different temperatures

and a pressure of 1 atm.

Temperature (in K) Self-broadened N2-broadened

HTP RP Theorya HTP RP Theorya

296 0.026 0.049 0.040 0.011 0.022 0.031

240 0.027 0.055 0.048 0.015 0.026 0.037

200 0.029 0.062 0.058 0.019 0.031 0.044

175 0.030 0.068 0.066 0.023 0.034 0.050

165 0.030 0.070 0.070 0.025 0.036 0.052

160 0.031 0.072 0.072 0.026 0.036 0.054

155 0.031 0.073 0.074 0.027 0.037 0.056

150 0.031 0.075 0.077 0.028 0.038 0.057

125 0.033 0.084 0.092 0.036 0.044 0.069

a[41].

All numbers, except the temperatures, are in cm−1.

which shows that the hot band lines can have intensities greater that our noise

level at temperatures above 240 K. The present analysis shows a trend in the

temperature-dependent ∆2 term which reaches a constant value, suggesting that

the hot band transitions have been more properly accounted for. However, small

pressure measurement errors and baseline drifts are still uncharacterized sources

of noise that primarily affect the second order parameters in the lineshape mod-

eling.

Finally, for both our self- and N2-broadened data sets, our experimental

sensitivity is not high enough to take advantage of the full form of the HTP

as it offers only a marginal improvement on the overall rmse calculated while

introducing correlations between the second order parameters Γ2, ∆2 and νVC.

As such, the parameters could lose part of their physical meaning and we rec-

ommend to use parameters of the QSDVP form reported in tables 3 and 4 to

describe the Pe(11) of the ν1 + ν3 combination band.

7. Conclusion

We have presented a new analysis of Pe(11) of the ν1 +ν3 combination band

of acetylene using the new HTP lineshape model, which successfully fit our data

set with measurements across multiple temperatures and pressures. Improve-
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ments to our spectrometer have allowed us to observe multiple underlying hot

band transitions, which have been assigned and accounted for and, for some,

newly frequency-measured at the sub-Doppler level. The measurements lead

to a refined estimate of the line strength for Pe(11) and determined that the

QSDVP form of the HTP, which yields same quality results as the HTP but

with fewer parameters, is the most suitable for these data.
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broadening and frequency shifting of CH3F: effect of the speed dependence

observed by millimeter wave coherent transients, J. Mol. Spectrosc. 185

(1997) 222–233.

[2] R. Dicke, The effect of collisions upon the Doppler width of spectral lines,

Phys. Rev. 89 (1953) 472–473.

[3] J. M. Hartmann, C. Boulet, D. Robert, Collisional effects on molecular

spectra: Laboratory experiments and models, consequences for applica-

tions, Elsevier: Amsterdam, 2008.

19



[4] P. R. Berman, Speed-dependent collisional width and shift parameters in

spectral profiles, J. Quant. Spectrosc. Radiat. Transfer 12 (1972) 1331–

1342.

[5] J. Ward, J. Cooper, E. W. Smith, Correlation effects in the theory of

combined Doppler and pressure broadening –I. Classical theory, J. Quant.

Spectrosc. Radiat. Transfer 14 (1974) 555–590.

[6] L. Galatry, Simultaneous effect of Doppler and foreign gas broadening on

spectral lines, Phys. Rev. 122 (1961) 1218–1223.

[7] S. G. Rautian, I. I. Sobel’man, The effect of collisions on the Doppler

broadening of spectral lines, Sov. Phys. Usp. 9 (1967) 701–716.

[8] H. Tran, F. Thibault, J.-M. Hartmann, Collision-induced velocity changes

from molecular dynamic simulations in H2-Ar: a test of the Keilson-Storer

model and of line-broadening/shifting calculations for the Q(1) Raman line,

J. Quant. Spectrosc. Radiat. Transfer 112 (2011) 1035–1042.

[9] H. Tran, J. M. Hartmann, F. Chaussard, M. Gupta, An isolated line-shape

model based on the Keilson-Storer function for velocity changes. II. Molec-

ular dynamics simulations and the Q(1) lines for pure H2, J. Chem. Phys.

131 (2009) 154303.

[10] J. Tennyson, P. F. Bernath, A. Campargue, A. G. Császár, L. Daumont,

R. R. Gamache, J. T. Hodges, D. Lisak, O. V. Naumenko, L. S. Rothman,

H. Tran, N. F. Zobov, J. Buldyreva, C. D. Boone, M. D. D. Vizia, L. Gi-

anfrani, J.-M. Hartmann, R. McPheat, D. Weidmann, J. Murray, N. H.

Ngo, O. L. Polyansky, Recommended isolated-line profile for representing

high-resolution spectroscopic transitions (IUPAC Technical Report), Pure

Appl. Chem. 86 (12) (2014) 1931–1943.

[11] N. H. Ngo, D. Lisak, H. Tran, J.-M. Hartmann, An isolated line-shape

model to go beyond the Voigt profile in spectroscopic databases and ra-

20



diative transfer codes, J. Quant. Spectrosc. Radiat. Transfer 129 (2013)

89–100.

[12] D. Lisak, N. H. Ngo, H. Tran, J.-M. Hartmann, Spectral line-

shape model to replace the Voigt profile in spectroscopic databases,

13th HITRAN/Atmospheric Spectroscopy Applications Conference-

doi:10.5281/zenodo.11153.

[13] H. Tran, N. H. Ngo, J. M. Hartmann, Efficient computation of some speed-

dependent isolated line profiles, J. Quant. Spectrosc. Radiat. Transfer 129

(2013) 199–203.

[14] H. Tran, N. H. Ngo, J. M. Hartmann, Erratum to Efficient computation of

some speed-dependent isolated line profiles [ J. Quant. Spectrosc. Radiat.

Transfer 129 (2013) 199-203], J. Quant. Spectrosc. Radiat. Transfer 134

(2014) 104.

[15] J. M. Hartmann, H. Tran, N. H. Ngo, X. Landsheere, P. Chelin, Y. Lu,

A. W. Liu, S. M. Hu, L. Gianfrani, G. Casa, A. Castrillo, M. Lepère,

Q. Delière, M. Dhyne, L. Fissiaux, Ab initio calculations of the spectral

shapes of CO2 isolated lines including non-Voigt effects and comparisons

with experiments, Phys. Rev. A 87 (013403) 2013.

[16] J. M. Hartmann, V. Sironneau, C. Boulet, T. Svensson, J. T. Hodges, C. T.

Xu, Collisional broadening and spectral shapes of absorption lines of free

and nanopore-confined O2 gas, Phys. Rev. A 87 (2013) 032510.

[17] N. H. Ngo, H. Tran, R. R. Gamache, D. Bermejo, J. L. Domenech, Influence

of velocity effects on the shape of N2 (and air) broadened H2O lines revisited

with classical molecular dynamics simulations, J. Chem. Phys. 137 (2012)

064302.

[18] C. P. McRaven, M. J. Cich, G. V. Lopez, T. J. Sears, D. Hurtmans, A. W.

Mantz, Frequency comb-referenced measurements of self- and nitrogen-

21



broadening in the ν1 + ν3 band of acetylene, J. Mol. Spectrosc. 266 (1)

(2011) 43–51.

[19] M. J. Cich, C. P. McRaven, G. V. Lopez, T. J. Sears, D. Hurtmans, A. W.

Mantz, Temperature-dependent pressure broadened line shape measure-

ments in the ν1 + ν3 band of acetylene using a diode laser referenced to a

frequency comb, Appl. Phys. B: Lasers Opt. 109(3) (2012) 373–384.

[20] M. J. Cich, D. Forthomme, C. P. McRaven, G. V. . Lopez, G. E. Hall,

T. J. Sears, A. W. Mantz, Temperature-dependent, nitrogen-perturbed line

shape measurements in the ν1 + ν3 band of acetylene using a diode laser

referenced to a frequency comb, J. Phys. Chem. A 117 (2013) 13908–13918.
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1. Supplemental information: derivatives of the HTP model

We present here analytic derivatives of the HTP function with respect to

its various parameters for use in iterative nonlinear parameter fitting routines,

such as the one implemented in the supporting information. Although we did

not float the Doppler width ΓD nor the rest frequency ν0 and therefore did

not calculate these derivatives in the code, we included them in the subsequent

derivations, for completeness. Note that the Doppler width depends on ν0 and

the temperature T. ν0 can be floated separately and the most probable speed

va0 is the only parameter which depends on T. Therefore, we will limit ourselves

to the calculation of the derivatives with respect to ν0 and va0, from which the

Doppler width can then be deduced.

Let us start with a few simple derivatives that we will refer to later on,

starting by the derivative of the Faddeyeva function. We adopt the convention

to label the derivatives in this form: dwdZ, means the derivative of w, the

Faddeyeva function, with respect to the parameter Z. All derivatives were

calculated using chain rules. Note as well that we will not explicitly write the

derivatives of the HTP with respect to ∆0 or ∆2 since they are the same as the

derivatives with respect to Γ0 and Γ2 except for a factor i. Finally, if the ± sign

of Z is not specified, it is because the expression takes the same form whether

Z− or Z+ is used.

∂w(iZ±)

∂Z±
= 2Z±w(iZ±)− 2√

π
= dwdZ± (1)

Afactor =

√
πc

ν0va0

Bfactor =
v2a0
√
π

2C̃2

√
Y

(2)

∂Z

∂C̃0

=
1

2
√

(X + Y )C̃2

= dZdC̃0

∂Z

∂Γ0
=

1− η
2
√

(X + Y )C̃2

= dZdΓ0

(3)

1



∂Z±

∂ν0
=

1

2
√
X + Y

(
i

C̃2

+
2Y

ν0

)
± 1

2
√
Y

2Y

ν0
= dZ±dν0 (4)

∂Z±

∂C̃2

=
1

2
√
X + Y

(
−X
C̃2

− 2Y

C̃2

)
± 1

2
√
Y

−2Y

C̃2

= dZ±dC̃2 (5)

∂Z±

∂va0
=

Y

va0

[
1√

X + Y
± 1√

Y

]
= dZ±dva0 (6)

∂C̃2

∂C2
= (1− η) = dC̃2dC2

∂C̃2

∂η
= −C2 = dC̃2dη

∂C̃0

∂C2
= −(3/2)(1− η) = dC̃0dC2

∂C̃0

∂η
= −(C0 − 3C2/2) = dC̃0dη

(7)

Now that we have defined some basic derivatives and constants that will

be re-used in the subsequent equations, we move on to the calculation of the

derivatives of A(ν) and B(ν).

∂A

∂ν0
= Afactor

[
− (w(iZ−)− w(iZ+))

ν0
+ dwdZ− × dZ−dν0 − dwdZ+ × dZ+dν0

]
(8)

∂A

∂Γ0
= Afactor (dwdZ− − dwdZ+) dZdΓ0 (9)

∂A

∂Γ2
= Afactor

[
dwdZ−(dZ−dC̃2 × dC̃2dC2 + dZdC̃0 × dC̃0dC2)

−dwdZ+(dZ+dC̃2 × dC̃2dC2 + dZdC̃0 × dC̃0dC2)
] (10)
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∂A

∂η
= Afactor

[
dwdZ−(dZ−dC̃2 × dC̃2dη + dZdC̃0 × dC̃0dη)

−dwdZ+(dZ+dC̃2 × dC̃2dη + dZdC̃0 × dC̃0dη)
] (11)

∂A

∂νV C
= Afactor (dwdZ− − dwdZ+) dZdC̃0 (12)

∂A

∂va0
= Afactor

[
−w(iZ−)− w(iZ+)

va0
+ dwdZ− × dZ−dva0 − dwdZ+ × dZ+dva0

]
(13)

∂B

∂ν0
= Bfactor

[
− 1

ν0

(
(1− Z2

−)w(iZ−)− (1− Z2
+)w(iZ+)

)
−2Z− × dZ−dν0 × w(iZ−) + (1− Z2

−)dwdZ− × dZ−dν0

+2Z+ × dZ+dν0 × w(iZ+)− (1− Z2
+)dwdZ+ × dZ+dν0

] (14)

∂B

∂Γ0
= Bfactor

[
−2Z− × dZdΓ0 × w(iZ−) + (1− Z2

−)dwdZ− × dZdΓ0

+2Z+ × dZdΓ0 × w(iZ+)− (1− Z2
+)dwdZ+ × dZdΓ0

] (15)

∂B

∂Γ2
=− B

C̃2

dC̃2dC2

+Bfactor

{
1

C̃2

dC̃2dC2

(
(1− Z2

−)w(iZ−)− (1− Z2
+)w(iZ+)

)
+
(
dZ−dC̃2 × dC̃2dC2 + dZdC̃0 × dC̃0dC2

)
×
(
−2Z−w(iZ−) + (1− Z2

−)dwdZ−
)

−
(
dZ+dC̃2 × dC̃2dC2 + dZdC̃0 × dC̃0dC2

)
×
(
−2Z+w(iZ+) + (1− Z2

+)dwdZ+

)}
(16)

∂B

∂η
=− B

C̃2

dC̃2dη

+Bfactor

{
1

C̃2

dC̃2dη
(
(1− Z2

−)w(iZ−)− (1− Z2
+)w(iZ+)

)
+
(
dZ−dC̃2 × dC̃2dη + dZdC̃0 × dC̃0dη

)
×
(
−2Z−w(iZ−) + (1− Z2

−)dwdZ−
)

−
(
dZ+dC̃2 × dC̃2dη + dZdC̃0 × dC̃0dη

)
×
(
−2Z+w(iZ+) + (1− Z2

+)dwdZ+

)}
(17)
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∂B

∂νVC
=Bfactor

(
−2Z− × dZdC̃0 × w(iZ−) + (1− Z2

−)dwdZ− × dZdC̃0

+2Z+ × dZdC̃0 × w(iZ+)− (1− Z2
+)dwdZ+ × dZdC̃0

) (18)

∂B

∂va0
=

2B

va0
+Bfactor

[
− 1

va0

(
(1− Z2

−)w(iZ−)− (1− Z2
+)w(iZ+)

)
−2Z− × dZ−dva0 × w(iZ−) + (1− Z2

−)dwdZ− × dZ−dva0

+2Z+ × dZ+dva0 × w(iZ+)− (1− Z2
+)dwdZ+ × dZ+dva0

] (19)

The remaining part is to get the final expressions for the entire lineshape.

In order to do so, we derive the denominator of the HTP referred to has HTPd,

omitting the π factor. The full expressions are not explicitly written since they

all take the same form of eq. 20.

∂HTP

∂X
=

Amp

π
× dAdX ×HTPd−A× dHTPddX

HTPd2 (20)

∂HTPd

∂ν0
= −dAdν0 [νVC − η(C0 − 3C2/2)] +

ηC2

v2a0
dBdν0 (21)

∂HTPd

∂Γ0
= −dAdΓ0 [νVC − η(C0 − 3C2/2)] + ηA+

ηC2

v2a0
dBdΓ0 (22)

∂HTPd

∂Γ2
= −dAdΓ2 [νVC − η(C0 − 3C2/2)]− 3ηA

2
+

η

v2a0
(B + C2dBdΓ2) (23)

∂HTPd

∂η
= −dAdη [νVC − η(C0 − 3C2/2)] +A(C0 − 3C2/2) +

C2

v2a0
(B + ηdBdη)

(24)

∂HTPd

∂νVC
= −dAdνVC [νVC − η(C0 − 3C2/2)]−A+

ηC2

v2a0
dBdνVC (25)

∂HTPd

∂va0
= −dAdva0 [νVC − η(C0 − 3C2/2)] +

ηC2

v2a0

(
dBdva0 −

2B

va0

)
(26)
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