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Abstract

We propose a system for forecasting short-term solar irradiance based on multi-

ple total sky imagers (TSIs). The system utilizes a novel method of identifying

and tracking clouds in three-dimensional space and an innovative pipeline for

forecasting surface solar irradiance based on the image features of clouds. First,

we develop a supervised classifier to detect clouds at the pixel level and output

cloud mask. In the next step, we design intelligent algorithms to estimate the

block-wise base height and motion of each cloud layer based on images from

multiple TSIs. This information is then applied to stitch images together into

larger views, which are then used for solar forecasting. We examine the system’s

ability to track clouds under various cloud conditions and investigate different

irradiance forecast models at various sites. We confirm that this system can

1) robustly detect clouds and track layers, and 2) extract the significant global

and local features for obtaining stable irradiance forecasts with short forecast

horizons from the obtained images. Finally, we vet our forecasting system at

the 32-megawatt Long Island Solar Farm (LISF). Compared with the persis-

tent model, our system achieves at least a 26% improvement for all irradiance

forecasts between one and fifteen minutes.
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1. Introduction

Clouds are the primary source of large fluctuations in solar radiation at com-

mercial solar farms. The main interaction between clouds and radiation in the

visible spectrum is scattering, which can rapidly change the gross radiation mea-

sured by surface radiation sensors. Cloud-induced variability in solar radiation5

has become one of the greatest concerns in the power grid, as the market share

of solar energy, that is, solar energy penetration, has steadily increased in recent

years. Consequently, the ability to predict the presence of clouds and extract

their relevant features is critical for estimating variations in solar energy and

thus for mitigating the effects of output fluctuations in utility-scale PV power10

plants.

Methods for detecting and tracking clouds are widely applied to estimate

their motion n satellite images at the global scale, viz., spatial scales of 1x1km

or larger and temporal scales of 15 minutes or longer, [1] [2] [3]. These methods

are not designed for accurately estimating cloud motions on shorter time scales15

or at smaller spatial scales. In particular, for such applications as distributed

residential roof-top solar panels and utility-scale solar farms, cloud tracking

requires real-time or near real-time cloud information at a high resolution of

meters and minutes, given the enormous volatility of the weather and atmo-

spheric conditions that prevail at this scale. Therefore, instead of a satellite20

imaging system, localized cloud tracking requires instruments and new sophis-

ticated algorithms to operate at a speed commensurate with that of the rapid

changes in clouds. Cloud tracking at such a scale is challenging because they

exhibit properties, such as Cloud base heights (CBH) that range from 0 to 7

km, movements in arbitrary directions and at different velocities, ambiguous,25

non-rigid shapes depending on their types.

To accurately determine the properties of local clouds, it is common to uti-

lize measurements from ground-based instruments, such as cloud radar and
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LIDAR. However, because of their high cost and limited availability, these tools

are not widely used for localized, short-term forecasts. Although cloud tracking30

is undertaken based on ground-based reference sensor network [4], additional

hardware support is needed for tracking over a large region. A cost-effective

alternative is to use sky imager, such as total sky imager (TSI) to infer the

clouds’ irradiance properties and estimate their movements in a short time win-

dow. With the advent of inexpensive digital cameras, sky imagers have become35

widely used as cost-effective tracking device for various applications.

Compared with satellite imaging system and ground-based reference sensors,

sky imager is a promising tool for visualizing and tracking clouds in real time at

local scales. Such sky images have been successfully used to estimate observed

cloud cover over a short-time horizon [5] [6] [7]. By analyzing the red-green-blue40

(RGB) channels in sky images, researchers can determine the details of various

cloud properties, such as opaqueness and thickness [8] [9] [10]. In addition to

utilizing original RGB channels, Souza-Echer et al. proposed detecting clouds

in the hue-saturation-luminance (HSL) color space [11]. In our earlier work,

we have extracted generalized features from transformed luminance images [12].45

Other approaches used such classification methods as state-of-the-art k-nearest

neighbor(kNN) algorithms and binary decision tree to categorize cloud types

based on the extracted textural features from sky imagery [13] [14]. Recent

works [15] [16] [9] [17] have focused on exploring additional image characteristics

or the application of adaptive thresholds to improve the accuracy of classifying50

cloud types and identifying cloud pixels. In particular the reported accuracy of

seven-type cloud classification has ranged from 78% to 95% [17].

Sky imagery is also an effective tool for tracking cloud movements over short

time horizon which can not be accessed using satellite imaging system. Based

on the temporal correlations between consecutive frames of sky images, cloud55

movement can be obtained as motion vectors at the pixel level. One common

approach adopted by previous researchers is to divide sky images into small

regions/blocks to obtain block-wise motion vectors. Researchers at the Uni-

versity of California San Diego (UCSD) initially utilized the normalized cross-
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correlation method (CCM) to detect the velocities of regional cloud motion in60

sky images [18]. To improve the accuracy of cloud motion tracking based on

small blocks, Huang et al. proposed the adoption of two different block sizes

for block matching [19] [20]. To mitigate cloud deformation and motion pertur-

bation, Huang et al. [21] explored an approach based on multi-frame motion

back-tracking. The cloud motion vector was then estimated via extrapolation65

based on the known motion trend. In contrast to block-wise movement, the

motions of clouds can also be represented on a tiny scale, e.g., by the motions

of individual pixels. Pixel-wise motion is generally estimated by utilizing well-

known computer vision techniques. Optical flow (OF) motion tracking, which

has the advantages of being able to identify tiny differences between pixels, is a70

successful example of estimating the small movements of clouds [22]. By incor-

porating the deformation model, OF-based methods can capture the dynamic

motions of clouds between consecutive frames based on image registration tech-

niques [23]. In general, block-wise cloud tracking, as discussed in previous works

[24] [25], is an extension of the pixel-wise methodology. These two approaches75

are applied under different tracking conditions: in the block-based approach,

the properties within a cloud block are integrated to mitigate noise and mis-

representations of color in the original images, whereas the pixel-wise approach

focuses on the typical movements that occur at the pixel or sub-pixel scale.

Recently, sky imagery has been widely used in solar irradiance studies to80

predict the presence of clouds based on the temporal correlation between frames.

The basis of this approach is predicting the cloud properties in and around the

path between the radiation sensor and the Sun based on previously observed

clouds and then estimating the cloud-induced fluctuations in irradiance based

on these properties [18]. By representing irradiance as a function of the features85

extracted from sky images, solar prediction can then be transformed into a

problem of predicting future images and accurately resolving their corresponding

cloud features [26] [12]. This methodology, as might be expected, relies on the

ability to detect clouds and track their motion. To minimize the influence

of erroneous motions, Huang et al. [21] added statistical features to the final90
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irradiance forecast model. To further improve the accuracy of short-term solar

forecasting, recent works have incorporated machine learning techniques into

both cloud tracking and irradiance modeling [27] [20] [28].

In general, sky imagery can be used to effectively determine a cloud’s pres-

ence, coverage and short-term motion. The majority of existing sky imagers are95

designed to image a hemispheric view of the sky. Their built-in cameras are ei-

ther oriented upward, for direct image acquisition, or, downward, to capture the

reflections from a spherical mirror [29] [6] [30] [31]. However, the effectiveness of

the cloud tracking capabilities and detection methods may vary among different

types of sky imagers. In particular, the TSI used herein to capture cloud move-100

ments over short horizons has several shortcomings that limit its cloud detection

ability and cloud tracking effectiveness. One significant disadvantage of the TSI

is that it adjusts its imaging settings in response to the overall scene brightness.

Therefore, the raw TSI images captured under different lighting conditions lack

inter-image consistency and often cannot faithfully represent the real view. An-105

other issue with the TSI is its built-in camera can acquire only low-resolution

images of up to 640 x 480. Moreover, because the TSI images are generated by

reflections from a dome-shaped mirror, they typically suffer from the presence

of ground obstacles within the FOV. More importantly, the shadow band which

occludes approximately 14% of the total view [31] and the camera-supporting110

arm are visible in the raw images, and must to be removed during the prepro-

cessing step. A promising alternative to TSI is an inexpensive high-definition

digital camera, which overcomes these issues of image quality. This approach

has been used successfully for short-term solar forecasts [30]. To address these

challenges in TSI images, we propose employing a novel system to identify the115

primary cloud layers and extract the effective image features that are relevant to

forecasting the surface radiation. Our contributions are summarized as follow:

1. New Cloud Detection Methodology: We propose an effective cloud

detection pipeline for classifying cloud pixels and utilizing multiple TSIs to

correct erroneous TSI images or compensate for abnormal exposure.120

2. Multiple-Source Cloud Tracking: In contrast to the related work
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described in this section, we design a novel tracking algorithm to incorporate

the spatial and temporal correlations between clouds among multiple TSIs and

time frames.

3. Multi-layer Recognition: We develop a clustering-based technique to125

integrate the results of individual block-wise tracking into multiple cloud layers,

each of which forms a major wind field.

4. Feature Selection: Instead of tracking a single cloud pixel, we use

sky images to generate both global features at the image level as well as local

variations within a small pixel 7 x 7 window.130

5. New Regression-based Irradiance Forecast Models: We propose

four regression-based solar irradiance models that utilize the predicted features

of cloud pixels, and compare these models with the persistent model and its

variant based on Support Vector Regression.

6. High Accuracy in Field Studies and Validation: We confirm, in our135

preliminary analysis, that the proposed system for detecting and tracking clouds

and predicting their relevant features can accurately forecast solar radiation for

up to 15 minutes.

This paper is organized as follows. Section 2 describes our ground-based

instruments and data streams. Section 3 presents a pipeline for supervised140

cloud detection and cloud block aggregation. In Section 4, we provide a detailed

description of a 3D cloud block tracking system for detecting multiple cloud

layers, each of which is defined as a wind field. The information for each cloud

layer then is used to stitch together multiple sky images. Section 5 describes

the extraction of the image features based on the combined multi-TSI view,145

and applications of different regression models to predict solar radiation. The

experiments and subsequent analyses are described in Section 6, followed by our

conclusions in Section 7.
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(a) TSI1 (b) TSI2 (c) TSI3

(d) Google Maps View

Figure 1: (a), (b), and (c) are the preprocessed views of the three TSIs. (d) is the Google

Maps view of the three TSIs from left to right (camera iconslabel) and the 25 solar radiation

sensors (red). The distance between TSI1 and TSI2 is 2477 meters, and that between TSI2

and TSI3 is 956 meters.

7



Figure 2: Procedure for preprocessing the TSI images. The original image is undistorted from

the original dome space to the planar space via coordinate transformation. The output image

is cropped based on a pre-defined FOV range and masked to remove irrelevant areas, such as

the supporting arm and the shadow band.

2. Instruments

The data used in this paper were obtained from the Long Island Solar Farm150

(LISF), a 32-megawatt solar photovoltaic power plant built by a collaboration

between BP Solar, the Long Island Power Authority (LIPA), and the Depart-

ment of Energy. The LISF, located at the Brookhaven National Laboratory,

is currently the largest solar photovoltaic power plant in the Eastern United

States. The cloud tracking system (Figure 1) consists of a network of three155

total sky imagers (TSI1, TSI2, and TSI3). Their positions are triangulated to

ensure good coverage of the sky above the solar farm. TSI1 collects sky images

of a region near the solar farm. TSI2 is deployed in the middle of the farm to

ensure sufficient overlap of its views with those of the other two TSIs. TSI3

is located in the northern area of the solar farm. We installed all three TSIs160

at the same altitude and tuned their orientations to ensure that their camera-

supporting arms point north. Consequently, the supporting arm in each TSI

images overlaps with the vertical(y) axis on the image which is aligned toward
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the north.

All TSIs uploaded real-time video streams with a raw resolution of 640x480,165

and at a streaming rate of 10 seconds per frame to a centralized database server.

We then applied preprocessing techniques, as illustrated in Figure 2, to undis-

tort the raw images and remove unrelated artifacts, i.e., the shadow band and

supporting arm. The primary advantage of preprocessing the images, as de-

scribed in our previous work [19], is that the planar view obtained from the170

coordinate transformation of the raw images is more effective for estimating

cloud motions. In this study, we projected the original coordinates to a flat

plane with a given resolution (500x500 pixels) and cropped the planar image

using a pre-defined view angle range (zenith range 0◦−60◦) to ensure an FOV of

approximately 120◦. In addition, because the camera-supporting arm may not175

be exactly aligned with the vertical direction in a TSI image, we adjusted the

orientation in the preprocessing step by rotating the images by several degrees.

To simplify the coordinates transformations between different TSIs, we unified

the conditions and specifications of all TSI devices. Because each TSI has an

identical FOV and resolution, all the preprocessed images reside on the same180

projection plane, wherein pixels are distributed evenly. Finally, we applied a

pre-calculated mask to remove irrelevant areas, such as the supporting arm and

shadow band. The preprocessed image was then generated, with all irrelevant

pixels being set to black (Figures 1a, 1b, and 1c).

We deployed 25 pyranometers in the LISF, as shown in Figure 1d, to mea-185

sure the surface solar irradiance. These sensors measure the global horizontal

irradiance (GHI) in real time. The measurements which are recorded every 10

seconds, are synchronized with the TSI observation. The variations in zenith

and the diurnal and seasonal patterns are also recorded in the raw GHI mea-

surements, and therefore bias our subsequent irradiance forecasting models. To190

mitigate this potential bias, we normalized each radiation value to a clear-sky

index kt during model training and testing. Letting GHIt be the raw GHI

measured at time t and GHItclear be the corresponding clear-sky estimate, the
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clear-sky index kt is calculated as follows:

kt =
GHIt

GHItclear
(1)

where kt nominally ranges from 0 to 1. However, its maximum value can be195

greater than one due to the cloud enhancement caused by diffuse sunlight. The

estimated clear-sky value GHItclear at time t is obtained from the regression

curve that best fits the distribution of historical observations [24].

3. Cloud Detection

3.1. Cloud Pixel Identification200

The basic concept of cloud detection is to apply a classification methodology

to identify cloudy pixels in sky imagery and to separate the clouds from the

sky at the pixel level. Beginning with the mask of classified cloud pixels, we

aggregate the pixels into appropriate regions/blocks to represent pieces of cloud

for subsequent tracking.205

However, many challenges are encountered when identifying clouds at the

pixel level. With their distinct properties, such as different optical depths and

brightness variations in sky imagery, clouds have various distributions in the

RGB channels and a wide range of brightnesses in different sky scenes or image

frames. In particular, certain optically thin clouds may have similar textures210

and colors to those of the background sky pixels, whereas some clouds may

appear both dark and white within the same sky image. Therefore, it is difficult

to identify a fixed threshold to separate clouds from sky. For instance, cirrus

clouds are barely distinguishable from the clear-sky background in TSI images.

Moreover, under different weather conditions and at different solar angles,215

the clouds presented on a bitmap image may appear to have various brightnesses

and a large range of intensities. Therefore, we require a robust methodology to

assess sophisticated image-based features to capture the pixel-wise differences

or the regional textural differences between cloudy and clear regions. From the

perspective of image processing, it may appear that we could first sharpen edges220
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and boundaries using various derivative image filters and then apply image seg-

mentation methods to separate clouds from clear pixels based on their boundary

pixels, and thereby identifying cloud segments. However, these methods often

fail to segment clouds from the background due to the poorly-defined edges of

clouds in sky images. With the resolution and image quality limitations, a sin-225

gle pixel in a sky image may contain both cloud and clear sky. Consequently, a

section of visually rigid cloud can appear non-rigid and blurry in sky imagery.

Furthermore, sky imagers face certain instrument-specific challenges in their

practical deployment in the field and in testing. Because the sky camera adjusts

its lens aperture and shutter speed in response to the amount of incident illu-230

mination, the output images can potentially suffer from variations in exposure,

and may appear either brighter or darker than the ground-truth image that

accurately represents the real lighting conditions.

To accurately detect cloud pixels, previous studies of sky images have re-

lied on cloud properties and have utilized the prominent features at the pixel235

level to identify hybrid thresholds for the RGB channels or the red-blue ratio

(RBR) in cloud images [32] [8]. The threshold-based method presented in [8]

is able to accurately identify opaque clouds in images acquired by the Whole

Sky Imager (WSI). However, it is less effective for many low-quality commodity

cameras, such as TSI and webcam. These cameras lack spectral and neutral240

filters and adjust their lens apertures for different lighting conditions, which

incurs large variations in the brightness of the images and requires non-trivial

calibrations in deployment. Under this circumstances, threshold-based methods

require customized parameter settings for various sky scenes. Another type of

approach to the analysis of cloud properties is based on supervised classifica-245

tion methods that utilize various features extracted from sky images and find

patterns from the training dataset. In earlier works, traditional classification

techniques, such as k-nearest neighbor (kNN) algorithms, binary decision tree,

and neural network classifiers [13] [14] [16] [33], have been widely used for cloud

type classification in sky imagery. To detect clouds at the pixel level, a super-250

vised technique can be successfully applied to train the adaptive threshold for
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Figure 3: Pipeline for cloud detection using an SVM classifier and multi-source correction.

the classification of image pixels into several opacity categories based on the

RBR channel [9]. In this paper, we detail how to use a binary classifier to iden-

tify cloud versus clear-sky pixels in sky imagery. The training datasets for the

classifier are generated by manually labeling cloud/sky pixels in TSI images.255

This process requires a considerable amount of human effort and more impor-

tantly, may introduce uncertainties and errors into the training datasets that

could significantly impact the accuracy of traditional classifiers. To overcome

this challenge, we propose an outlier-aware classifier to train manually labeled

pixels in sky images. Moreover, because of the many instrument-specific abnor-260

mal cases that can be generated from individual TSIs, such as, overexposed or

underexposed images, we design a classifier-based pipeline to utilize all three

TSIs for multi-source image correction to enhance the overall accuracy of cloud

detection. We also present a technique for aggregating cloud pixels into cloud

blocks (Figure 3).265

3.2. Supervised Cloud Classifier

To minimize the influence of possible outliers in the training dataset, we

chose a Support Vector Machine(SVM) [34] as a pixel-wise classifier and trained

it using two-layer cross-validation [35] to reduce overfitting. An SVM constructs

a max-margin hyperplane to reduce the effect caused by outliers and offers the270

advantage of being able to handle known outlier patterns. In particular, uncer-

tainties and errors introduced during the manual annotation of training images
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are taken into account during SVM optimization. Figure 3 shows an example

of the training and testing process for a cloud classifier. To better describe the

characteristics of cloud pixels, six features are extracted from the sky images275

and normalized for use as the SVM training dataset: R, G, B and RBR which

are spectral characteristics extracted from the RGB color space, and two fea-

tures based on the neighboring pixels which are used to mitigate the impact of

variations in illumination. In detail, we convert the sky images from the orig-

inal RGB color space to the relative luminance space based on the algorithm280

presented in [36] and then apply the Laplacian of Gaussian(LoG) spatial fil-

ter [37] to compute the 2nd derivative in luminance space within a fixed-size

window (7x7 is used). The LoG value reflects the rapid changes in the illumi-

nance channel in a certain region and is useful for detecting sharp edges. The

final feature used for cloud detection is the standard deviation of the luminance285

channel within a small region around each pixel (7x7 is used), representing the

pixel’s average difference from its neighbors. Our implementation uses the SVM

package libsvm [38] with linear kernel.

Furthermore, we explore the possibility of multi-source abnormality correc-

tion using synchronized images from all three TSIs. Because the three TSIs are290

located reasonably close to each other, we can reasonably assume that their color

representations have statistically similar range with regard to the RGB chan-

nels. In other words, cloudy/clear pixels in these three digitized color channels

should have similar histograms across the different TSIs. Therefore, if one TSI

experiences an exposure issue or abnormal brightness in the RGB color space,295

we can correct it by equalizing the histograms of its RGB channels to those

of the two normal TSIs. We first generate the cloud masks for all TSIs using

the SVM classifier and compute the histograms of the RGB channels for cloud

and sky pixels separately. By calculating the Euclidean distances between the

histogram vectors of the three TSIs, we can identify a device as abnormal if its300

image histogram is significantly different from those of the other two devices.

We then apply the histogram equalization add-on to the output image from the

abnormal TSI to adjust its RGB scale for cloud and sky pixels. The corrected
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result can be used for the next round of cloud mask generation. In practice, we

iterate this procedure three times to extract the cloud mask and equalize the305

RGB histograms of the TSI images (Figure 3).

ACcld = 93.2%

ACsky = 87.7%

ACcld = 100%

ACsky = 79.4%

ACcld = 100%

ACsky = 0%

ACcld = 83.2%

ACsky = 92.9%

ACcld = 93.8%

ACsky = 85.5%

Figure 4: Cloud detection results (row 3) compared to manual annotation (row 2) under

different weather/cloud conditions. Left to Right in row 1: Scattered cloud, cloudy, overcast,

multilayer, and multi-layer with thin cloud. ACcld and ACsky represent the accuracy of the

classification results for cloud pixels and sky pixels, respectively.

To evaluate the performance of the proposed supervised classifier and the

multi-source correction algorithm, we selected various test cases from daily ob-

servations corresponding to different atmospheric conditions and cloud types

and then compared the results with our manually annotated images. In this310

paper, we adopt two evaluation metrics to measure the error in cloud classifica-

tion:

ACcld =
Ncld,cld

Ncld,cld +Nsky,cld
, ACsky =

Nsky,sky
Nsky,sky +Ncld,sky

(2)

where ACcld and ACsky are the accuracies of cloud and sky pixel classifi-
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ACcld = 97.9%

ACsky = 91.5%

ACcld = 98.0%

ACsky = 84.8%

ACcld = 86.1%

ACsky = 91.9%

ACcld = 98.9%

ACsky = 81.9%

ACcld = 96.2%

ACsky = 91.0%

Figure 5: Results of cloud detection (row 3) compared to manual annotation (row 2) in the

presence of device-specific bias or luminance variations. Left to Right in row 1: red-dominant,

green-dominant, overexposed, underexposed, and a different image source.
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cation, respectively. Ncld,cld and Nsky,sky denote the pixel counts of correct

cloud and sky classifications, respectively, whereas Nsky,cld and Ncld,sky indi-315

cate the total numbers of sky and cloud pixels, respectively, that are falsely

recognized by our detector. In Figure 4, we show the distinctive patterns of

examples of scattered clouds, cloudy conditions, overcast conditions, and two

multi-layer cases. Compared with the manual classification masks, our pipeline

based on the SVM classifier can accurately detect clouds (with an accuracy of320

more than 83.2%), except in the case of multi-layered clouds near the sun’s

position and very thin clouds. The image area near the Sun (“sunspot”) has a

higher brightness and is difficult to characterize based exclusively on static tex-

tural information. Therefore, the classifier often falsely labels clear-sky pixels

as clouds in that region.325

To validate the cloud detection performance of our method in the case of

device errors or variations in exposure, we selected four abnormal images of

types that are commonly observed in the field: red-color dominant, green-color

dominant, overexposed, and underexposed (the first four cases in Figure 5).

The accuracy of cloud pixel classification in these cases is 86.1% or higher.330

We also applied our classifier to another type of sky imagery configured with a

different field of view and color scales (the last case in Figure 5), which confirmed

that our classification algorithm is practical and effective. The classification

accuracies for cloud and sky pixels in this case are 96.2% and 91.0%, respectively.

The overall clout detection performance in all selected cases is evaluated in the335

confusion matrix presented in Table 1. We observed our pipeline accurately

(96.6%) recognizes cloud pixels.

3.3. Cloud-block Generation

Cloud tracking at a very small scale (e.g., the pixel level) is sensitive to noise

and changes in illuminance. Hence, we aggregate the cloud pixels classified by340

the cloud detection pipeline into cloud blocks, each of which is a unit for cloud

tracking. The block-matching algorithm presented in Huang’s work [20] is ap-

plied to find the best matches for image blocks between two consecutive frames.
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Table 1: Overall confusion matrix for the cloud detection pipeline applied to the images shown

in Figures 4 and 5. Left to Right in the Table: ACcld followed 1−ACcld in the first row and

1−ACsky , followed by ACsky in the second row. All values are in [%].

Cloud Detection Pipeline

Manual Cloud Sky

Cloud 96.6% 3.4%

Sky 10.3% 89.7%

When a suitable block size is chosen, state-of-the-art block-matching methods

demonstrate stable performance in estimating cloud motions. Similarly, in our345

approach, we restrict the range of block size between 10x10 and 80x80 to ensure

that each cloud block exhibits adequate textural variability while simultaneously

includes a few unrelated pixels.

To aggregate cloud pixels into blocks of an appropriate size, we first apply

the connected-component detection algorithm [39] to determine the regions that350

are distinct from clear sky. As shown in Figure 6c), each component marked

with a given color has a high likelihood of belonging to the same piece of cloud.

For each component, we draw a minimum bounding rectangle box/block to en-

close its cloud pixels. However, these bounding blocks may not be of a suitable

size for cloud tracking because of the arbitrary size and shape of the connected355

components. Therefore, we apply the iterative rectangle split-and-merge algo-

rithm to all components to ensure that the final cloud blocks have acceptable

dimensions in accordance with the pre-defined range (i.e., 10x10 to 80x80). As

shown in Figure 6d, the final output is a sequence of cloud blocks derived from

connected components, each of which is treated as a unit region for calculating360

the temporal and spatial correlations of its internal cloud pixels.
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(a) Original (b) Cloud Mask

(c) Component Map (d) Cloud Blocks

Figure 6: Generating cloud blocks from a cloud mask. (a) Original image. (b) The cloud

mask generated from the original image; (c) The output components detected by applying

connected components detection are illustrated in different colors. Using a “split and merge”

technique, the final cloud blocks are generated as shown in red in (d).

.
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Figure 7: Overview of three-TSI tracking.

4. Cloud Tracking and Layer Determination

4.1. Cloud Base Height and Motion

Using the generated cloud blocks, the basic concept of cloud tracking is to

recover the 3D coordinates for each block and estimate their motions. Figure 7365

shows an overview of three-TSI tracking. A piece of cloud at a certain level can

be projected into/visualized as three different cloud blocks on the projection

planes of the three difference TSIs. Because of the geometric difference among

the three TSI devices on the ground, the pixel coordinates of each cloud block

are distinct. Therefore, these cloud blocks can be combined to recover their 3D370

coordinates. Theoretically, a pair of TSIs should suffice to recover the cloud

base height (CBH) using a stereography approach [40] [41] [42]. In our system,

we utilize the redundant information from the three-TSI network to increase

the robustness of cloud tracking.

To retrieve the CBH, we define the mathematical term di,j,t as the pixel-375

wise displacement vector between two blocks in different TSI images (TSIi and

TSIj). If I represents the image matrix of an undistorted image and c = (x, y)

is the center of a cloud block, then the displacement of TSIi → TSIj at time t
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is expressed as di,j,t = (dx, dy) and satisfies the following:

Iti (c) = Itj(c + di,j,t) (3)

If ht denotes the CBH detected at time t, based on computational geometry,380

then there exists a unique mapping f that can be used to calculate ht from the

displacement vector (see Appendix 9.2):

ht = fi,j(d
i,j,t) (4)

Conversely, if ht is calculated from one displacement vector, then all other

displacement vectors can be calculated by mapping the derived 3D coordinates

back to the projection plane. We define this procedure as a fixed series of385

transformations g, which are determined only by the locations of the TSI (see

Appendix 9.2).

di,j,t = gi,j(h
t), i, j ∈ S = {1, 2, 3} (5)

To track the cloud movement over time, we define another similar term, the

motion vector, to describe the pixel-wise shift of a cloud block between consec-

utive frames. We adopted the traditional Optical Flow (OF) estimation [43] to390

define the motion vector from the time frame t to the next frame t+ 1 for TSIi

as vt = (vtx, v
t
y). Assuming consistent brightness, the motion vector satisfies the

following equation:

Iti (c) = It+1
i (c + vt) = It+1

i (x+ vtx, y + vty) (6)

Given the definition of the motion and displacement vectors, we simplify the

cloud tracking task by adopting two assumptions: a). clouds exhibit only pla-395

nar movement, without any vertical motion, and b). the velocity and direction

remain constant within our forecasting time window. Moreover, as mentioned

in Section 2, all undistorted images reside on the same projection plane, with

the identical fields of view and spatial resolutions. Therefore, to ensure the
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uniformity of the TSI images and the consistency of the cloud movements with-400

out any loss of generality, we make several additional assumptions about our

three-TSI system. First, a cloud block and its counterparts in other TSI images

have the same dimensions, without scaling or shearing. Figure 7 shows that the

cloud blocks obtained from different TSIs to represent the same piece of cloud

must be identical in size on the same plane. Second, the mapping from the405

displacement vector to the CBH is independent of time because the mapping

functions f and g are fixed and determined only by the locations of the TSIs

(see Appendix 9.2). Third, a cloud block maintains a consistent size over a short

time. Because a piece of cloud is assumed to exhibit only planar movement, all

its cloud blocks residing on the projection plane must be of the same size at410

different timestamps. Finally, the fourth assumption is that a cloud block reg-

istered by one TSI and its counterparts at the other TSIs have the same motion

vector. More importantly, the scale and direction of the motion are consistent,

as based on the previous assumption (see Appendix 9.2). We note that our

cloud tracking system does not enforce these strong assumptions in practice;415

however, it remains sufficiently robust to tolerate the differences between the

projected images and still identify the same object from different images based

on their temporal and spatial correlations.

Based on these assumptions, we designed a novel tracking system utilizing

all three TSI devices (S = {1, 2, 3}) for a series of consecutive timestamps420

(T = {t, t + 1, t + 2}). In total, nine images are used to extract two types

of shift vectors at the pixel level: 1) the displacement vectors between TSI

views to calculate CBH, and, 2) the motion vectors between consecutive frames

from one TSI (planar motion). An intuitive example is illustrated in Figure 8.

After identifying a cloud block segment in an image from TSIi at time t, our425

goal is to find its “best” matches in the other eight images, and use these

matches to explicitly calculate its motion and displacement vectors. On one

hand, the motion vectors of the nine cloud blocks should be identical to vt

because they represent the same cloud with steady movements. Hence, we

simplify the tracking problem by setting vt = vt+1 during block matching.430

21



Moreover, we assume that the cloud base height remains consistent within a

short tracking window. As a result, the estimated CBH derived from the “best”

matches must satisfy ht+1 = ht, which is also essentially equivalent to di,j,t+1 =

di,j,t. To identify the best estimates of vt and di,j,t, the next step is to define

a criterion to match multiple cloud blocks in different images.435

4.2. Similarity Function

For this system, we have designed an algorithm to simultaneously incor-

porate both spatial and temporal correlations to improve the accuracy of the

block-matching methodology. We proposed formulating the tracking problem as

the maximization of a similarity function in which these two types of correlation440

are summed. In detail, this function consists of two components: 1) the sum

of the similarity among different time frames for each TSI, and 2). the sum of

similarity between any pair of TSIs at a given timestamp. Given a cloud block

centered at c on TSI1 at time t, the similarity function, ϕ can be calculated

by summing all similarity values, and the motion vector and one displacement445

vector are denoted by vt and d1,2,t respectively. The formula are as follows:

ϕ(vt,d1,2,t, c, t, S) =
∑

i,j∈S,i 6=j,t∈T

NCC(Iti , I
t
j , c,d

i,j,t)

+
∑

i∈S,t′>t,t′∈T
NCC(Iti , I

t′

i , c, (t
′ − t) ∗ vt)

(7)

di,j,t = gi,j(f1,2(d1,2,t)) (8)

Note that we include only the displacement vector from TSI1 to TSI2 in

the similarity calculation. The displacement vectors between any pair of TSIs

can be derived similarly using Equation 8. Here, NCC essentially represents

the normalized cross correlation between two image blocks of the same size and450

dimensions, and it is chosen as the criterion for matching image blocks [39]. The
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Figure 8: Matching cloud blocks in nine images. The cloud block of interest is indicated in

yellow, red, and green boxes on the TSI1, TSI2, TSI3 images, respectively. The movement of

the cloud block that is detected between two consecutive frames is indicated by a dotted arrow

and labeled as v. The displacement vector between a pair of TSIs at the same timestamp is

represented by a solid arrow and labeled as d.
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formula for NCC is expressed as follows:

NCC(I, J, c,u) =

1

p

∑
k=(i,j)

(
I(c + k)− µ(I, c)

)(
J(c + u + k)− µ(J, c + u)

)
σ(I, c)σ(J, c + u)

(9)

where I and J are the grayscale image matrices converted from the undis-

torted images. Each pixel value lies in the range (0, 255). Furthermore, u is

a motion or displacement vector. Assuming that the block size is (m,n), then455

i ∈ {−m/2,−m/2+1, ..., 0, ...,m/2} and j ∈ {−n/2,−n/2+1, ..., 0, ..., n/2} are

the pixel indices of the cloud block, p = m×n is a normalization constant, µ is a

mean function, and σ is a standard deviation function of the image block. NCC

is widely used in motion estimation because of its simplicity and robustness to

noise and changes in intensity.460

Given the definition of the similarity function ϕ, our goal is to search for a

combination of (d1,2,t, vt) that optimizes its value. The most straightforward

method is searching all combinations and finding the (d1,2,t
m ,vtm) that maximizes

the ϕ score:

(d1,2,t
m ,vtm) = argmax

d1,2,t,vt
ϕ(vt,d1,2,t, c, t, S) (10)

However, the maximum of ϕ is only the correct result if a) the cloud block465

is located in the middle of the FOV and visible in all nine images; b) the image

quality is sufficient to accurately display the cloud texture within the block; and,

c) the cloud inside the block and its counterparts in the images from the other

TSIs have similar shape and size, even from different angles of view. In general,

several difficulties prevent us from attaining the optimal solution to maximize470

ϕ, as described below. In the previous work of [21], the block tracking near the

image boundary was found to be inaccurate because of the loss of information.

Only the blocks that are at least a certain distance from the boundary can

possibly be matched using NCC value. Moreover, because cloud blocks have

various sizes and textures, the tracking performance achieved by applying NCC475

may vary. In practice, even for cloud blocks that are distributed on the same
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layer and exhibit identical movement, their optimal solutions to Equation 10

which should be identical may be similar, but no identical. Another difficulty

encountered in cloud-block tracking using TSI images is that some informa-

tion is missing due to artifacts from the TSI. Blank pixels (marked as black in480

the TSI images) significantly impact block-matching since the maximization of

NCC always favors blocks with lower loss of information. Furthermore, noisy

pixels or variations in image brightness may cause instabilities in calculating

the NCC score and thereby influence the cloud-tracking performance based on

Equation 10. Consequently, the maximum value of ϕ does not always guarantee485

the best matches among nine images. In practice, we use (d1,2,t
m ,vtm) only as a

reference solution for determining the layer information.

As discussed in the previous section, static features are not effective for

differentiating cloud pixels near the sunspot. We propose incorporating the

dynamic information from cloud tracking to enhance cloud detection in the490

sunspot region. To mitigate the influence of false-positive pixels around the

sunspot, we apply a pre-defined sunspot mask (window) and acquire the motion

vector vtm by solving Equation 10 for each cloud block within this range. If the

magnitude of vtm for a cloud block is close to 0, then in the subsequent cloud-

layer determination step, we convert the relevant cloud pixels within this block495

into clear-sky pixels.

4.3. Multi-layer Detection

To locate the best match and find the optimal solution of the similarity

function ϕ, we introduce clustering and multi-layer aggregation during cloud

tracking to utilize all cloud blocks in the visible range. Instead of considering500

only the maximum of ϕ, we propose tracking all possible (d1,2,t,vt) combina-

tions as potential solutions. In practice, we store a combination for a cloud

block only if each NCC score in the ϕ calculation is above a certain threshold

(here, we use 0.5). Therefore, a single block may have multiple motion and

displacement vectors. Our goal is to obtain L, a collection of multiple potential505
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Figure 9: Overview of cloud-block tracking and the determination of multi-layer wind fields.

(d1,2,t,vt) combinations detected for all cloud blocks:

L = {(d1,2,t,vt)|NCC∗ ≥ 0.5, c ∈ C} (11)

Note that NCC∗ refers to any NCC calculation listed in the ϕ equation. C

denotes the set of all cloud blocks detected in the cloud detection pipeline.

Based on L, we apply the k-means clustering [44] technique to generate lay-

ers of clouds. In our system, two layers at most are considered and aggregated.510

Hence, binary clustering is used to split L into two categories. If we use the clus-

tering result to represent cloud layers, then the centroid of a cluster, (d1,2,t,vt),

represents the primary height and motion of this layer. Thereafter, we can

group all cloud blocks into two layers/clusters based on the Euclidean distance

between the reference solution (d1,2,t
m ,vtm) and the centroids. The entire cloud515

block set C is then divided into two layers, C1 and C2, each of which contains

multiple cloud blocks that should have similar motions and heights. To generate

more accurate and robust information concerning cloud layers, we assume that

cloud blocks on the same layer possess only one major planar motion vector and

one CBH. Similar to the form of the centroid in clustering, we define the wind520

field (WF), (d1,2,t,vt), as the unique combination of the displacement and mo-

tion vector corresponding to a given cloud layer. We calculate this combination

of vectors by maximizing the summation of ϕ over all cloud blocks on the same
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layer:

WFi = argmax
d1,2,t,vt

∑
c∈Ci

ϕ(vt,d1,2,t, c, t, S) (12)

If two wind fields extracted from two clusters are sufficiently similar to each525

other, then we treat them as a single cloud layer in which c can be drawn from

the entire cloud block set C . Similarly, the single wind field can be expressed

as follows:

WFsingle = argmax
d1,2,t,vt

∑
c∈C

ϕ(vt,d1,2,t, c, t, S) (13)

When the Euclidean distance between two motion vectors is less than two

pixels, or their height difference is less than 500 meters, we consider these two530

wind fields to belong to a single layer. To further improve tracking performance

and reduce computational complexity, all generated wind fields are stored as

historical layers. When searching for a reasonable solution set, this historical

reference is used to refine the possible range of motion vectors and height lev-

els. This approach accelerates the search procedure and increases the system’s535

robustness in coping with noise.

An example with two (layers of) wind fields detected is shown in Figures 10

and 11. Nine images in three consecutive frames from timestamp t to t + 2

are used to extract potential solutions. In Figure 11, the displacement vectors

of TSI2 → TSI3 and TSI2 → TSI1 are shown in blue and green respectively,540

whereas the cloud motions are shown in red. Figures 11a-11c confirm that to

maximize ϕ for each individual block does not always guarantee finding the

best matches. We observe that cloud blocks near the shadow band and sup-

porting arm (black area) exhibit obvious errors due to the information loss

caused by blank pixels. However, after clustering and aggregating, the cloud545

blocks can be categorized into two layers, WF1 = (1201m, 10px,−6px) and

WF2 = (4184m, 7px,−2px). As shown in Figure 11d- 11f, these two layers are

indicated by red and green boxes, respectively, and offer more stable estimations

of displacement and motion than do the individual cloud blocks.

27



We also present another example of a single WF detected from the nine550

input images shown in Figure 8. In Figures 12a- 12c, several combinations of

height and motion that achieve the maximum value of ϕ are deemed outliers

and marked with green rectangles. Running the clustering algorithm identified

two wind fields: WF1 = (4357m, 8px, 8px), and WF2 = (2098m, 8px, 9px).

However, these two layers are very similar to each other given their similar555

motion vectors. Thus, we aggregated all blocks into one layer, as indicated by

the red boxes in Figure 12d- 12f. The output WFsingle is then represented as a

single tuple (2130m, 8px, 9px) which is less sensitive to the boundary or noisy

cases.

4.4. Multi-TSI View560

After determining the cloud layers, multiple TSI views can be stitched to-

gether block by block. We select TSI2 as the origin/center of this combined

view because it is located in the middle. The pixels of a cloud block from TSI1

and TSI3 can then be mapped to TSI2’s coordinate system through pixel-wise

shifts of the forms TSI1 → TSI2 and TSI3 → TSI2 which are identical to565

the extracted displacement vectors d1,2,t and d1,3,t. Thus, given the estimated

heights of the cloud layers, all cloud blocks from TSI1 and TSI3 are placed and

stitched into the aggregated view from all three TSIs. An example of such a

stitched view wherein all blocks belong to a single layer is shown in Figure 12g.

For a case with more than one layer, the stitched view is generated by stitching570

layers one by one, i.e., from a higher altitude layer to a lower one, because low-

altitude clouds can overlay those at higher altitudes. Consequently, the output

view should be similar to Figure 11g. The black areas where gaps still exist are

marked as blank, and we fill them in with the default sky color for visualization.

The default value is calculated by averaging all clear-sky pixels across multiple575

TSI views.
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5. Radiation Prediction Models

In this section, we describe the methods for extracting image features and

the different irradiance models used to forecast solar irradiance. First, given

the locations of the 25 pyranometers, we need to identify the relevant pixels on580

the TSI images that are correlated with the surface irradiance fluctuations at

these locations. Since the clouds located between the sun and the solar panels

are the primary cause of ramps in irradiance, the basic concept of irradiance

forecasting is to predict whether clouds will block the sunlight at a specified time.

As shown in Figure 7, the device’s projection on the sky image corresponds to585

the intersection of the projected plane (i.e., the image plane) with a line drawn

from the sun to the pyranometer. If a cloud is located in the path of the

sunlight traveling to the pyranometer, then its projected position on the image

plane must overlap with the device’s projection. Furthermore, we define the

corresponding pixel at the projected position in the stitched view of the three590

TSIs as a “sun-blocking” pixel. Because this pixel is correlated with the amount

of direct sunlight cast on a pyranometer, our goal is then to extract the image

features of this pixel which will subsequently serve as the input to the irradiance

model. As shown in Figure 7, the position of the sun-blocking pixel depends

on the angle of the Sun, the geolocation of the pyranometer, and the height of595

the cloud that is blocking the direct sunlight. Using these inputs, we can easily

calculate the sun-blocking pixel for each of the 25 pyranometers, as shown in

Figure 13a and 13b.

To predict which pixels will become sun-blocking pixels in the future, we

apply a backtracking method to the current stitched view. In this processing600

step, the backtracking is guided by the motion vectors detected at previous

timestamps: given that the cloud motion in a particular layer is vt where t is

the current timestamp, the pixel ĉt that will potentially become a sun-blocking

pixel ct+N in the Nth future time frame (at time t + N) is then calculated by

moving ct+N in the direction opposite to the motion vector ĉt ← ct+N−vt×N .605

Here, we assume that the motion vector remains unchanged between t and t+N
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and that the pixel at ĉt will become ct+N and block the sunlight after N time

frames, provided that it contains a cloud at that time. If multiple layers of

clouds move to this pixel location, then the lower-altitude cloud pixel is preferred

because it will block the higher-altitude one.610

As expected, the effectiveness identification of the sun-blocking pixel requires

an accurate estimation of the motion vectors of each layer. Any error in this

information will further accumulate in subsequent steps. To mitigate this effect,

we have devised two strategies to be implemented in the feature extraction step.

First, instead of focusing on a single sun-blocking pixel, we considered the 7x7615

sun-blocking window surrounding this pixel. This enables us to reduce the risk

of false prediction, and more importantly, to include more features from the

neighboring pixels. Second, we use 23 significant features to describe the spec-

tral variation inside the window at the current time, t and the predicted time,

t + N . Among these features, nine are the average, minimum, and maximum620

values of the RGB channels of the window surrounding ct, which describe the

spectral properties of the current observation. Similarly, we choose nine addi-

tional features from the sub-blocking window centered at ĉt, which represent the

estimated properties. The remaining five features, are the RBR of ct (RBRt)

and ĉt ( ˆRBR
t
), the cloud fraction at time t, and the ground-truth irradiance625

values at the current time t (kt) and one-minute earlier, at t − 6 (kt−6). The

RBR at both timestamps are used because this quantity shows a noticeable

spectral difference between cloud and sky [6]. The cloud fraction represents the

overall cloud conditions. The two remaining features, the ground-truth irra-

diance values at t and t − 6, enhance the performance for a short forecasting630

window because they incorporate persistent observations. Here, the forecasting

problem is formulated as k̂t+N = f(xt), where k̂t+N represents the predicted

irradiance at t+N and xt is the vector of the 23 extracted features.

To examine the predictive capabilities of the selected features, we explore

four different irradiance models that use a subset or all of these features to635

generate a regular linear regression or more complicated non-linear relationships

f(xt): 1) linear RBR delta, 2) an ordinary linear regression model, 3) Support
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Vector Regression (SVR) based on a linear kernel, and 4) SVR with a non-linear

kernel. For comparison, we use the persistent model as the baseline model, i.e.,

the radiation shift, RShift, which directly uses the current observation as the640

forecasting result. In addition, we introduce one regression model that depends

only on multiple irradiance values and is used to further validate image features

for prediction capability in our comparison studies.

k̂t+N = kt (14)

First, we simply extend the persistent model by incorporating a linear regu-

larization term based on the information from the sun-blocking pixel. Our pre-645

liminary study of motion vectors [21] indicates that the RBR of a sun-blocking

pixel is a useful indicator of the cloud transmittance at this pixel. The linear

RBR delta model, denoted by linearδ, is as follows:

k̂t+N = kt + C · ( ˆRBR
t
−RBRt) (15)

where C is a negative coefficient. We then generalize the model linearδ to

an ordinary linear regression model (linearall) over all attributes in xt:650

k̂t+N = w · xt + b (16)

where w is the weight vector, and b is the intercept. However, the ordinary

model is sensitive to noise or outliers and suffers from the overfitting problem.

To overcome these shortcomings, we apply the Support Vector Regression

(SVR) [45], an extension of the SVM approach, for regression. Given a linear

kernel, viz, SV Rlinear, the radiation estimation still follows the ordinary form655

given in Equation 16, but the w, b pair is obtained by solving the classic SVR

optimization problem:

min
w,b,ξ,ξ∗

1

2
‖w‖2 + C

n∑
i=1

(ξi + ξ∗i ) (17)
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subject to

(w · xt + b)− kt+N ≤ ε+ ξt, ξt ≥ 0,∀t

(w · xt + b)− kt+N ≥ −ε− ξ∗t , ξ∗t ≥ 0,∀t
(18)

where ε is the regression margin, ξt and ξ∗t are the slack variables, and C is

a regularization parameter. By incorporating different kernels, we can extend

the SVR to model a non-linear relationship by projecting the current attributes660

into high-dimensional transformed spaces, for example, Fourier space. To this

end, we use the Radial Basis Function (RBF) kernel, SV Rrbf , with σ as the

RBF smoothing parameter:

k̂t+N = κ(w′,xt) + b

= e−
‖w′−xt‖2

2σ2 + b
(19)

For both the linear and non-linear SVR models, certain parameters, such as,

the regularization weight C, the error tolerance range ε and the RBF smoothness665

factor σ, must be tuned to achieve the optimal performance. For our experiment,

we selected the optimal parameters from within certain ranges. Here, C is taken

from C = [−1024, 1024], ε from ε = [0.001, 0.6], and σ from σ = [10−4, 104].

The average values of the 25 solar sensors for SV Rlinear are set as follows:

Cavr = 35, εavr = 0.01. In the case of SV Rrbf , Cavr = 19, εavr = 0.003, and670

σavr = 0.2291. We trained the linearall and linearδ models by minimizing their

least-square errors. The persistent model RShift requires no training.

6. Forecasting Model Results

6.1. Experimental Dataset

We chose the period from May 13, 2013, to June 03, 2013, encompassing var-675

ious weather conditions, to evaluate the performance of 1-min- to 15-min-ahead

3D cloud tracking and irradiance forecasting. To guarantee consistent cloud

visibility and zenith angle, we filtered out records whose timestamps are not be-

tween 9:00AM and 16:00PM Eastern Standard Time (EST). Our experimental

dataset contains 9963x3 images from three TSIs that collect data simultaneously680
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and the synchronized 9963x25 GHI records from 25 ground-based pyranometers.

Furthermore, we divided the full dataset into four categories based on weather

and cloud conditions: single-layer clouds (Ds), multi-layer clouds (Dm), over-

cast or extremely cloudy (Do), and a mixture thereof (Dmix). Ds corresponds

to a typical low-altitude cloud that is commonly observed on the East Coast685

of the United States. This type of low cloud typically appears in a single layer

and remains in the field of view of a TSI for several minutes at most. Given

its quick movement in and out of the FOV of a TSI, Ds is an ideal dataset

for demonstrating the capability of the new tracking system to capture rapid

cloud motion and evolution. Dm is a collection of cases wherein multiple layers690

of clouds were observed within the FOV of all TSIs. Hence, the tracking and

forecasting performance with respect to Dm is expected to reflect the ability

of the system to categorize and track multiple wind fields. Do corresponds to

cloudy and overcast cases. Based on our observations, the textural patterns

of the images acquired in extremely cloudy conditions are not obvious and are695

hence difficult to utilize for block-matching and the extraction of image fea-

tures. Therefore, we designed Do to demonstrate the sensitivity of this new

tracking system when applied to TSI images with less obvious patterns. Dmix

contains the remaining cases, including sunny, partially cloudy, and thin-layer

conditions. The cloud tracking and irradiance forecasting performance with re-700

spect to Dmix reflects the system’s average performance for a mixture of cloud

conditions. Table 2 describes the details of all subsets.

6.2. Evaluation Metrics and Validation Method

As discussed in Section 5, the prediction of the sun-blocking pixels for the 25

pyranometers is performed based on cloud movements in a particular cloud layer.705

When a cloud moves too rapidly, or the forecasting interval is too long, one or

more positions may be outside of the FOV of our TSI. In this case, we cannot

extract any features for modeling and predicting irradiance. To quantify the

tracking capability for sun-blocking pixels within our stitched view, we define a

metric named the Successful Tracking Index (STI), i.e., the percentage of data710

33



instances in the designated dataset for which all 25 sun-blocking pixels can be

included in the FOV of the stitched image for a particular forecasting horizon.

The STI is calculated as follows:

STI =
N −Noof

N
(20)

Here, N is the total size of the dataset, while Noof represents the number of

records for which one or more sun-blocking pixels lie outside the field of view.715

We also use the mean absolute error (MAE) and root-mean-square-error

(RMSE) as evaluation metrics. In our experiment, the MAE measures the av-

erage accuracy of cloud tracking, whereas the RMSE assigns greater penalties

to large errors, such as falsely estimation of a cloud’s presence. To avoid bias

and control the over-fitting problem, we introduce the cross-validation tech-720

nique [35] into the modeling and evaluate the forecasting performance across

all 25 stations. In the cross-validation, the original dataset is evenly divided

into several independent subsets, and the average performance of the predic-

tive model measured across these subsets. In this experiment, five-fold cross-

validation (Ncv = 5) is applied, the five folds (four for training and one for725

testing) randomly generated. Additionally, since 25 simultaneous, location-

dependent ground measurements are available (s = 1, 2, ...25), we can verify a

forecast by comparing it with the observations from a different measurement

station, s, at time t. Hence, the final error metrics can be formulated as the

average performance of all five-fold tests across all 25 stations as follows:730

MAE =
1

Ncv

Ncv∑
i=1

1

Ni

∑
s,t

∣∣∣kts − k̂ts∣∣∣ (21)

RMSE =
1

Ncv

Ncv∑
i=1

√
1

Ni

∑
s,t

(kts − k̂ts)2 (22)

Here, Ni is the size of the test fold, i, generated in the cross-validation. The

MAE and RMSE score are calculated based on the normalized GHI values.

To evaluate the effectiveness of the image features extracted from our multi-

layer cloud detection and tracking system, we created a new reference model,
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SV Rk, for comparison. This model also uses SVR with only radiation observa-735

tions as inputs and excludes all image-based features, in contrast to our proposed

forecast model SV Rrbf . In greater detail, SV Rrbf and SV Rk share the same

radial basis function as their SVR kernel and use identical parameter settings

for both training and testing. The difference is that SV Rk uses only the l (here,

we choose l = 6) most recent radiation values, i.e., kt−5, kt−4...kt, as inputs. We740

apply both SV Rrbf and SV Rk to generate real-time irradiance predictions to

validate the effectiveness of the image features in producing short-term solar

forecasts.

6.3. Model Performance

Figure 14 shows the 1-15 minute STI scores of the entire dataset (bars) and745

the four subsets (lines). We observe that the STI scores for Ds and Dm decrease

dramatically beginning with the nine-minute forecast, whereas the performance

for the other two subsets remain relatively stable between one and fifteen min-

utes. Consequently, the success ratio for the entire dataset, overall, also de-

creases as the time horizon increases. The STI decreases for longer forecast750

horizons (longer than ten minutes) because of fast-moving clouds. According to

our observations from the TSI images, on the East Coast of United States, these

clouds are mostly distributed in a single layer with a cloud base height below

3000 meters. They often have a high velocity, as detected at the pixel level, and

exhibit rapid formation/dissipation within a 10-minute window. Thus, given755

the limited visible range and TSI resolution, 3D cloud tracking can capture

the majority of low-layer clouds for only up to nine minutes. Beginning at the

10-minute horizon, low clouds are highly likely to move out of the field of our

stitched view. This cloud property, combined with the physical limitations of

the tracking TSIs is consistent with the significant decrease in the STI of Ds at760

the nine-minute horizon, reaching almost 0 at the ten-minute horizon. Similarly,

the STI of Dm decreases after nine minutes. However, since more than one layer

is present in Dm, the tracking results benefit from partial estimations from the

higher layers which tend to be more stable and have slower pixel-wise motion
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vectors. For Do and Dmix, most cases correspond to high-layer clouds or mixed765

conditions and are therefore suitable for ten-minute forecasts and beyond.

We evaluated the irradiance forecasting performance over the entire dataset

based on the metrics of the MAE and RMSE scores, and the results are presented

in Tables 3 and 4. We excluded the out-of-FOV data points and only trained

and tested the irradiance models based on the remaining available data subset.770

During model training, we discovered that when STI is low, the models tend to

overfit the data. One reason for this behavior is that an excess of out-of-FOV

records leads to a lack of observations in the training folds. For instance, if we

train the model using Ds for forecast horizons longer than ten minutes, we barely

have enough training records to generate the forecasting model. Another reason775

is that we may introduce bias into the forecasting models. Since rapid-changing

cases, such as those with low-altitude clouds, are excluded for long forecasting

horizons, the forecasting models will place more weight on the “easy” cases,

such as those corresponding to sunny and overcast conditions. Hence, if too

many records in an experimental dataset are out of the FOV, or the STI value780

is below a certain threshold (here, 60%), we mark the result with an asterisk to

indicate a partial forecast and a potential overfitting problem. When all records

are out of the FOV (STI = 0), we denote this scenario with ’-’, indicating that

no forecasting result is available (see Table 4).

In Figures 15a and 15b, we evaluate the effectiveness of the four forecast-785

ing models by comparing them with the persistent model for one- to fifteen-

minute forecasts. To ensure that the sun-blocking pixels are contained within

the stitched view for the majority of the training and test cases over the full

forecast horizons, we use the experimental dataset Dmix which has the most

stable STI values (Figure 14). Figures 15a and 15b show that linearδ con-790

sistently acquires less large forecast errors in comparison with the persistent

model (as measured by RMSE), but exhibits the worst performance in terms

of average accuracy of irradiance forecast (as measured by MAE), confirming

that tracking a single sun-blocking pixel leads to a high risk of deviating from

its real position and thereby falsely predicting the presence of clouds. By virtue795
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of our proposed feature extraction in the sun-blocking window, this problem is

mitigated in the other three models which consistently provide better results in

both metrics. In comparison to linearall which was trained using least-square

errors, the linear SVR approach, SV Rlinear, tends to be more robust in terms

of average errors (MAE); however, it is very sensitive to large errors (RMSE).800

The proposed non-linear model, SV Rrbf , effectively addresses this problem by

mapping non-linear relations to linear ones in a higher dimensional space. As

is evident from these two figures, SV Rrbf effectively reduces the occurrence of

large errors and outperforms the other four models in terms of the RMSE and

MAE metrics.805

We also analyzed the performance of SV Rrbf on the entire dataset and

compared it with RShift across all 25 ground measurements. Figure 16 shows

the percentage of reduction in MAE achieved using SV Rrbf . The blue shaded

regions represent the upper and lower improvement bounds for all 25 pyranome-

ters, whereas the mean improvements are plotted as blue dots with standard810

deviation bars. We observe that beyond a nine-minute horizon, the uncertainty

in performance improvement, as indicated by the upper and lower bounds, in-

creases with the increase in forecasting horizon. This is expected because many

data points are out-of-FOV for the Ds and Dm subsets, which affects the reli-

ability beyond the nine-minute horizon. Moreover, several successful cases that815

remain stable even beyond the nine-minute forecast are ”easy” ones, such as

sunny and overcast conditions. Therefore, the persistent model RShift can

take advantage of these cases to minimize error and is thus difficult to out-

perform. In the same plot, we observe that both the difference between the

upper and lower bounds and the standard deviation increase as the time hori-820

zon increases. We observe that despite the expected uncertainties arising for a

long-term forecast, the SV Rrbf model is nevertheless significantly superior to

the persistent model, achieving at least a 26% improvement.

To apply this study to real-time forecasting, we averaged the SV Rrbf param-

eters over the entire dataset and constructed the radiation-only model SV Rk to825

generate 5-, 10-, and 15-minute forecasts for May 14, 2013. Figure 17 compares

37



the forecasting results of SV Rrbf and SV Rk with the real measurements from

the deployed pyranometers. In the individual figures, the normalized GHI pre-

dictions are converted back to real values using Equation 1. To be consistent

with the irradiance plots in Figure 17, the root-mean-square errors (RMSE) in830

the caption are calculated directly from ground-truth measurements (real GHI

values) without normalization. The gray/dark areas in these figures represent

gaps with no prediction which include the cases corresponding to the low zenith

angles during the early morning and late afternoon as well as the periods in

which sun-blocking pixels were out of the FOV. The results show that the five-835

minute forecasts generated using SV Rrbf achieve good accuracy and capture

most radiation ramps. Meanwhile, the number of detected ramps decreases for

ten-minute and fifteen-minute forecasts because of the instability of the motion

vectors and the occurrence of clouds that may reside outside the field of the

stitched view. Moreover, because SV Rk only relies on radiation features, we840

observe that it exhibits a behavior similar to that of the persistent model, of-

ten failing to detect radiation fluctuations and generating false alarms based on

previous irradiance trends. For a longer forecasting horizon, such as 10 or 15

minutes, the forecasting accuracy of SV Rk decreases rapidly, and the model can-

not faithfully predict irradiance ramp events. Compared with SV Rk, SV Rrbf845

incorporates multiple features derived from predicted cloud movements and sky

images and consequently, introduces fewer forecasting errors and captures more

ramp events.

7. Conclusions

In this paper, we proposed a novel 3D cloud detection and tracking sys-850

tem using computational geometry and machine learning techniques. By tak-

ing advantage of redundant information from the overlapping views of multiple

cameras, this system can not only identify clouds at the pixel level, but also

determine their base heights and the wind fields of multiple cloud layers. This

information can be used to stitch multiple TSI views together to generate an855
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expanded cloud view that is larger than that obtained from a single camera,

thereby increasing the forecast horizon. More importantly, based on the pre-

dicted layers and the stitched view, we investigated the use of image-based

features and irradiance models to effectively capture short-term fluctuations in

solar irradiance.860

To verify the effectiveness of our tracking system, we organized our experi-

mental data into four categories based on cloud conditions and tested the sys-

tem over 25 ground sites equipped with pyranometers. The results showed that

our new cloud tracking system provided reliable fifteen-minute forecasts for all

25 ground stations under most cloud conditions. Even for low-altitude and865

fast-moving clouds, this system can obtain reasonable estimates for up to nine

minutes ahead. Furthermore, in our cloud tracking system, all four proposed

irradiance models considerably reduced the prediction errors for forecasts of up

to fifteen minutes ahead. Compared with the persistent model, both linear and

non-linear models based on the extracted sky-image features significantly offered870

significantly improved accuracy with respect to the MAE and RMSE metrics.

In the future, we will explore new techniques for overcoming limitation in

the FOVs of observations and introduce more useful features into the forecasting

models. Although the stereo stitching of sky images from multiple TSI sources

enlarges the visible range, it can only expand the forecasting range to a certain875

degree. A possible solution to this problem is to explore the statistical properties

that can be derived from feature information in the cloud detection and tracking

steps and to perform statistical estimations of the out-of-FOV cases. Moreover,

our experiment demonstrated that individual image-scale features are prone to

error accumulation over time. We will explore additional features from sky880

images and other sources, such as, LIDAR, temperature, and past predictions

from the model itself, to improve its robustness and reduce forecasting errors.
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9. Appendix

9.1. Assumptions of Consistency of Projected Images Across TSIs

The vertical height and horizontal expansion of clouds vary considerably

among different types of clouds. Therefore, the projected size of a cloud ob-890

served by ground-based cameras depends strongly on the cloud type, the loca-

tion of each camera, the field of view, and the solar zenith angle. With no loss

of generality, we assume that the dimensions of the projected views of the cloud

base in images from multiple TSIs are identical to ensure the suitability and

mathematical correctness of the following calculations. In practice, our cloud895

tracking system does not enforce these strong assumptions; however, it is suf-

ficiently robust to tolerate the differences between projected images while still

being able to identify the same object in different images based on the values of

the temporal and spatial correlations.

9.2. Consistency of Motion and Displacement Vectors900

In this section, we assume that the motion vectors are consistent in spatial

representation across all TSIs and that the displacement vector di,j,t is uniquely

mapped to the cloud base height ht. The pixel coordinates, (xi, yi), for TSIi

can be transformed into a coordinate system relative to the center of the cam-

era (xci, yci). The azimuth and zenith angles (Ai and Zi) at this point are905

represented using the image coordinates as follows:

rxi = xi − xci , ryi = yci − yi (23)

Zi = arctan

√
(rx2i + ry2i )× tan θi

Ri
(24)
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Ai = arctan
rxi
ryi

(25)

θi and Ri are pre-defined parameters in preprocessing to control FOV of the

undistorted image for TSIi. θi stands for the max zenith angle of FOV while

Ri is the radius of visible scope at pixel level. Given the base height h, we can

recover the 3-D spatial coordinates (sxi, syi, szi) relative to TSIi by910

sxi = h× tanZi × sinAi (26)

syi = h× tanZi × cosAi (27)

szi = h (28)

Then, mapping from the image coordinates to the spatial coordinates can

be expressed as follows:

sxi =
h× tanθi

Ri
× (xi − xci) (29)

syi =
h× tanθi

Ri
× (yci − yi) (30)

If the geo-difference between TSIj to TSIi is defined as (Di,j,x, Di,j,y), then

the same object in spatial coordinates system relative to TSIj can be acquired

through the following equation:

sxj = sxi +Di,j,x , syj = syi +Di,j,y , szj = szi (31)

Combine Equation 29, 30 and 31, we can derive image coordinates (xj , yj)

to be:

xj =
Rj × tan θi
Ri × tan θj

× (xi − xci) +
Rj ×Di,j,x

h× tan θj
+ xcj (32)

yj = ycj −
Rj × tan θi
Ri × tan θj

× (yci − yi)−
Rj ×Di,j,y

h× tan θj
(33)
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Since the preprocessing of undistorting images uses the same scale and view915

range for all TSIs, from Equation 32 and 33, we derive the following:

∆xi = ∆xj , ∆yi = ∆yj , when θi = θj , Ri = Rj (34)

where ∆xi and ∆yi stand for the offset (distance) between pixel c = (xi, yi)

and pixel c′ = (xi
′, yi
′) along the x and y direction respectively in an image of

TSIi. Based on our assumptions and Equation 34, its projections on multiple

TSIs have an identical size. Moreover, its pixel-wise motion is also the same920

since it stands for the same scale of movements on the image plane.

Following the definition in Section 4.1, we define the di,j,t = (di,j,tx , di,j,ty ) as

the displacement vector from TSIi to TSIj . Based on the result in Equation 34,

we acquire the height-to-displacement mapping as follows:

di,j,tx = xj − xi = xcj − xci +
RjDi,j,x

ht × tan θj
(35)

di,j,ty = yj − yi = ycj − yci −
RjDi,j,y

ht × tan θj
(36)

Therefore, the cloud base height, ht, can be represented by the displacements925

in both the x and y directions respectively:

ht =
Di,j,xRj

(di,j,x + xci − xcj) tan θj
(37)

ht =
Di,j,yRj

(−di,j,x − yci + ycj) tan θj
(38)

Equation 37 and 38 should have the same output. Otherwise the displace-

ment vector is invalid since it does not satisfy the spatial representation. The

two functions fi,j and gi,j used in Sections 4.1 and 4.2 can be obtained: fi,j is

one of Equations 37 and 38 while gi,j is chosen from Equations 35 and 36. There-930

fore we conclude that given a pair of displacement vector di,j,t, ht is uniquely

determined by fi,j . More importantly, the mapping function series, f and g,

are time-independent.
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(a) TSI1t (b) TSI2t (c) TSI3t

(d) TSI1t+1 (e) TSI2t+1 (f) TSI3t+1

(g) TSI1t+2 (h) TSI2t+2 (i) TSI3t+2

Figure 10: Example of cloud tracking on nine images.
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(a) Max. ϕ at TSI1t (b) Max. ϕ at TSI2t (c) Max. ϕ at TSI3t

(d) Aggregation at TSI1t (e) Aggregation at TSI2t (f) Aggregation at TSI3t

(g) Two-layer stitched view

Figure 11: Determination of two cloud layers corresponding to the images shown in Figure 10.

(a), (b), and (c) show the matching results for (d1,2,t
m ,vtm). The estimated heights are labeled

in (b). (d), (e), and (f) are marked with blocks indicating the two wind fields (red and green).

The arrows in the images from TSI1 and TSI3 represent motions, whereas the arrows in the

images corresponding to TSI2 represent the TSI2 → TSI1 (green) and TSI2 → TSI3 (blue)

displacement vectors.
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(a) Max. ϕ at TSI1t (b) Max. ϕ at TSI2t (c) Max. ϕ at TSI3t

(d) Single WF at TSI1t (e) Single WF at TSI2t (f) Single WF at TSI3t

(g) Single-layer stitched view based on TSI2t

Figure 12: The single layer detected from the nine images shown in Figure 8. (a), (b), and

(c) show the tracking results for (d1,2,t
m ,vtm). The regions marked with green boxes in (b)

display obvious bias due to the boundary effect. (d), (e), and (f) show the single-layer field,

(ht,vtx,vtx) = (2130 m, 8 px, 9 px) marked in red.
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(a) h=1000 at 2:00PM (b) h=3000 at 9:00AM

Figure 13: Examples of the locations of the sun-blocking pixels (blue crosses) for the 25

pyranometers in the stitched multi-TSI view.

Table 2: Descriptions of four subsets with various cloud and weather conditions. image#:

number of TSI images, k#: number of GHI measurements, cf : estimated range of cloud

fractions in the sky images, cfσ : mean and standard deviation of the cloud fraction, k: range

of the clear-sky index. kσ : the mean and standard deviation of k, exp: observed (ab)normal

condition of the TSI images, CBHest: cloud height range, vest: cloud motion in image, WF#:

number of cloud layers, zenith: solar zenith range, condition: cloud conditions.

Subset Ds Dm Do Dmix

image# 2517x3 2520x3 2406x3 2520x3

k# 2517x25 2520x25 2406x25 2520x25

cf [0.07,0.94] [0.03,0.94] [0.94,0.95] [0,0.95]

cfσ 0.71± 0.25 0.70± 0.27 0.94± 0.01 0.50± 0.35

k [0.11,1] [0.06,1] [0.17,1] [0.11,1]

kσ 0.46.± 0.22 0.57± 0.27 0.63± 0.21 0.81± 0.23

exp normal underexposed normal green-dominant

WF# 1 2 2 2

CBHest(m) [1590,2960] [1890, 4420] [6020,15730] [440 12330]

vest(px/min) [36,60] [6,36] [0,54] [0,60]

zenith [40◦, 57◦] [42◦, 58◦] [41◦, 56◦] [41◦, 57◦]

condition low,scattered multi-layer overcast mixture
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Table 3: MAE and RMSE metrics for 1-minute and 5-minute irradiance forecasts. The sub-

script of each score indicates the subset type used to train and test the model. The subscript

“avg” indicates the average performance on the entire dataset.

Dataset Rshift linearδ linearall SV Rlinear SV RRBF

1 m 5 m 1 m 5 m 1 m 5 m 1 m 5 m 1 m 5 m

MAEs 0.16 0.20 0.14 0.20 0.11 0.16 0.10 0.16 0.09 0.14

MAEm 0.16 0.19 0.14 0.19 0.11 0.15 0.10 0.14 0.08 0.13

MAEo 0.04 0.08 0.04 0.08 0.03 0.07 0.03 0.07 0.03 0.06

MAEmix 0.11 0.16 0.12 0.17 0.09 0.13 0.07 0.12 0.06 0.09

MAEavg 0.12 0.17 0.12 0.17 0.10 0.16 0.09 0.15 0.07 0.12

RMSEs 0.23 0.27 0.20 0.26 0.15 0.20 0.15 0.20 0.14 0.18

RMSEm 0.26 0.29 0.21 0.28 0.15 0.20 0.15 0.21 0.14 0.20

RMSEo 0.06 0.11 0.06 0.11 0.05 0.09 0.05 0.09 0.04 0.08

RMSEmix 0.23 0.29 0.22 0.26 0.15 0.20 0.17 0.21 0.13 0.18

RMSEavg 0.23 0.27 0.21 0.26 0.15 0.21 0.17 0.22 0.13 0.19

Figure 14: Successful Tracking Index (STI) values for the datasets in the 1-15 minute fore-

casting range. Overall represents the results for the entire dataset, which contains all four

independent subsets.
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Table 4: MAE and RMSE metrics for 10-minute and 15-minute irradiance forecasts. ‘-’

indicates that no forecast output is available due to cloud tracking failure. ‘*’ indicates

an incomplete dataset that has a low STI value or an average performance influenced by

incomplete/empty subsets.

Dataset Rshift linearδ linearall SV Rlinear SV RRBF

10 m 15 m 10 m 15 m 10 m 15 m 10 m 15 m 10 m 15 m

MAEs 0.27* - 0.25* - 0.24* - 0.16* - 0.13* -

MAEm 0.20 0.21* 0.20 0.21* 0.16 0.18* 0.15 0.17* 0.13 0.15*

MAEo 0.09 0.11 0.09 0.11 0.08 0.10 0.08 0.09 0.07 0.08

MAEmix 0.18 0.19 0.20 0.20 0.14 0.16 0.12 0.13 0.09 0.11

MAEavg 0.17* 0.17* 0.18* 0.17* 0.17* 0.16* 0.15* 0.15* 0.12* 0.11*

RMSEs 0.33* - 0.30* - 0.36* - 0.21* - 0.18* -

RMSEm 0.30 0.30* 0.29 0.30* 0.21 0.23* 0.22 0.24* 0.21 0.23*

RMSEo 0.12 0.15 0.12 0.15 0.11 0.12 0.11 0.13 0.10 0.11

RMSEmix 0.31 0.32 0.30 0.31 0.21 0.22 0.23 0.24 0.20 0.21

RMSEavg 0.29* 0.29* 0.28* 0.28* 0.22* 0.22* 0.23* 0.23* 0.21* 0.20*
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(a) Average MAE scores for five folds

(b) Average RMSE scores for five folds

Figure 15: MAE and RMSE scores for irradiance predictions on the data subset Dmix over a

time range from one to fifteen minutes.
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Figure 16: Improvements in the MAE ratio achieved by the non-linear SV Rrbf model in

comparison with the persistent model on all available data. The Min/Max bounds represent

the range of the percentage improvement values for all 25 stations. The average performance

is denoted by the plotted line, which includes standard deviation bars on either side.

55



(a) 5-minute forecasts with RMSErbf = 145.3 and RMSEk = 213.5.

(b) 10-minute forecasts with RMSErbf = 171.3 and RMSEk = 223.6.

(c) 15-minute forecasts with RMSErbf = 177.5 and RMSEk = 241.0.

Figure 17: Real forecasts based on our new prediction system using SV Rrbf and SV Rk.

Gray/dark areas with a flat ”0” or no forecast value represent data points that are out-of-

FOV or correspond to a low zenith angle. RMSErbf and RMSEk are the root-mean-square

errors of SV Rrbf and SV Rk compared with the real GHI values.
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