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We investigate the influence of itinerant carriers on dynamics and fluctuation of local moments
in Fe-based superconductors, via linear spin-wave analysis of a spin-fermion model containing both
itinerant and local degrees of freedom. Surprisingly against the common lore, instead of enhancing
the (π,0) order, itinerant carriers with well nested Fermi surfaces is found to induce significant
amount of spatial and temporal quantum fluctuation that leads to the observed small ordered
moment. Interestingly, the underlying mechanism is shown to be intra-pocket nesting-associated
long-range coupling, rather than the previously believed ferromagnetic double-exchange effect. This
challenges the validity of ferromagnetically compensated first-neighbor coupling reported from short-
range fitting to the experimental dispersion, which turns out to result instead from the ferro-orbital
order that is also found instrumental in stabilizing the magnetic order.

PACS numbers: 74.70.Xa, 74.20.Pq, 74.25.Ha, 75.30.-m

In the decades-long quest to understand high-
temperature superconductivity, antiferromagnetic
(AFM) correlation has been one of the primary research
focuses, due to its frequent proximity to superconductiv-
ity in the phase diagram. The newly discovered Fe-based
superconductors (Fe-SC) add another interesting ex-
ample to such proximity: the parent compounds next
to the superconducting phase possess a (π,0) C-type
antiferromagnetic (C-AFM) correlation, antiferromag-
netic along the x-direction and ferromagnetic along
the y-direction. This C-AFM is further accompanied
by a strong coupling to a ferro-orbital (FO) [1–3] (or
nematic [4]) and structural correlation that breaks the
lattice rotational symmetry and suppresses fluctuation to
the (0,π) C-AFM correlation. Upon doping, the C-AFM
correlation no longer condenses into a long-range order,
but still persists at short range in the superconducting
regime [5], suggesting its importance in the underlying
electronic structure that hosts superconductivity.

Interestingly, even in the undoped parent compounds,
the C-AFM order presents an unusual characteristic: the
ordered magnetic moment is much smaller than the local
moment. Indeed, Table I that summarizes the experi-
mentally estimated moments at low temperature, shows
a systematic large reduction of ordered moment from the
local moment across all families of Fe-SC. That is, the lo-
cal moment fluctuates strongly such that only about half
of it remains ordered. Such a systematic, strong quantum
fluctuation is obviously physically significant, but poses
a serious challenge to the proper understanding of the
magnetism. Currently, this fluctuation is attributed to
strong temporal fluctuation from studies [6–8] employing
dynamical mean-field approximation. However, it is un-
clear whether this picture is handicapped by the intrinsic

TABLE I: Large difference in local and ordered moments.
† theoretical estimation in the lack of the experimental value

System local moment(µB) ordered moment(µB)

LaFeAsO 1.1 ∼ 2.4† [9] 0.36 [10]
CeFeAsO 1.3 [11] 0.8 [12]
PrFeAsO 1.3 [13] 0.53 [14]
FeTe 2 ∼ 3 [15] > 2 [16]
BaFe2As2 1.3 [13] 0.87[17]
SrFe2AS2 2.1 [11] 0.94 [18]

limitation of such a mean-field approximation that does
not allow spatial fluctuation.

This issue is further complicated by the presence of
both large local moments and the low-energy itinerant
carriers in the system. Indeed, the Fermi surface was
found [19, 20] to consist of electron and hole pockets
that are approximately nested by q = (π, 0). The pres-
ence of both itinerant carriers and local moments ren-
ders the knowledge obtained from pure local pictures (e.g.
Heisenberg model) and the pure itinerant pictures (e.g.
nesting of the Fermi surface) fundamentally inadequate.
Recently, it was proposed [21] that the itinerant carriers
introduces a strong ferromagnetic correlation along the
y-direction (so-called double exchange effect) that stabi-
lizes the C-AFM. Another study [22], however, attributed
stability of C-AFM to the assistance of the antiferromag-
netic nesting of the Fermi surface. Obviously, it is im-
portant and timely to clarify how the itinerant carriers
modulate the dynamics and fluctuation of the local mo-
ments, and to reveal the dominant magnetic mechanism
and the role of the Fermi surface nesting.

In this Letter, we investigate the influence of the itin-
erant carriers on the dynamics and fluctuation of the lo-
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cal moments, using a spin-fermion model with ferromag-
netic Hund’s coupling. Surprisingly, upon integrating out
the itinerant degree of freedom within a linear spin-wave
analysis, we found that itinerant carriers with well nested
Fermi surface, instead of enhancing the C-AFM order, ac-
tually induce large spatial and temporal quantum fluctu-
ation that reduces the ordered moment significantly. In-
teresting, the itinerancy induced renormalization of long-
range magnetic couplings gives a strong antiferromag-
netic first-neighboring coupling that tends to destabilize
the C-AFM order. This is opposite to the ferromagnetic
double-exchange effect previously proposed [21] to ex-
plain the seemingly ferromagnetically compensated first-
neighbor coupling [23] from short-range fitting of the ex-
perimental dispersion. Our result challenges the validity
of such fitting, and demonstrates the true origin being the
FO order instead, which is found also instrumental in sta-
bilizing the C-AFM order. Our study not only explains
the strong moment-fluctuation in Fe-SCs, but also advo-
cates future investigations of itinerant-local interplay in
strongly correlated materials.

The simplest model to describe systems consisting of
local and itinerant degrees of freedom is the spin-fermion
model [21, 24–26]:

H = J1
∑

<i,i′>

~Si · ~Si′ + J2
∑

<<i,i′>>

~Si · ~Si′

− JH
∑

i,m,ss′

~Si · c†ims~σss′cims′ (1)

−
∑

ii′,mm′,s

tmm′

ii′ c†imsci′m′s +
∑
i,m,s

(εηm − µ)c†imscims,

in which the local moments Si at site i couples antifer-
romagnetically to its first and second neighbors via J1
and J2, and couples ferromagnetically to the itinerant
carriers via Hund’s coupling JH . (Here ~σss′ is the usual

Pauli matrices.) The itinerant carrier c†ims of orbital m
and spin s at site i hops with parameter tii′ . Since Eq. 1
lacks interaction between fermions that drives the intrin-
sic orbital instability, we include the effect of FO order
via an order parameter ε that shifts the yz/xz orbital up-
ward/downward by ηm. The chemical potential µ is eval-
uated for each set of magnetic and orbital order parame-
ters to ensures equal number of electron and hole carriers,
corresponding to the undoped parent compounds.

Very often, this model is applied to incorporate only
a subset of the bands of the five Fe d-bands as itinerant
carriers, having in mind that the rest of the bands con-
stitute the local moment [21, 24–26], consistent with the
notion of orbital selective Mott transition [27]. However,
such clean separation is not the only way in which the
spin-fermion model can be justified or utilized. Gener-
ally speaking, the physics to be captured in the model is
how the kinetic energy of the low-energy carriers inter-
play with the potential energy of local moments that are
low-energy in the spin (particle-hole) channel but high-

energy in the one-particle spectral function. In line with
this spirit, we include all five low-energy Fe-As hybrid
d-orbitals in order to capture the realistic Fermi surface,
knowing that only the low-energy portion of the carri-
ers will contribute to the renormalization of magnetic
coupling between local moments. (Analogously, Hub-
bard’s treatment of thermal fluctuation in itinerant mag-
netism for Fe and Ni [28, 29] also include the full itiner-
ant bands, with S termed ”exchange field”.) Specifically,
we obtain first a 10-band 3D Hamiltonian from density
functional theory, represented by the low-energy Wannier
function [30]. We then reduce it to a 5-band 2D Hamilto-
nian in the pseudo-momentum space via the local gauge
transformation [31–33] and apply it to Eq. 1.

Since we are mostly interested in the generic qualita-
tive trends how the itinerant carriers modify the dynam-
ics and fluctuation of the local moments in all the FeSC
families, we choose the prototypical LaOFeAs for the il-
lustration below. We follow the procedure of Ref. [21] to
integrate out the itinerant carriers up to the 2nd order
in JH/S within the linear spin-wave theory (assisted by
Holstein-Primakoff transformation, as usual) [31] while
fixing S = 1 as a representative case. A discrete 500x500
momentum mesh and a thermal broadening of 100meV
are used to ensure a good convergence and to avoid
material-specific features [34]. The resulting renormal-
ized spin-wave Hamiltonian (in unit of S2)

HSW =
∑
q

Aq(a†qaq +a−qa
†
−q)+Bq(a†qa

†
−q +a−qaq) (2)

corresponds to a Heisenberg Hamiltonian of the local mo-
ments with renormalized long-range coupling J̃ii′

H̃ =
∑
i,i′

J̃ii′Si · Si′ , (3)

and gives the spin-wave dispersion and fluctuation of the
ordered moment [31]. All the results below correspond
to bare couplings of the local moment J1 = 19meV and
J2 = 13meV that, after renormalization, give the correct
experimental spin-wave bandwidth (∼ 200meV [23, 35–
37]) and a sufficiently stable C-AFM phase.

To visualize the overall effects of itinerant carriers,
Fig. 1(a) shows the resulting renormalized spin-wave dis-
persion for a fixed strength of FO order. As the cou-
pling JH to itinerant carriers increases from 0.45eV to
0.64eV, the dispersion becomes stronger along the an-
tiferromagnetic x-direction [(0,0)-(π,0)], while the ferro-
magnetic y-direction [(π,0)-(π,π)] is only weakly affected.
This indicates that the dominant physical effect is not
the ferromagnetic double exchange effect proposed pre-
viously [21], but instead an enhancement of the AFM
couplings. This qualitative contrast in the physical con-
clusions is related to the employed fermion Fermi surface.
Focusing on cases with low density (∼ 0.1), Ref. [21] used
only two small electron-pockets but no hole-pockets [31],
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FIG. 1: (Color online) spin-wave dispersion ωq along the high-
symmetry paths (a) for a fixed FO order parameter ε and
(d) for a fixed Hund’s coupling JH , (b)&(e) reduced ordered
moment ∆m for various JH and ε, and renormalized first-
neighbor couplings in x-direction J̃1x, y-direction J̃1y, and
second neighbor coupling J̃2 as functions of (c) JH and (f) ε.

and thus favored nearly ferromagnetic couplings. On the
other hand, our realistic Fermi surface has compensated
hole- and electron-pockets separated by (π,0) and (0,π),
which promotes AFM couplings at short range.

The induced AFM coupling turns out to fluctuate sig-
nificantly the C-AFM state. Fig. 1(b) shows that as JH
increases beyond 0.4eV, the fluctuating portion of the
moment [38]

∆m = 1/(8π2)

∫
dq2[1− (Bq/Aq)

2
]−1/2 − 1/2 (4)

grows quickly and easily exceed 0.5, half of the local
moment, accounting for the experimental observation.
Since this quantum fluctuation originates from sponta-
neous creation of propagating magnons in a perfectly or-
dered state [39, 40], it is naturlaly spatial and temporal.

More detailed microscopic understanding of this AFM
coupling-induced fluctuation can be obtained from
Fig. 1(c) that shows the renormalized first-neighboring
couplings in x- and y-directions (J̃1x and J̃1y), and the

renormalized second-neighboring coupling (J̃2), for the
case of ε = 30meV as an example. As JH grows near
0.6eV, J̃1y increases faster than 2J̃2 and eventually ap-
proaches the latter, a situation in which the C-AFM state
becomes unstable against (π,q)-fluctuation (−π ≤ q ≤ π)
according to the simple classical energy estimation of the
short-range J1-J2 model.

In other words, even though itinerant carriers them-
selves, having an approximate (π,0) nesting, prefer C-

TABLE II: Importance of induced long-range couplings

JH = 0.6 eV, q = (π, π
5

) q = (π, π)

ε = 0.03 eV full/up-to-J̃2 full/up-to-J̃2
Aq 0.1534/0.1558 0.0134/0.0316
Bq -0.1527/-0.1532 0.0022/-0.0049
wq 0.0103/0.0281 0.0132/0.0312

AFM correlation, their influence on the couplings of lo-
cal moments, however, gives a larger J̃1y that disfa-
vors the C-AFM correlation and produces strong fluc-
tuation. Evidently, the previously reported itenerant
nesting-enhanced susceptibility at (π,0) [22] is insufficient
to conclude a more stabile C-AFM state. Instead, the
even stronger enhancement of (π,q) fluctuation reveals
the dominant role of itinerant carriers in reducing the C-
AFM ordered moment. Such a surprising effect merely
reflects the rich interplay between the itinerant carriers
and local moments in our model, and set an alarming
example against the usual itinerant-only considerations
(e.g. the typical normal-state nesting arguments).

It is important to note the significant contributions
of the RKKY-like long-range (power-law decaying) cou-
plings between local moments induced by itinerant car-
riers [41]. Indeed, besides the leading J̃1x, J̃1y, and J̃2,

the resulting renormalized coupling J̃ contains small but
long-range components that add up to important con-
tributions. Table II gives an example of the calculated
Aq, Bq and the spin-wave energy wq, with and without
the long-range couplings. It shows that inclusion of long-
range couplings can change these values by a factor of
two, confirming their importance. This is another alarm-
ing message to the common analysis of inelastic neutron
scattering measurements that use only short-range cou-
plings to fit the experimental data. For systems with itin-
erant carriers and consequently long-range magnetic cou-
plings, such fitting can be dangerously misleading about
the important physical effects.

The long range of the couplings naturally enables local
moments to fluctuate with extended spatial structures.
For example, the spin-wave dispersion in Fig. 1(a) shows
a softening in the vicinity of (π,π/5), indicating strong
fluctuation approximately in period of 10 unit cells. Our
results therefore conclude a strong spatial fluctuation in
addition to the currently emphasized temporal fluctua-
tion [6–8] of the magnetic moment.

The origin of the enhanced fluctuation in the vicinity
of (π,π/5) can actually be associated with the Fermi sur-
face of the ordered state. As an illustration, Fig 2(a)
shows the Fermi surface modified by the C-AFM and
FO order parameters, unfolded in one-Fe Brillouin zone.
One can observe an approximate intra-pocket nesting of
(0, 2kF )∼(0, π/5), equivalent to (π, π/5), matching the
momentum region of the spin-wave softening and the en-
hanced fluctuation in Fig 2(b). In essence, the short-
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FIG. 2: (Color online) (a)Nesting of Fermi surface of a C-
AFM and FO ordered state, unfolded in one-Fe Brillouin zone,
and (b)its effect on the momentum region with spin-wave soft-
ening and enhanced fluctuation.

range frustration of couplings enhances the overall spin
fluctuation along (π,0) to (π,π), while the nesting of the
Fermi surface of the ordered state pinpoints a more spe-
cific momentum region with most fluctuation.

Note that the “incommensurate” (π,q) excitation has
in fact been observed in several materials [5, 42–44]. Fig-
ure 3(a)-(d) compare theoretical and experimental low-
energy excitations of a C-AFM state and a strongly
fluctuating state. The latter clearly has a more pro-
nounced (π,q) momentum distribution, confirming their
direct connection to the moment fluctuation.

Having established the main physical effects of the itin-
erant carriers, we now illustrate the essential role of the
FO order in the C-AFM state using the right panels of
Fig 1. Figure 1(d) shows clearly that a stronger FO or-
der increases the dispersion along the path from (π,0) to
(π,π), but barely changes the dispersion along the anti-
ferromagnetic x-direction. In some of the Fe-SCs, such an
enhanced spin-wave dispersion along the ferromagnetic y-
direction has in fact been observed experimentally [23],
and was previously attributed to a nearly compensated
J̃1y. This appears to suggest a large ferromagnetic dou-
ble exchange effect. However, as discussed above, our
realistic Fermi surface produces largely enhanced AFM
J̃1x, J̃1y and J̃2, and thus does not support the double ex-
change picture. Indeed, Fig. 1(f) shows that this remains
true even after introduction of the FO order: While J̃1x
and J̃1y are slightly split by the anisotropy introduced by
FO, they remain strongly antiferromagnetic.

Our results in Fig 1 thus uncovers the FO order be-
ing the true key physical effect. More microscopically,
it is the FO order induced anisotropy in the renormal-
ized coupling J̃ that raises the spin-wave energy along
the path from (π,0) to (π,π) and slightly reduce the fluc-
tuation. While the C-AFM order can also introduce the
anisotropy, Fig. 1(a)(b) clearly indicates their different
physical effects: C-AFM order enhances the dispersion
along the x-direction, but FO order the y-direction. It
is now also understandable why the experimental fit-
ting may lead to nearly compensated J̃1y: the fitting
assigns all the anisotropy to one short-range coupling,
even though in reality such anisotropy is spread out to
a large number of long-range couplings instead, dictated
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FIG. 3: (Color online) Theoretical momentum distribution
of magnetic excitation at 10±1meV in (a) the C-AFM state
(JH=0.45eV,ε=30meV) and (c) a highly fluctuating state
(JH=0.64eV,ε=30meV), in 0.07π momentum-resolution. The
latter shows enlongated (π,q) fluctuation, as measured in (d)
spin-disordered FeTe0.51Se0.49 [42] when compared with (b)
spin-ordered BaFe2As2 [49]. (e) Phase diagram showing the
stable region of the C-AFM state.

by the itinerant nature.
In fact, the FO order is found essential to the C-AFM

order. For example, in Fig. 1(f) J̃1y > 2J̃2 suggests that
the C-AFM state should already be unstable if it weren’t
for the FO-induced anisotropy in the couplings. Indeed,
one sees in Fig. 1(e) that a stronger FO order helps to
reduce the moment fluctuation. Within the realistic pa-
rameter range, our result gives a phase diagram in Fig. 3,
in which the C-AFM order requires the FO order for
JH > 0.57eV. This accounts naturally for the experimen-
tal fact across all Fe-SC families, that the FO/structural
order always precedes the magnetic order [12, 45–47]. Of
course, if the fluctuation in the extended (π,q) region
overwhelms the aid from the FO order, the C-AFM order
will still be destroyed. This gives the simplest explana-
tion of the absence of magnetic order in FeSe, which still
presents a strong FO/structural order [48]. Sure enough,
spin-disordered Se-rich FeTe1−xSex [42–44] samples all
present extended (π,q) fluctuation similar to Fig. 3(d).

In conclusion, we investigate the generic effects of itin-
erant carriers on the dynamics and fluctuation of local
moments in the parent compounds of Fe-based super-
conductors, by integrating out the itinerant carriers that
couple to the local moment via Hund’s coupling. Unex-
pectedly, while the (π,0)-nested itinerant carriers alone
prefers a C-AFM order, they however fluctuate efficiently
C-AFM ordered local moments and produce the experi-
mentally observed large reduction of the latter. Interest-
ingly, the itinerant carriers induce long-range couplings
between local moments with AFM first-neighboring cou-
plings, producing strong spatial and temporal quantum
fluctuation. This surprising finding is opposite to the
common intuition of the nesting effect, and is distinct
from the ferromagnetic double-exchange physics pro-
posed previously to explain the seemingly ferromagnetic
compensated first-neighbor coupling from short-range fit-
ting of measured spin-wave dispersion. Our result chal-
lenges the validity of such fitting and demonstrates that
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such dispersion results naturally from the FO order,
which is also essential in stabilizing the C-AFM. These
new insights illustrate the generic rich interplay between
itinerant and localized degrees of freedom in many-body
systems, and advocate further systematic investigation of
transport, superconductivity, and other fluctuation dom-
inant phenomena in these systems.
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Supplementary 

This supplementary provides additional detailed information about our calculation that is based 

on well-established methods in the literature. 

I. Preparing for the 5-band Hamiltonian of the itinerant 

carriers 

The figure below illustrates the overall computation scheme already outlined in the manuscript, 

involving several well-established methods. 

 

 
 

We start with a density functional theory calculation using the experimental lattice constant.  We 

then construct the low-energy Wannier orbitals spanning the energy window of the Fe-d bands, 

and use them to represent the fully self-consistent Kohn-Sham Hamiltonian of the normal state.  

These steps have been reported previously [C.-C. Lee et al., PRL 103, 267001 (2009)].  The 

xz yz xy, z2, x2-y2 



resulting three-dimensional Hamiltonian contains 10 bands, because there are two Fe atoms in 

the unit cell due to the alternating tetrahedron positioning of the As atoms around each Fe atom.  

We then perform the local gauge transformation [Lee and Wen, Phys. Rev. B 78, 144517 (2008)] 

that changes the sign of the orbitals of even z-parity on the even lattice sites, to take into account 

the glide translational symmetry and recover a nearly translational symmetry Hamiltonian in the 

new “pseudo-momentum” space.  Upon dropping the small out-of-plane terms, we finally obtain 

a translation symmetric two-dimensional 5-band Hamiltonian for the itinerant carriers.  This final 

Hamiltonian corresponds to one Fe in the unit cell, and is thus consistent with the unit of local 

moments to be considered in the next step. 

II. Integrating out the itinerant carriers 

Our goal is to study the influence of the itinerant carriers on dispersion and fluctuation of local 

moments.  We thus follow the procedure reported in [Lv, el al. PRB 82, 045125 (2010)] to 

integrate out the itinerant carriers to obtain a effective linear spin-wave Hamiltonian.  It is 

convenient to first perform a spin rotation for the site of even columns of sites S𝑖
𝑥 = �̃�𝑖

𝑥, S𝑖
𝑦

=

𝜅𝑖�̃�𝑖
𝑦

 and  S𝑖
𝑧 = 𝜅𝑖�̃�𝑖

𝑧 , where 𝜅𝑖 = exp(i𝐐 ∙ 𝒓𝑖) = ±1, and �̃�𝑖,↑ =  𝑐𝑖,↓ , such that in the rotated 

frame, all the ordered local moments are pointing toward the “up” direction.  Note that in this 

new frame, the itinerant Hamiltonian again resumes a 10-band form, since now spin up and spin 

down channels couple together after the spin rotation. 

We then use the lowest-order Holstein-Primakoff boson: �̃�𝑖
𝑧 = 𝑆 − 𝑎𝑖

†𝑎𝑖 , �̃�𝑖
+ = √2𝑆𝑎𝑖 , �̃�𝑖

− =

𝑎𝑖
†

√2𝑆, to capture the bare spin-excitation of the local moment via the spin-wave Hamiltonian 

(in unit of S
2
): 

ℋ𝑙𝑜𝑐 = ∑ [𝐴0(𝑞)(𝑎𝑞
†𝑎𝑞 + 𝑎−𝑞𝑎−𝑞

† ) + 𝐵0(𝑞)(𝑎𝑞
†𝑎−𝑞

† + 𝑎−𝑞 𝑎𝑞)]𝑞                   [1] 

where, 

𝐴0(𝑞) = 2(𝐽1𝑐𝑜𝑠𝑞𝑦 + 2𝐽2)/𝑆 

𝐵0(𝑞) = 2(𝐽1𝑐𝑜𝑠𝑞𝑥 + 2𝐽2𝑐𝑜𝑠𝑞𝑥𝑐𝑜𝑠𝑞𝑦)/𝑆 

Treating the Hund’s coupling between the itinerant and local degrees of freedom, 
𝐽𝐻

2𝑆
, as 

perturbation 

ℋ𝐻 = −
𝐽𝐻

2𝑆
∑ 𝑺𝑖𝑐𝑖𝛼𝜈

† 𝝈𝜈𝜈′𝑐𝑖𝛼𝜈′𝑖,𝛼,𝜈𝜈′                                             [2] 

where 𝝈𝜈𝜈′ = (𝝈𝒙, 𝝈𝒚, 𝝈𝒛)𝜈𝜈′with  𝝈𝜶, the canonically transformed full Hamiltonian (Eq.1 of the 

manuscript) 



𝑒∆ℋ𝑒−∆ = ℋ + [∆, ℋ] +
1

2
[∆, [∆, ℋ]] + ⋯                                   [3] 

gives the renormalized linear spin-wave Hamiltonian from its quadratic components: 

ℋ𝑠𝑤 = ℋ𝑙𝑜𝑐
𝑠𝑤 + 〈ℋ𝐻

2 +
1

2
[Δ, ℋ𝐻

(1)
]〉𝑒 = ∑ [𝐴(𝑞)(𝑎𝑞

†𝑎𝑞 + 𝑎−𝑞𝑎−𝑞
† ) + 𝐵(𝑞)(𝑎𝑞

†𝑎−𝑞
† + 𝑎−𝑞 𝑎𝑞)]𝑞 [4] 

up to 2
nd

 order in 1/S, where 

𝐴(𝑞) = 𝐴0(𝑞) + 𝐴1 + 𝐴2(𝑞)                                                 [5] 

𝐵(𝑞) = 𝐵0(𝑞) + 𝐵2(𝑞)                                                      [6] 

𝐴1 =
𝐽𝐻

2𝑆
∑ 𝑓𝑛(𝑘) ∑ 𝜐|𝑈𝛼𝜈

𝑛 (𝑘)|2
𝛼,𝜐𝑘,𝑛                                            [7] 

𝐴2(𝑞) =
𝐽𝐻

2

2𝑆
∑

𝑓𝑛(𝑘)−𝑓𝑚(𝑘+𝑞)

𝐸𝑛(𝑘)−𝐸𝑚(𝑘+𝑞)
|∑ 𝑈𝛼↓

𝑚∗(𝑘 + 𝑞)𝑈𝛼↑
𝑛 (𝑘)𝛼 |2

𝑘,𝑚𝑛                       [8] 

𝐵2(𝑞) =
𝐽𝐻

2

2𝑆
∑

𝑓𝑛(𝑘)−𝑓𝑚(𝑘+𝑞)

𝐸𝑛(𝑘)−𝐸𝑚(𝑘+𝑞)
× ∑ 𝑈𝛼↓

𝑚∗(𝑘 + 𝑞)𝑈𝛼↑
𝑛 (𝑘)𝑈𝛽↓

𝑛∗(𝑘 + 𝑞)𝑈𝛽↑
𝑚(𝑘)𝛼𝛽𝑘,𝑚𝑛       [9] 

Here diagonal representation 𝑑𝑛𝑘 of the itinerant Hamiltonian (including the influence of ferro-

orbital and anti-ferromagnetic order parameters) is employed �̃�𝑘𝛼𝜈 = ∑ 𝑈𝛼𝜈
𝑛 (𝑘)𝑑𝑛𝑘𝑛 ,  with 

eigenvalue 𝐸𝑛(𝑘) of each band index n.  Note that  𝑓𝑛(𝑘) = 1/(1 + 𝑒𝛽(𝐸𝑛(𝑘)−𝜇))  denotes the 

Fermi distribution function with chemical potential 𝜇., which needs to be evaluated for each set 

of order parameters. 

Finally, a simple diagonalization of the spin-wave Hamiltonian gives the spin-wave dispersion 

𝜔(𝑞) = √𝐴2(𝑞) − 𝐵2(𝑞)                                                [10] 

and allows an estimation of the fluctuating portion of the moment 

∆𝑚 =
1

8𝜋2 ∫ 𝑑𝑞2𝐴(𝑞)/𝜔(𝑞) − 1/2 =
1

8𝜋2 ∫ 𝑑𝑞2[1 − (𝐵𝑞/𝐴𝑞)2]−1/2 − 1/2   [11] 

III. Some useful numerical tricks 

q-space interpolation 

Since the formula to evaluate ∆𝑚 involves integrable singularity, an accurate and very dense 

mesh of q points is necessary.  Making use of the smooth nature of Aq and Bq, a useful trick is to 

evaluate q only in a relatively coarser mesh, say 20 × 20 or bigger, and then perform Wannier 

interpolation to generate a denser mesh, say 20000 × 20000  for the computation of ∆𝑚 .  The 

simple idea of Wannier interpolation is to Fourier transform Aq and Bq to real space, and enlarges 



the size of the periodic boundary condition by filling zeros in the long-range tail, and inverse 

Fourier transform back to q space.  The smoothness of Aq and Bq guarantees the smallness of 

long-range tail and makes this trick an accurate numerical approximation. 

Special treatment near zero energy when evaluating ∆𝑚 

In evaluating ∆𝑚 , one needs to perform the following integration   

𝑆

8𝜋2 ∫ 𝑑𝑞2𝑆𝐴(𝑞)/𝜔(𝑞)                                                     [12] 

Therefore, special treatment in region of q where the spin wave energy become close to zero.  A 

useful simple trick is to reduce the integration to one-dimension and use semi-analytical 

approach to treat the small energy region. 

𝑆

8𝜋2 ∫ 𝑑𝑞2𝐴(𝑞)/𝜔(𝑞) = ∫ 𝑑𝑣 𝑔𝐴(𝑣)/𝑣                                      [13] 

where 

𝑔𝐴(𝑣) =
𝑆

8𝜋2 ∫ 𝑑𝑞2𝐴(𝑞)𝛿(𝑣 − 𝜔(𝑞))                                      [14] 

is the A-weighted density of states.  One thus can take the linear coefficient of the expansion of 

g
A
 and perform the integration analytically within a small energy range.  Caution must be paid 

though, when the system is close to a phase transition and the linear region of g
A
 becomes small 

in energy. 

IV. Band structure and Fermi surface employed in Ref. 21 

The very different physical conclusions between our study and that of Ref.21 originate from the 

different electronic structure of itinerant carriers.  Ref. 21 uses a very low filling factor (~0.1), 

corresponding to a chemical potential  ~ -2.31t1, so that there are only two electron pockets in 

the center of the Brillouin zone, as shown in the figures below (obtained with the same 

parameters as those in Ref.21.).  

               

 



V. Evolution of Fermi surface and band structure via ferro-

orbital order and magnetic order  

The figures below compare the effects of ferro-orbital and magnetic order on the band structures 

and Fermi surfaces. 

                   𝐽𝐻 = 0.00 eV, 휀 = 0.00 eV                                    𝐽𝐻 = 0 eV, 휀 = 0.03 eV 

                 

                    𝐽𝐻 = 0.64 eV, 휀 = 0.00 eV                                   𝐽𝐻 = 0.64 eV, 휀 = 0.03 eV 

            

       

VI. Insensitivity of qualitative trends against the thermal 

broadening parameter 

Our study considers [Eq.(4)] only the zero-temperature quantum fluctuation ∆m without thermal 

fluctuation.  The thermal broadening parameter T in the itinerant side is introduced only to ease 

the numerical calculation.  Particularly, we aim at revealing the generic trends in Fe-SCs 

originated from the approximately nested electron and hole pockets, rather than the material 

dependence dictated by the details of the Fermi surface.  Choosing a larger T thus also helps us 

avoid being overwhelmed by the details of the Fermi surface of one particular material. 

The following figures compare results with two different T parameters (keeping all other 

parameters identical) and demonstrate clearly the same qualitative trends. 

xz yz xy, z2, x2-y2 



 

VII. Other physical considerations 

We add here some additional physical consideration that may be considered in future 

investigations.  First, our study focuses on the dominant fluctuation of the local moment, in the 

spin direction.  There in principle should also be weaker fluctuation in the amplitude, since this is 

an itinerant system.  From the phase space argument similar to Pauli vs. Curie susceptibility, one 

of course would expect such amplitude fluctuation be much weaker at low temperature. 

Second, from the separation of local and itinerant degrees of freedom, one should expect that the 

low-energy bands might not have a full spectral weight of one.  The reduced spectral weight 

should then reduce slightly these bands’ contribution to the renormalization, in A1, A2, and B2. 

Similarly, one should in principle feed the resulting reduced magnetic order parameter back to 

the itinerant Hamiltonian, in a self-consistent manner.  This would stretch the region of 

fluctuation to a larger region in the phase diagram, making it more similar to the real materials.  

The qualitative trends illustrated in the manuscript, however, will remain the same.  The last two 

considerations together can be approximately simulated with a smaller value of JH, as is done in 

our manuscript. 


