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Current spectral clustering algorithms suffer from the sensitivity to existing noise, and parameter scaling,
and may not be aware of different density distributions across clusters. If these problems are left untreated,
the consequent clustering results cannot accurately represent true data patterns, in particular, for complex
real world datasets with heterogeneous densities. This paper aims to solve these problems by proposing
a diffusion-based Aggregated Heat Kernel (AHK) to improve the clustering stability, and a Local Density
Affinity Transformation (LDAT) to correct the bias originating from different cluster densities. AHK statisti-
cally models the heat diffusion traces along the entire time scale, so it ensures robustness during clustering
process, while LDAT probabilistically reveals local density of each instance and suppresses the local density
bias in the affinity matrix. Our proposed framework integrates these two techniques systematically. As a re-
sult, not only does it provide an advanced noise-resisting and density-aware spectral mapping to the original
dataset, but also demonstrates the stability during the processing of tuning the scaling parameter (which
usually controls the range of neighborhood). Furthermore, our framework works well with the majority of
similarity kernels, which ensures its applicability to many types of data and problem domains. The system-
atic experiments on different applications show that our proposed algorithms outperform state-of-the-art
clustering algorithms for the data with heterogeneous density distributions, and achieve robust clustering
performance with respect to tuning the scaling parameter and handling various levels and types of noise.
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1. INTRODUCTION
Clustering, the task of discovering natural groupings based on the input data patterns,
has been one of the most active research topics in machine learning and knowledge
discovery. As a powerful unsupervised data analysis technique, clustering is especially
desirable for modeling large datasets because the tedious and often inconsistent man-
ual classification and labeling process can be avoided. While many traditional cluster-
ing algorithms have been developed over the past few decades [Jain and Dubes 1988]
[Duda et al. 2001], some popular ones that emerged over the last decade generate
promising results on various challenging tasks. Among them, spectral clustering [Ng
et al. 2002] [Shi and Malik 2000] [Zha et al. 2001] [Chi et al. 2009] [Buhler and Hein
2009] [Wauthier et al. 2012] demonstrates excellent performance to detect clusters
with complex shapes and complicated input space distributions.

1.1. Motivations
Despite their earlier success, most of spectral clustering methods still suffer from the
following real world challenges:
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— The clustering results can be radically different when the scaling parameters of the
algorithms are slightly modified or there is some noise perturbation among clusters.
We call such a susceptibility the sensitivity to parameter tuning and noise.

— Most of these methods tend to assign medium similarity between the boundary in-
stances among clusters with different densities. Therefore they fail to quantify lo-
cal density well, which may result in poor manifold reconstruction and undesirable
clustering results.

— Most of the existing density-aware algorithms are only applicable on the Euclidean
space. Therefore their capabilities are significantly constrained in handling
today’s various types of data, such as social networks and text datasets.

(a) σ = 0.22 (b) σ = 0.23 (c) σ = 0.22 with noises

Fig. 1. The sensitivity example of NJW [Ng et al. 2002], one of the traditional spectral clustering algo-
rithms, with respect to different Gaussian scaling parameter σ and noise appearance. The two output clus-
ters are colored with red or blue. A small variation to σ or data points (noise) leads to radically-different
results. Such an instability becomes an issue to traditional spectral clustering algorithms.

Robustness is one of the most desirable properties of clustering algorithms, however,
here it becomes an essential challenge for spectral clustering. As shown in Figure 1, it
is a well known problem that the scaling parameter σ of Gaussian kernel (see Equation
3 for details) for the affinity matrix has significant impacts on discovering embedded
structure because σ determines whether two points are considered similar (neighbors)
or not [Perona and Freeman 1998]. Although several methods were proposed to ad-
dress this problem (e.g., [Valizadegan and Jin 2007], [Zelnik-Manor and Perona 2004]),
it remains challenging to find a certain range for σ which is optimal to maintain sta-
ble yet desirable performance. Another aspect of robustness in spectral clustering is
the clustering quality with respect to noise data. As noted in [Luxburg 2007], spectral
clustering is less sensitive to data perturbation than the popular k-means algorithm.
However, given different application domains and/or inappropriate data preprocess-
ing techniques, spectral clustering can still be susceptible to noise [Verma and Meila
2001], which tends to complicate the clustering parameter selection, especially when
making use of scaling parameter σ of Gaussian kernel. In summary, since parameter
selection can be significantly affected by the noise level of data (as shown in Figure
1(c)), we must address robust spectral clustering in terms of parameter selection and
noise appearance simultaneously.

In this paper, the robustness of clustering algorithms should be measured in the
following aspects: (1) not sensitive to small parameter changes; (2) not sensitive to
existing noise; (3) stable performance even under a significant noise level or subopti-
mal parameter settings; and (4) competitive and comparable results when comparing
with those less-robust clustering algorithms without any data perturbation and with
correct parameter settings. With these robustness properties, we can reliably analyze
data and conduct other data-driven tasks in subsequent analysis steps. The robust-
ness property is equally significant for domain experts who do not have strong ma-
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chine learning background as they become much more comfortable in utilizing robust
algorithms for their domain data analysis. Therefore it is imperative to develop robust
clustering algorithms [Chi et al. 2009].
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(a) Original Dataset
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(b) NJW (W(GLS), σ(G) = 2),
NMI = 0.7186
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(c) RW (W(GLS), σ(G) = 2),
NMI = 0.5998
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(d) NN (W(GLS), σ(G) = 2),
NMI = 0.6731
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(e) ST (W(LCS), q = 3 in σ(Li,p)
),

NMI = 0.7333
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(f) SCDA (W(GLS), σ(G) = 2),
NMI = 0.7126

Fig. 2. Clustering results of different algorithms on a synthetic dataset with heterogeneous density distri-
butions. Figure 2(a) shows the original dataset, where the green and blue clusters with Gaussian distribu-
tions have higher density than the red cluster with a uniform distribution. The clustering results of NJW
(Figure 2(b)), RWC (Figure 2(c)) and NN (Figure 2(d)) are shown respectively, which are not capable of cap-
turing the density variation. For the localized method, ST (Figure 2(e)) has better result since it has a locally
adaptive scaling parameter (in Equation 4), while SCDA (Figure 2(f)) reveals a similar density-awareness
as NJW. In short, none of the above methods provides a desirable separation that is aware of both density
change and manifold structures across clusters.

Another requirement of real world clustering application is to discern the differ-
ent density distribution among clusters. The traditional spectral clustering algorithms
(such as NJW [Ng et al. 2002] and RWC [Shi and Malik 2000]) assume uniform sam-
pling distribution inside the input dataset to approximate the continuous Laplace oper-
ators on Riemannian manifold, and tend to assign medium level affinity on the bound-
ary between low and high density areas. These problems cause the inferior manifold
reconstruction especially around cluster boundaries.

As an example, Figure 2 shows the clustering results from different graph Lapla-
cians built upon Gaussian kernels. The synthetic dataset in Figure 2(a) contains three
clusters: the blue and green clusters with a denser Gaussian distribution and the
red one with a uniform and sparser distribution within a rectangular area. Figure
2(b) to 2(d) show the results from three conventional spectral clusterings: NJW [Ng
et al. 2002] with symmetric Laplacian (Lsym), RWC [Meila and Shi 2001] with ran-
dom walk Laplacian (Lrw), and NN [Luxburg 2007] without Laplacian normalization
(Lnn) . Since Lsym has a more balanced view, NJW performs better than RWC, and
demonstrates better density-awareness. However, if we take density distribution into
account, all of them fail to separate the clusters appropriately.
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Some localized approaches have been focusing on solving these problems, e.g., Self-
tuning Spectral Clustering (ST) [Zelnik-Manor and Perona 2004] and Local Density
Adaptive Similarity (SCDA)[Zhang et al. 2011]. Nevertheless, they could not effec-
tively capture the local density on the affinity matrix since additional parameters
which are very sensitive to heterogeneous density distributions are required. There-
fore such approaches may also fail to quantify local density well, and cause undesired
clustering results (as shown in Figure 2(e) and 2(f)). Moreover, these algorithms are
built upon Gaussian kernel, and could only be applicable to the applications in the
Euclidean space. Their capabilities are therefore significantly constrained in handling
today’s big complex data. One example is network dataset, including social networks,
computer networks, and biological networks. Network dataset can be naturally repre-
sented as affinity matrix themselves because they are already of graph-structure (see
details in Equation 1). Another example is text data which often uses the cosine kernel
to measure similarity (see details in Equation 2). Although Gaussian kernel is popu-
larly used in many applications, we also need to handle the aforementioned datasets
with diverse characteristics. Therefore, to be more practical and adaptive in different
real world situations, local-density-aware clustering algorithms need to work well with
any form of similarity kernels.

1.2. Contributions
In this research we propose a heat-diffusion-based framework which provides not only
competitive average performance, but also robustness to scaling parameter, noise ap-
pearance and different density distributions across clusters. Our framework has the
following contributions:

1. We derive a robust kernel function by integrating heat kernel along the entire time
scale (Section 3.1), and combine it with Laplace-Beltrami Normalization (LBN, Sec-
tion 3.3). We call this algorithm as Aggregated Heat Kernel (AHK, Section 3.4).
As a result, we provide a robust clustering algorithm while reducing the
negative influences on stability by scaling parameter tuning and noise ap-
pearance. We also discuss the connections of AHK to the other popular and related
approaches (Section 3.2).

2. We design a probability-based local density affinity transformation (LDAT, Section
4) that aims to reduce different density effects across clusters in the affinity
matrix. It is a simple and effective enhancement to local density awareness espe-
cially around the cluster boundary area. It is not only based on affinity matrix, so
it works well with any type of similarity kernels. These features distinguish
our proposed framework from other candidate approaches in handling diverse and
complex real world problems.

3. Our novel framework (Section 5), systematically combining AHK and LDAT to-
gether, delivers robust clustering results in terms of different scaling parameter,
noise level and divergent density distribution across different clusters.

4. We thoroughly evaluate the proposed framework with several closely-related base-
line algorithms on a number of synthetic and benchmark datasets (Section 6). The
experimental results confirm that the proposed framework, even under suboptimal
parameter settings, outperforms existing approaches for datasets with noise and
heterogeneous density distribution, using different similarity kernels.

2. BACKGROUND INTRODUCTION
Our framework is based upon spectral clustering and heat diffusion. In this section
we briefly review the basic ideas of spectral clustering, affinity matrix constructions,
diffusion maps and heat equation, and analyze the weakness of existing approaches.
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2.1. Spectral Embeddings and Clustering
Spectral clustering already gained increasing popularity in the last decade because of
its ability to discover embedding data structure. It has a strong connection with graph
cut, i.e., it uses eigenspace to solve a relaxed form of the balanced graph partitioning
problem [Ng et al. 2002]. Its second desirable aspect is that, with nonlinear kernels it
can capture the nonlinear structure of data, which is difficult for k-means [Hartigan
and Wong 1978] or other linear clustering algorithms.

ALGORITHM 1: SpectralClustering(X, c)
Input: X ∈ Rn×m where n is #instances, m is #features, and c is #clusters.
Output: Cluster assignments of n instances.

1 Construct the affinity matrix W ∈ Rn×n;
2 Compute the diagonal matrix D ∈ Rn×n where D(i, i) =

∑n
j=1W (i, j) and D(i, j) = 0 if i 6= j ;

3 Apply the graph Laplacian L using Lnn = D −W , Lrw = I −D−1W or
Lsym = I −D−1/2WD−1/2 where I is an identity matrix ;

4 Extract the first c nontrivial eigenvectors ψ of L, ψ = {ψ1, ψ2, . . . , ψc} ;
5 Re-normalize the rows of ψ ∈ Rn×c into Yi(j) = ψi(j)/(

∑
l ψi(l)

2)1/2 ;
6 Run k-means with c and Y ⊂ Rn×c.

Spectral clustering, as shown in Algorithm 1, usually starts with local information
encoded in a weighted graph which is constructed from certain similarity kernels on
input data, and clusters according to the global eigenvectors of the corresponding (nor-
malized) affinity matrix. However, it has a few limitations as follows:

— The selection of the scaling parameter (if any) of similarity kernel could affect the
clustering results radically (as shown in Figure 1(a) and 1(b)) because the scaling
parameter usually determines each instance’s neighborhood scope.

— The clustering results are sensitive to noise. For instance in Figure 1(c), with only a
few noisy instances, the clustering result is quite different and the optimal range of
scaling parameter also varies.

— The reconstructed embedding structures may fail to represent the diversity of density
across clusters, which leads to clustering results with a poor quality (as shown in
Figure 2).

The above problems are partly due to the fact that the similarity kernels (or affinity
matrix construction) used in the spectral clustering are sensitive to the parameter
scaling and noise appearance [Zelnik-Manor and Perona 2004]. In Section 2.2, we will
describe some popularly used similarity kernels. In Section 3 we will propose a robust
clustering algorithm against parameter and noise sensitivity.

The second reason for the aforementioned problems is that (normalized) affinity ma-
trix cannot take the local density information into consideration, in particular for those
data points between two clusters with heterogeneous densities. A synthetic example
of such problem is demonstrated in Figure 2. Section 4 will introduce a simple and
effective way of correcting the local density bias.

2.2. Affinity Matrix Construction
Affinity matrix construction is the first step of spectral clustering with significant in-
fluence to the final results. In practice it is derived from certain similarity kernels. We
denote the input dataset as X which is a n × m matrix with n instances and m fea-
tures. Its global similarity matrix W , a n×n matrix, represents the pair-wise likeness
of instances usually considering the whole feature space. How to choose an appropriate
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similarity kernel is a critical step in spectral clustering as different types of datasets
might have different preference for similarity measurements. There are several pop-
ular ways to measure the similarity W (i, j) between any two instances x(i) and x(j).
In this paper we focus on three of them: network connectivity, cosine similarity, and
Gaussian kernel.

Network Connectivity. Network datasets such as social networks, computer net-
works and biological networks, define affinity matrix based on their dataset repre-
sentations, which are often modeled as undirected graphs. Each edge has a weight to
describe the relationship between the two related nodes representing data instances
in the dataset. In a network dataset the simplest edge weight is usually defined as the
connectivity between two nodes. The simplest network connectivity W(NET )(i, j) can
be defined as:

W(NET )(i, j) =

{
1, if x(i) and x(j) are connected,
0, if x(i) and x(j) are unconnected.

(1)

In addition, we can model network datasets as directed graphs as well. A twitter net-
work with followers and followees is a good example of directed graph.

Cosine Similarity. A popular measurement for text dataset is the cosine angle
between two vectors [Andrews and Fox 2007]. The cosine similarity is represented
using dot product and magnitude as:

W(COS)(i, j) =
x(i)·x(j)

‖ x(i) ‖2· ‖ x(j) ‖2
. (2)

For text matching, the vectors x(i) and x(j) are usually the term frequency vectors of
the documents. Since term frequency is always positive, the resulting similarity ranges
from 0 meaning independence, to 1 meaning exactly the same, and in-between values
indicating intermediate similarity. The cosine similarity can be seen as a method of
normalizing length during comparison, with denominator normalizing each vector to
compare different text sizes.

Gaussian Kernel. One of the most commonly used similarity measurements in the
clustering application is the Gaussian kernel, of which traditional form is defined as
follows:

W(GLS)(i, j) = exp(
− ‖ x(i)− x(j) ‖2

2σ(G)
2

), (3)

where σ(G) controls the width of neighborhood [Luxburg 2007] with a globally fixed
value. So we call this kernel as the global Gaussian kernel W(GLS). It is widely used
because it works well on most datasets. However, its biggest challenge is how to choose
σ(G)’s value, which affects the clustering results significantly [Zelnik-Manor and Per-
ona 2004]. In other words, clustering result is very sensitive of tuning σ(G). Besides,
σ(G) is not adaptive to local density change.

Instead of selecting one globally-fixed parameter σ(G), Zelnik-Manor et al. proposed
to calculate a local scaling parameter σ(Li,k) for each data point in their self-tuning
spectral clustering algorithm (ST) [Zelnik-Manor and Perona 2004]:

W(LCS)(i, j) = exp(
− ‖ x(i)− x(j) ‖2

σ(Li,k)σ(Lj,k)
), (4)

where the parameter σ(Li,k) is the Euclidean distance between x(i) and its k-th nearest
neighbor (k-nn). This kernel uses k-nn distance to approximate the local density, which
is similar to the idea of Local Outlier Factor (LOF) [Breunig et al. 2000]. Therefore it
can adaptively recognize the local density difference to some extent. However it is
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Fig. 3. Due to the similar density distribution, point b should belong to the green cluster. However, both
global and local scaling Gaussian kernels fail to classify point b due to their non-awareness of local density
statistics.

extremely important to determine the value of k to faithfully reveal the local density,
as shown in [Huang et al. 2012]. On one hand, k cannot be too large to capture the local
distribution. On the other hand, an overly small k can lead to statistical error without
a sufficient neighborhood scope. This is to say, compared with global Gaussian kernel
W(GLS), local kernel W(LCS) shifts the degree of freedom, or sensitivity, from σ(G) to k,
which is still hard for users to specify.

Particularly, both Equation 3 and 4 may fail miserably on the boundary area among
clusters with different densities. Figure 3 shows a synthetic example that both kernels
fail to classify the red data point b. Here the blue cluster is relatively denser than
the green one. The point b lies between these two clusters with the same Euclidean
distance to the closest data point in each cluster (namely E(b, a) = E(b, c), where E(i, j)
denotes the Euclidean distance between x(i) and x(j)). When the density distribution
is considered, point b should belong to the green cluster because its local density is
more similar to the density of the green cluster. Therefore, the ideal similarity kernel
should return W (b, a) < W (b, c) and W (a, d) > W (a, b).

Nevertheless, the global Gaussian kernel, with a single scaling parameter, only ob-
tains the right result on W (a, d) > W (a, b) because of E(a, d) < E(a, b), while on the
other hand returns W(GLS)(b, a) = W(GLS)(b, c) because of E(b, a) = E(b, c). For the
local scaling Gaussian kernel, we need to tune k very carefully. If k = 5 there is
σ(La,5) = E(a, b) and σ(Lc,5) = E(b, c), which also leads to W(LCS)(b, a) = W(LCS)(b, c).
Only if k < 5 it gives W(LCS)(b, a) < W(LCS)(b, c) because of σ(La,k) < σ(Lb,k) ' σ(Lc,k).
However, it will bring another issue: it leads to W(LCS)(a, d) < W(LCS)(a, b) due to
σ(Ld,k) < σ(Lb,k) when k < 5. The same problem also shows up in Figure 2(e): although
k is best tuned and ST has additional adjusting steps to further boost the performance
[Zelnik-Manor and Perona 2004], it does not improve performance substantially com-
pared with NJW (only about 2% improvement in NMI). In other words, both the global
and local scaling Gaussian kernel cannot stably and accurately differentiate the simi-
larity differences with regards to local density.

Recently, Zhang et al. proposed a local density adaptive similarity kernel (SCDA)
[Zhang et al. 2011] which is defined as:

W(DA)(i, j) = exp(
− ‖ x(i)− x(j) ‖2

2σ2
(G)(fε(i, j) + 1)

), (5)

where fε(i, j) is the number of instances in the joint region of the ε-neighborhoods
around instance x(i) and x(j), and ε is the specified radius of the sphere neighborhood
region. It is claimed that fε(i, j) can represent the local density between x(i) and x(j),
and therefore W(DA) can be used to distinguish inter-cluster instances. However, the
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way of choosing ε in [Zhang et al. 2011] is by a linear regression with the input pa-
rameters such as maximum and variance of all instance pairs in the test dataset. Not
surprisingly, it is highly unstable when SCDA is used on the other datasets in an un-
supervised way. Correa et al. proposed a similar idea using empty region [Correa and
Lindstrom 2012] which also suffers instability by a slight perturbation to the radius
of region, especially on the complex high-dimensional datasets, due to the curse of di-
mensionality. Figure 2(f) shows that SCDA performs quite similarly to NJW, and can
neither provide a convincing correction to the density bias.

2.3. Diffusion Distance and Diffusion Maps
Embedding reconstruction in spectral clustering (Step 1 to 5 in Algorithm 1) are very
sensitive to noise appearance and scaling parameter tuning (if it is built upon the
Gaussian kernels). Diffusion maps was proposed by Coifman et al. in [Coifman and
Lafon 2006] to solve these problems.
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(a) Diffusion Maps when t = 1,
NMI = 0.5864
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(b) Diffusion Maps when t = 30,
NMI = 0.6546
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(c) Diffusion Maps when t = 50,
NMI = 0.7056
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(d) Diffusion Maps when t = 100,
NMI = 0.6140
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(e) Multiscale Diffusion Maps,
NMI = 0.6486

Fig. 4. Clustering results of Diffusion Maps (DM) and Multiscale Diffusion Maps (MDM) on the synthetic
dataset in Figure 2(a). The global Gaussian kernel is used here with σ(G) = 2. Figure 4(a) to 4(d) show the
results of DM from t = 1 to t = 100. Although DM with t = 50 obtains better separation in the boundary
area among the three clusters, it is hard to guess the best range of t unsupervisedly. MDM, in spite of the
elimination of parameter t, easily gets over-diffusion without perception of density change (see Figure 4(e)).

Diffusion maps (DM) is a Markov-transition-based projection hinged on diffusion
process. The non-negativity property of the original affinity matrix W allows to nor-
malize it into a Markov transition matrix P = D−1W . The states of the corresponding
Markov process are data points, which enables us to analyze it as (positive) random
walk. It is straightforward to calculate the transition probability, pt(i, j) (the probabil-
ity of transition from x(i) to x(j) after t steps) using entries from P . Thus the diffusion
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distance Dt(i, j) between x(i) to x(j) at the time scale of t can be defined as:

Dt(i, j) = (
∑
k

(pt(i, k)− pt(j, k))2

φ1(k)
)

1
2 , (6)

where φ1 is the stationary distribution of the positive random walk (trivial left eigen-
vectors). So the diffusion map at the time scale of t projects the data points to n dimen-
sional eigenspace as:

Ψt : x→ [λt1ψ1(x), λt2ψ2(x), ..., λtnψn(x)], (7)

where λi are eigenvalues and ψi are the corresponding right eigenvectors of P [Nadler
et al. 2005]. In this way the diffusion distance between x(i) and x(j) becomes:

Dt(i, j) = (
n∑
k=1

[λ2tk (ψk(i)− ψk(j))2])
1
2 . (8)

By projecting the data to the diffusion space, 1) the sensitivity to noise is minimized
due to the theory of random walk, 2) the effect of scaling parameter σ (if there is any)
is reduced. However, another scaling parameter t is still essential because it controls
the transitive connectivity. Besides, how to tune the value of t is perplexing because
even less clues for tuning it exist than that of σ in the Gaussian kernels. Here we use
experiments to reveal its effect, as shown in Figure 4(a) to 4(d).

In 2009, Richards et al. proposed multiscale diffusion maps (MDM) [Richards et al.
2009], which considers all possible paths between each instance pair across all the
discrete time scales t in the diffusion space. In practice λti in Equation (7) is replaced
by:

∞∑
t=1

λti =
λi

1− λi
. (9)

So the multiscale diffusion maps is defined as:

Ψ(M) : x→ [
λ1

1− λ1
ψ1(x),

λ2
1− λ2

ψ2(x), ...,
λn

1− λn
ψn(x)]. (10)

Multiscale diffusion maps is claimed to be more robust [Richards et al. 2009] by elim-
inating the effect of t. The quantity of MDM involves summing over all paths of all
discrete time scales connecting x(i) to x(j). As a consequence, this projection should be
very robust to noise perturbation in theory, unlike the geodesic distance or Euclidean
distance. From the prospect of machine learning, this observation allows us to con-
clude that this projection is appropriate for designing inference algorithms based on
the majority: it takes into account all the evidences relating x(i) to x(j).

Although diffusion maps [Coifman and Lafon 2006] and multiscale diffusion maps
[Richards et al. 2009] provide more stable descriptions with a strong probabilistic in-
terpretation, and therefore reduce the instability incurred by Gaussian scaling pa-
rameters and noise appearance, they still suffer from the lack of density-awareness as
shown in Figure 4.

2.4. Heat Equation and Heat Kernel
Our proposed Aggregated Heat Kernel (AHK) in Section 3 is strongly inspired by heat
diffusion theory [Hsu 2002] because of its capability to provide intrinsic and robust
similarity measurement that is aware of manifold structure, and other attractive prop-
erties such as symmetric, positive semi-definite, and stable under noise appearance.
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Heat diffusion can be interpreted as the transition density function of Brownian mo-
tion [Sun et al. 2009], a fundamental continuous Markov process in the time domain.
Thereby in practice the heat equation is often coupled with a random walk graph
Laplacian Lrw = I −D−1W , which describes a stochastic process that randomly jumps
from instance to adjacent instance. Heat equation therefore can be defined by:

∂Ht

∂t
= −LrwHt, (11)

where Ht = e−tLrw is the heat kernel on Riemannian manifold M and t is the time
scaling parameter [Grigoryan 1999]. For Lrw = ψ′λψ (ψ and λ are the eigenvectors and
eigenvalues of Lrw), the heat kernel can be approximated through:

Ht(i, j) =
N∑
k=1

[e−λktψk(i)ψk(j)], (12)

where Ht(i, j) represents the amount of heat being transferred from x(i) to x(j) in
time t given a unit heat source at x(i) in the very beginning (when t = 0). The scaling
parameter t here is used to control the transitive connectivity: a small t can slightly
improve the connectivity of a loosely-connected graph, while a large t makes the graph
even more strongly-connected.

2.5. Other Related Works
Towards robustness, researchers have explored various techniques, including robust
statistics [Black et al. 1998] [Huber and Ronchetti 2009], noise insensitive regres-
sion [Cherkassky and Ma 2005] [Camps-Valls et al. 2006], noise resistant transforma-
tion [Weiss 1993], and noise robust clustering [Dave and Krishnapuram 1997] [Guha
et al. 2000] [Li et al. 2007] . However, robust clustering approaches that are adap-
tive to both parameter tuning and noise sensitivity are rather rare. In fact, as shown
in Figure 1, scaling parameter and noise perturbation are correlated to each other.
Mean shift clustering [Comaniciu and Meer 2002] and noise robust spectral clustering
[Li et al. 2007] also fail in considering these two simultaneously and systematically.
In [Chang and Yeung 2008], M-estimation robust statistics is used in a robust path-
based similarity measurement which requires no local parameters to be set manually,
nonetheless, prior knowledge of data domain is required, which is not our research
target in this paper.

Towards density-driven clustering, some non-spectral clustering algorithms such as
DBSCAN [Ester et al. 1996] [Tran et al. 2013] and OPTICS [Ankerst et al. 1999] start
from the estimated density distributions of corresponding nodes. Some researches ap-
proached density through updating similarity information, such as shared nearest
neighbors (SNN) [Jarvis and Patrick 1973] and [Guha et al. 2000]. The similarity be-
tween two points is confirmed by their shared (or common) nearest neighbors. Later
some advanced techniques [Ertoz et al. 2002] [Steinbach et al. 2003] based on SNN
have also been proposed. But their performance suffer significantly from the curse of
dimensionality and the sensitivity of neighborhood scaling parameters [Ertoz et al.
2002], since their metrics are usually based on Euclidean space. Moreover they cannot
cluster datasets well when the density distributions vary significantly [Hinneburg and
Keim 1999].

There are some existing graph-based techniques which built upon hierarchical mod-
eling. Chameleon [Karypis et al. 1999] defines affinity from relative inter-connectivity
and closeness which are based on a min-cut bisection of clusters. But its computa-
tion requires a high computational cost. Recently Graph Degree Linkage [Zhang et al.
2012] was designed with easy implementation and high computational efficiency. How-
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ever its performance is very sensitive to the perturbation of similarity result from scal-
ing parameter tuning.

In the next several sections, we propose a new framework that corrects the unde-
sired effects from the aforementioned limitations. It is built upon advanced diffusion
space which is stable to scaling parameter tuning and noise perturbation. Also our
proposed method is aware of local density change across clusters, therefore it behaves
well under non-uniform density distribution. Moreover, compared with the other popu-
lar algorithms, our method is more universally applicable since it can use the Gaussian
kernels, as well as any other kernel to construct affinity matrix.

3. AGGREGATED HEAT KERNEL AND ITS USE IN CLUSTERING
This section proposes a probabilistic clustering method based on heat diffusion the-
ory. The reason we resort to heat diffusion is to minimize the negative influence of
both scaling parameter tuning and noise appearance. Since we concentrate on global
distribution for data clustering, the embedded structure must be invariant to local
perturbation (noise or outliers), and they should be determined only by “visible” neigh-
borhood while avoiding negative effects from changing scaling parameters. The Heat
kernel (HK), as the fundamental solution of heat diffusion, offers a statistical descrip-
tion of random walk, so it can be employed to build a diffusion map. Here we integrate
spectral clustering and the heat diffusion theory together and show that the integrated
approach improves the robustness to both scaling parameter tuning and noise appear-
ance.

3.1. Aggregated Heat Kernel

(a) σ = 0.15 (b) σ = 0.16 (c) σ = 0.28

Fig. 5. The sensitivity of heat kernel (HK, Equation 12) to time scaling parameter t on Iris dataset clus-
tering (measured by NMI). Experiments in Figure 5(a) to 5(c) are built upon global Gaussian kernel with
different σ. We can see that AHK outperforms HK in most cases and it doesn’t require tuning t. We use the
random walk Laplacian in this experiment.

In this subsection, we describe and analyze the construction of Aggregated Heat
Kernel (AHK). Similar to the conventional heat kernel in Equation 12, AHK is also
built upon the eigen-decomposition of (Laplacian-normalized) affinity matrix W . As
discussed in Section 2.4, a heat kernel (HK) is multiscale. The function Ht(i, ∗) is
mainly determined by the nearby neighborhood of x(i), and this area grows bigger
as t increases. In other words, for a small t, Ht(i, ∗) only represents local properties
of the area around x(i), but a large t can capture the properties from a larger area or
even the entire data space. Yet this additional degree of freedom makes it difficult to
determine the value of t (Figure 5) because we have little clue about how to find the
best t value, which is similar to the time scaling parameter in diffusion maps and the
scaling parameter σ in Gaussian kernels. In other words, the clustering result become
sensitive to the time parameter selection in heat kernel.
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We propose a robust kernel function by integrating the entire continuous time scale
on heat kernel, and name it as Aggregated Heat Kernel (AHK):

H(i, j) =

∫ ∞
0

Ht(i, j)dt =
n∑
k=1

[
1

λi
ψk(i)ψk(j)]. (13)

Specifically, the derivation of this function can be explained in the form of Laplace
transform [Arendt 2011]:

F (s) =

∫ ∞
0

e−stf(t)dt, (14)

where parameter s is a complex number and f(t) is “degeneralized” to a constant func-
tion one. Here the Laplace transform is interpreted as a transformation from the time
domain, in which inputs and outputs are functions of time (t), to the frequency do-
main, where the inputs and outputs are the functions of frequency (λ). Therefore this
transform provides an alternative functional description that simplifies the process
of analyzing the heat system behavior, and synthesizes a new comprehensive system
with a set of properties inherited from the original heat kernel:

— Symmetric: H(i, j) = H(j, i).
— Semigroup identity: H(i, j) =

∫
M
H(i, k)H(j, k)dk.

— Positive semi-definite:
∑
p,qH(i, j)cpcq ≥ 0, where c1, c2, ..., cn are real numbers.

With the pure and applied probability term, AHK can be explained as an expected
value of heat kernel. If we interpret t as a random variable with the probability density
function F , then AHK, or the Laplace transform of f is given by the expectation:

LF (λ) = E[e−λt]. (15)

So AHK, to some degree, is a weighted average of all possible heat diffusion processes
across the entire continuous time-domain.

The definition of AHK can also be elucidated by Fredholm theory [Driver 2003], a
theory of integral equations, where the actual function space is determined by the
eigenfunctions of the differential operator; that is, by the solutions to Lψ(i) = λψ(i).
The set of eigenvectors ψ here spans a Hilbert space since there is a natural inner
product. Therefore the kernel H(i, j) is a realization of the Fredholm operator or the
Fredholm kernel. It follows from the completeness of the basis of the Hilbert space,
namely, that one has:

δ(x(i)− x(j)) =
∑
k

[ψk(i)ψk(j)], (16)

where δ(x) is the Dirac delta function (a generalized function defined in the real space
R, such that its value is zero everywhere except at origin 0) since the eigenvectors ψ
associated with L are assumed to be complete and orthogonal to each other.

From Figure 5 we observe that in the original heat kernel (HK) the time scaling
parameter t is also correlated with Gaussian scaling parameter σ, and t needs to be
tuned carefully. Moreover, Figure 5 shows that AHK performs better than the original
HK on almost all times t regardless the value of σ. Comparatively, AHK is capable of
providing more comprehensive and stable probabilistic affinity information.

By the definition of heat diffusion, AHK is naturally associated with the random
walk normalization, Lrw, but we could also generalize AHK on other Laplacians such
asHsym on symmetric Lsym orHnn on unnormalized Lnn. In Section 3.3 we will analyze
the best Laplacian for constructing AHK.
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3.2. Connections to AHK
In this subsection we build theoretical connections from AHK to the other existing
popular techniques.

Inverse Laplacian. AHK can be viewed as a pseudo inverse or Moor-Penrose in-
verse [Gutman and Xiao 2004]. By doing so, we achieve multiscale heat diffusion. In-
stead of doing pseudo inverse, we could directly inverse graph Laplacian matrix [Li
et al. 2007] as:

(I + βLsym)−1, (17)

where β is the positive regularization parameter and I allows us to invert Laplacian
matrix always. Note that, [Li et al. 2007] used this direct inversion to design noise
robust spectral clustering.

Commute Distance. Commute distance C(i, j) between x(i) and x(j) is defined by
the expected random walk round trip travel time. AHK is also known as Green’s func-
tion [Qiu and Hancock 2007], which is closely related to the commute distance (CD) or
resistance distance. The Green’s function is a left inverse operator of Laplace operator,
Hrw · Lrw = I. For Hnn constructed on unnormalized Lnn, commute distance can be
reformulated as:

C(i, j) = vol(Hnn(i, i) +Hnn(j, j)− 2Hnn(i, j)), (18)

where vol =
∑n
i=1D(i, i). Just like AHK, commute distance also considers all possi-

ble length, paths and their weights, which is more robust than the shortest path or
geodesic distance. Note that, commute distance can also be expressed by the random
walk Lrw or symmetric graph Laplacian Lsym [Qiu and Hancock 2007].

Diffusion Distance. Commute distance is also related to diffusion distance. By in-
tegrating Equation (13) into the above equation, we get:

C(i, j) = vol
n∑
k=2

[(1/λk)(ψk(i)− ψk(j))2], (19)

and also multiscale diffusion distance can be defined by:
∞∑
t=1

D2
t (i, j) =

n∑
k=1

[1/(1− λ2k)(ψk(i)− ψk(j))2]. (20)

Both commute distance and diffusion distance look similar but they have different
eigenvalue weighting and different Laplacian normalization.

Diffusion distance [Richards et al. 2009] can also be represented by 1/λi, which
shares the same weighting with H but it is for distance weighting. If the time summa-
tion starts from t = 1, then it is exactly the same as the multiscale diffusion distance
(MDM) of Equation (9). Both of eigenvalue weighting (starting from t = 0 or t = 1) will
show quite similar weighting distribution anyway for 0.5 ≤ λ ≤ 2, which is common for
most of the graph Laplacians.

Laplace Transform and Fourier Transform. As previously analyzed, AHK can
be explained as a degeneralized form of Laplace transform [Arendt 2011]. Laplace
transform is related to Fourier transform, but whereas the Fourier transform ex-
presses a function or signal as a series of modes of vibration (frequencies), the Laplace
transform resolves a function into its moments. Like the Fourier transform, in our
derivation of AHK, the Laplace transform is used for solving differential and inte-
gral equations. But the equivalence relation between Laplace Transform and Fourier
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Fig. 6. Different ways of manifold reconstruction on 20ngB dataset.

Transform is not valid in our AHK derivation because the region of convergence (ROC)
of F (s) in Equation 14 contains no imaginary component.

3.3. Different Laplacians and Their Comparison
Even though we made proper connections among relative approaches, most of them
used different Laplacians without thorough evaluation. Therefore it is not yet clear
what is the best graph Laplacian for our proposed H. It is shown in [Lafon et al. 2006]
that if we assume uniform sampling of data points from a sub-manifoldM, the eigen-
vectors of Lrw with σ → 0 and n → ∞ tend to approximate Laplace-Beltrami operator
on M, which guarantees manifold reconstruction. However, in reality, the sampling
rate of data points tends to be non-uniform and it shows skewed density distributions,
resulting in a manifold reconstruction with a poor quality in AHK. The following two
additional normalizations are used to improve the density awareness of Laplacians:

W (κ) = D−κWD−κ, (21)

L(κ) = I −D(κ)−1W (κ), (22)
where κ is a normalization factor and D(κ) is the diagonal matrix with the sum of W (κ)

row weight.
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— If κ = 0, L(0) = Lrw which is exactly the random walk (RW) Laplacians.
— If κ = 1/2, then it is called Fokker-Planck (FP) diffusion.
— If κ = 1, it is called Laplace-Beltrami Normalization (LBN).

The relations among the three normalizations are well described in [Coifman and La-
fon 2006]. Depending on κ, LBN can also be reduced to the random walk normaliza-
tion or Fokker-Planck diffusion. In particular, we focus on LBN because it removes the
negative influence of the dataset density and recovers manifold structures onM with
the condition of σ → 0 and n → ∞ [Coifman and Lafon 2006]. In other words, the
additional re-normalization of affinity matrix W enables us to reconstruct manifold
structures under non-uniform density distribution. Another advantage of LBN is that
the consequent clustering results can be less sensitive to noise and scaling parameter
tuning.

Figure 6 shows the effects of different approaches and Laplacians on 20 newsgroup
text data (20ngB) (see Section 6 for more details). True inversion (Figure 6(a)) and
commute distance (Figure 6(b)) show the worst results in separating three topics. Al-
though they share the same Laplacian matrix inversion, the results are quite different.
Interestingly multiscale diffusion map (MDM, Figure 6(c)) shows the best separation
among all the non-AHK approaches. In the case of AHK, most of Laplacian approaches
(except unnormalized Laplacian) reconstruct the topic distribution as a sphere shape.
AHK with unnormalized Laplacian (Figure 6(d)) appears to have the ability of sepa-
ration but the distance among documents are very close to each other compared with
other Laplacians. Symmetric Laplacian (Figure 6(e)) shows very good separation and
sphere shape reconstruction but it is not anisotropic transition. The original random
walk (RW) normalization (Figure 6(f)) shows the most mixture of three topics but once
we add the additional normalization of Equation (21), we reconstruct better manifold
structures. LBN shows the best coherent and condensed structure (Figure 6(h)) among
all different Laplacians. For our future experiments we mainly focus on LBN, but we
provide further and more detailed analysis regarding different approaches with differ-
ent Laplacians in Section 6.

3.4. Combination of AHK and LBN and Discussion
After investigating the nice properties of AHK and LBN, we now present our robust
spectral clustering algorithm that combines these two techniques, and thereby is less
sensitive to the scaling parameter selection and noise appearance. For the notational
simplicity, we call the integrated algorithm as the AHK Clustering, or AHK directly.
Let X be the input dataset of size n ×m, where n is the number of data points and m
is the number of dimensions (features), our algorithm is detailed in Algorithm 2.

Algorithm 2 undergoes two times of data warping: In Step 1, the original affinity
matrix W is constructed using a similarity kernel as appropriate (please refer to Sec-
tion 2.2 for the kernel selection) according to the specific data characteristics. Then we
use LBN as Laplacian normalization on W (Step 2 and 3, check Section 3.3 for more
details) and utilize the derived eigendecomposition to construct AHK (Step 4 and 5,
check Section 3.1 for more details). After that it comes to the second data warping by
extracting the first c nontrivial eigenvectors from the AHK affinity matrix (Step 6). Fi-
nally we perform k-means on the normalized eigenvectors and label the projected data
points. The smoothing parameter γ in Step 5 is added to avoid the eigenvalue λ from
being to small and thereby stabilize the AHK affinity matrix computation. In practice
we set γ = 0.001 by default.

Regarding the computational complexity, eigenvalue decomposition is the most time
consuming step and dominates the computation. There are many iterative methods
to conduct eigenvalue decomposition (e.g., power iteration [Badeau et al. 2005]), but
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ALGORITHM 2: AHKClustering(X,c,γ)
Input: X ∈ Rn×m where n is #instances, m is #features, c is #clusters, and γ is an eigenvalue

smoothing parameter.
Output: Cluster assignments of n instances.

1 Construct the affinity matrix W ∈ Rn×n;
2 Compute the diagonal matrix D ∈ Rn×n where D(i, i) =

∑n
j=1W (i, j) and D(i, j) = 0 if i 6= j ;

3 Apply Laplace-Beltrami Normalization Llbn using Equation 21 and 22 with κ = 1 ;
4 Extract generalized eigenvectors ψ(i) and corresponding eigenvalues λi, i = 1, 2, ..., n ;
5 Construct Hlbn matrix with ψ(i) and λi using H(i, j) =

∑n
k=1[

1
λi+γ

ψk(i)ψk(j)] ;
6 Extract the first c nontrivial eigenvectors ψ′ of Hlbn, ψ′ = {ψ′1, ψ′2, . . . , ψ′c} ;
7 Re-normalize the rows of ψ′ ∈ Rn×c into Yi(j) = ψ′i(j)/(

∑
l ψ
′
i(l)

2)1/2 ;
8 Run k-means with c and Y ∈ Rn×c.

in general finding the eigenvalues reduces to matrix multiplications by computing a
symbolic determinant, in which the running time is O(n3 + n2log2n) [Pan and Chen
1999].

It is worth to notice that AHK has the following significant benefits: 1) It is a
stronger form of random walk process by taking all possible paths in entire contin-
uous time scales into consideration, therefore it is more robust and less sensitive to
noise or artifacts than other regular kernels. 2) To mitigate the biased contribution of
the denominator from some extremely small eigenvalues λ, AHK introduces a smooth-
ing term γ to make computation more stable. 3) To relieve the bias to non-uniform
density distribution, AHK employs Laplace-Beltrami normalization (LBN) which can
recover the Riemannian manifold under skewed density distribution. In other words,
AHK enables better and more stable manifold reconstruction, especially under noise,
parameter disturbance, and non-uniform density distribution. Therefore in theory it
guarantees the strong adjacency (similarity) among intra-cluster instances even un-
der suboptimal conditions. In the next section, we introduce an affinity transformation
to give the clustering algorithm a better insight into the separation between adja-
cent/overlapping clusters with different density distributions.

4. LOCAL DENSITY AFFINITY TRANSFORMATION (LDAT)
As we discussed in Section 2.2, there are numerous similarity measurements rang-
ing from network connectivity to Gaussian kernels. Unfortunately, few existing ap-
proaches took local density into consideration. Some exceptions, such as [Zhang et al.
2011] [Yang et al. 2011] are based on simple approximations of local density that fail
to provide the stability against neighborhood perturbation.

In this section we propose a Local Density Affinity Transformation (LDAT) with the
following attractive properties: 1) It reveals local density differences for the purpose of
correcting density bias; 2) It can be applied on any similarity kernel; 3) It works quite
stably with a solid probabilistic interpretation.

Stage 1 (Step 2 in Algorithm 3). In our research we measure the local density on
affinity matrix with a positive random walk normalization as our first step. It provides
both probabilistic and local density information by involving degree or volume of each
instance, and brings the advantage from the difference between P (i, j) and P (j, i):

P (i, j) =
W (i, j)∑
kW (i, k)

, (23)

where P (i, j) is the transition probability from x(i) to x(j) and
∑
kW (i, k) is the local

volume of x(i) if we quantify k in a certain neighborhood (W (i, k) is non-zero if x(k)
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Fig. 7. 2D Eigenspace derived from the (transformed) affinity matrix of the previous synthetic example
(Figure 7(a)), with only the first two non-trivial eigenvectors being plotted. Here we only focus on the relative
distances. The eigenspace derived from Gaussian similarity (GAU) is shown in Figure 7(b), while the one
from shared nearest neighbors (SNN) on GAU is shown in Figure 7(c). The relative density between blue
and green cluster doesn’t change much since the projection has no probabilistic transition. Figure 7(d) to
7(f) show the effect of the three steps in our proposed LDAT built GAU. The blue cluster becomes denser
after probabilistic transition. Our proposed AHK in Figure 7(g) makes the inner-cluster points even more
condense. The combination of AHK+LDAT in Figure 7(h) draws the red point into the green cluster.

is inside x(i)’s k-nn neighborhood). It means that we only maintain the connections
within the k nearest neighborhood (k-nn) and remove other distant affinity informa-
tion. If W faithfully describes the real affinity information,

∑
kW (i, k), as local volume

of x(i), is a simple and effective approximation of x(i)’s local density. Intuitively, the
larger the local volume is, the denser x(i)’s local neighborhood is. In general, P (i, j) is
different from P (j, i) if the local density distribution between instances x(i) and x(j) is
different. Intuitive speaking, if the manifold structure and associated data points can
be properly recovered by the positive random walk normalized affinity matrix, a data
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Fig. 8. RWC+LDAT performance on the dataset of Figure 2(a) with reduction factor α ∈ [0, 2] in Equation
24.

point set with high density before normalization would become even more condense
(comparatively) afterward, which can be observed from the blue cluster Figure 7(d).

Stage 2 (Step 3 in Algorithm 3). Ideally, the transition probability between two
points within the same cluster should be larger than two boundary points across two
(neighboring) clusters with different densities. The difference between the transition
probability must be captured in order to accurately separate different clusters. For
example in Figure 3, there should be P (a, d) ' P (d, a) � P (a, b), and P (a, b) � P (b, a)
if we consider the local volume difference. In other words, as far as point a is concerned,
its affinity to b is relatively smaller compared with its affinity to any other point in the
blue cluster. We call the difference between P (i, j) and P (j, i) local density bias.

Our goal is to fix this local density bias by making point b in Figure 3 to be further
away from point a than from any point in the green cluster, and thereby assimilate b
into the green cluster. We achieve this goal by reducing P (i, j) (if P (i, j) > P (j, i)) :

P(i, j) = max[P (i, j)− α(P (i, j)− P (j, i)), 0], if P (i, j) > P (j, i), (24)

where α ∈ [0, inf] is used to control how much reduction is applied to P(i, j). When α =
0, P(i, j) is the same as a positive random walk normalization P (i, j). When α > 0, the
local density bias is taken into account. When α = 1, P(i, j) = P (j, i), which translates
into P(b, a) = P (a, b) < P(b, c) in Figure 3, so that point b can be classified into the
green cluster.

Because our goal is to rectify the local density bias, α = 1 is a simple and natural
choice and our experiments on Figure 2(a) dataset also confirmed that when α = 1,
it shows the best performance, as shown in Figure 8. Therefore, Equation 24 can be
simplified as:

P(i, j) = min(P (i, j), P (j, i)). (25)

Although this step looks simple, it actually contributes a lot on classifying the bound-
ary points by “assimilating” them to the point set with similar density. Figure 7(e)
shows the effect of Equation 25, where the relative distance between the red point and
green cluster become shorter compared with Figure 7(d). From the perspective of any
blue point, the red one is farther away than the blue species. Intuitively, even though
the red point may initially treat blue points as closer neighbors than the green points,
the blue points will “push” it away.

Stage 3 (Step 4 in Algorithm 3). After applying Equation 25, we employ another
positive random walk normalization, which again endows our method with a proba-
bilistic interpretation. Figure 7(f) shows the effect of this second normalization on top
of Figure 7(e): the red point is still far away from blue cluster and close to green cluster.
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We term the whole process of this affinity transformation as Local Density Affinity
Transformation (LDAT). The entire procedure is documented in Algorithm 3.

ALGORITHM 3: LDAT(W , k)
Input: Input affinity matrix W ∈ Rn×n where n is #instances, and k is the neighborhood size.
Output: LDAT affinity matrix W (LDAT).

1 For each instances, only keep the k-nn affinity information and set all the other as zero in W ;
2 Apply a positive random walk normalization P on W (Equation 23) ;
3 Construct the reduced P (Equation 25) ;
4 Employ another positive random walk normalization W (LDAT) on the reduced P.

Superficially speaking, LDAT is similar to SNN (shared nearest neighbors [Jarvis
and Patrick 1973] [Ertoz et al. 2002] [Steinbach et al. 2003]) except for the first random
walk normalization in Algorithm 3. But in fact this step is of great importance. If there
is no random walk normalization before Equation 25, most part of the matrix is still
symmetric (considering k is not very small in step 1). In this case Equation 25 would
not have real impact on the final performance, as shown in the comparison between
Figure 7(b) and 7(c). However in our proposed LDAT, the first random walk normaliza-
tion between step 1 and step 3 delivers awareness of density difference. Therefore the
subsequent reduced P is capable to correct the bias originating from different cluster
densities. Another positive side-effect of the first random walk normalization in LDAT
is that it supplies stability with different setting of k, while SNN suffers a lot from
such perturbation (Figure 14 in Section 6).

We now analyze the effect of LDAT in theory, which is closely connected to NCut
(normalized cut). Suppose there are only two point sets X and Y in the entire dataset
V where V = X ∪ Y , the corresponding NCut is defined as follows [Luxburg 2007]:

NCut(X,Y ) =
C(X,Y )

assoc(X,V )
+

C(Y,X)

assoc(Y, V )
, (26)

where C(X,Y ) =
∑
i∈X,j∈Y Wij , and assoc(X,V ) =

∑
i∈X,j∈V Wij . If we restraint the

connections of each node in k-nn neighborhood, Equation 26 can be rewritten as:

NCut(X,Y ) =
C(X,Y )

v(X)
+
C(Y,X)

v(Y )
= P (X|Y ) + P (Y |X), (27)

where v(X) is the summation of volume of all the instances in X, and P (X|Y ) is the
transition probability from any instance in cluster Y to any instance in cluster X. The
minimization of NCut actually seeks a cut through the graph such that a random walk
seldom transitions from X into Y or vice versa. However NCut has strong density bias
when dealing with datasets with heterogeneous density distributions, which can be
proven as follows.

PROPOSITION 1. Let graph G be k-nn connected and non bi-partite. And the affinity
have been normalized by the positive random walk Laplacian. For two overlapping sets
A,B ⊂ V and A ∪ B = V , given that A is denser than B, but intra-cluster density is
uniform and the number of nodes are very similar. NCut may fail to provide the best
cut due to the local density bias.

Proof: As shown in Figure 9(a), define O as the overlapping area, A′′ as the area
inside A that is close to O, and B′′ as the area inside B that is close to O. Assume
that under certain k-nn constraint, connections only exist between two adjacent area.
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(a) (b)

Fig. 9. In Figure 9(a), A and B are two overlapping subsets and A is denser than B. O is the overlapping
part and apparently has the highest density. Suppose there is only one cut, L3 would be the best choice
to maintain uniform inner-cluster density distribution. Traditional NCut fails to cut along L3 as proven
in Proposition 1. But LDAT can correct the density bias of NCut and cut along L3, which is proven in
Proposition 2. Figure 9(b) shows the connections in the boundary area between two adjacent sets X and Y.
The average density of X and Y are p and r respectively. The density of boundary area is q. The change of
connection weight before and after LDAT is analyzed in the proof of Proposition 1 and 2.

In other words, there is no connection between A′ and O, A′′ and B′′, and B′ and O.
Apparently the overlapping area O has the highest density.

Now let’s firstly “zoom-in” to analyze the cutting area. Suppose a cut separate V into
two adjacent sets X and Y , where X ∪ Y = V and X ∩ Y = Ø. Apparently there is:

v(V ) = v(X) + v(Y ), (28)

and since the affinity has been normalized by positive random walk normalization,
there is:

v(X) = |X|, (29)

where |X| is the number of instance in X. Suppose |X| ∼ |Y | ∼ T , there are:

NCut(X,Y ) =
C(X,Y )

v(X)
+
C(Y,X)

v(Y )

=
1

T
(C(X,Y ) + C(Y,X)).

(30)

Now we only focus on the value of C(X,Y ) + C(Y,X) under different density distri-
butions. Figure 9(b) shows the connection between X and Y . We suppose the simplest
2-nn neighborhood and the average density of X and Y are p and r respectively. The
average density of the boundary area is q. Xb are the points in the boundary area
of X close to Y , similarly Yb are the points in the boundary area of Y close to X.
Xc and Yc are the other points inside X and Y . There is C(X,Y ) = C(Xb, Yb) and
C(Y,X) = C(Yb, Xb). We can assume C(Yb, Xb) = qη/(q + r) and C(Yb, Yc) = rη/(q + r),
and C(Xb, Yb) = qη/(p + q) and C(Xb, Xc) = pη/(p + q), where η is a connection factor.
C(X,Y ) + C(Y,X) will change under different density distributions.

(1) If p ∼ r, q would also have similar value. Then C(Xb, Yb) + C(Yb, Xb) = η;
(2) Suppose p < r, then we have p < q < r (since X ∩ Y = Ø). There is:

C(Xb, Yb) + C(Yb, Xb) =
qη

q + r
+

qη

p+ q
=

(2q2 + pq + qr)η

q2 + pq + qr + pr
. (31)

If q2 > pr, there is C(Xb, Yb) + C(Yb, Xb) > η.

In short, if |X| is similar to |Y |, the value of Equation 30 is dominated by C(Xb, Yb)+
C(Yb, Xb). And the minimization of conventional NCut makes it less likely to cut along
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Fig. 10. Special case: A and B are two adjacent but non-overlapping subsets and A is denser than B. In
order to maintain uniform inner-cluster density distribution, L3 is the best cut. Traditional NCut fails to
cut along L3 as proven in Proposition 1. But LDAT can correct the density bias of NCut and cut along L3.
The effect of LDAT is proven in Proposition 2.

the boundary where q2 > pr. Since NCut value under the condition of p� r or p� r is
very possible to be greater than that under p ∼ r, NCut is less likely to cut along L3,
since the two sides have the most different density distribution.

A special case is that A and B are adjacent (A is much more denser than B) but
there is (almost) no overlapping area, as shown in Figure 10. We make the similar
assumption that under certain k-nn constraint, connections only exist between two
adjacent area. In other words, there is no connection between A′ and B′′, and A′′ and
B′. The same deduction of Equation 30 and analysis still holds as in the general case in
Figure 9(a). Since density on the two sides of L3 changes a lot, the conventional NCut
tends to cut along L1 or L2 rather than L3. 2

PROPOSITION 2. LDAT alleviates the density bias of NCut through lowering the
NCut value.

Proof: To prove LDAT alleviates the density bias under different density distribu-
tion, we suppose p < r. In Figure 9(b) (after random walk normalization), C(Yb, Xb) <
C(Xb, Yb). Step 3 in Algorithm 3 makes C(Xb, Yb) ← C(Yb, Xb) = qη/(q + r). After the
second random walk normalization (Step 4), there is:

C(Xb, Yb) + C(Yb, Xb) =
qη/(q + r)

p/(p+ q) + q/(q + r)
+

qη

q + r

<
qη/(q + r)

p/(q + r) + q/(q + r)
+

qη

q + r
=

qη

p+ q
+

qη

q + r
,

(32)

therefore LDAT lowers the NCut value compared with Equation 31. Furthermore,

C(Xb, Yb) + C(Yb, Xb) =
qη/(q + r)

p/(p+ q) + q/(q + r)
+

qη

q + r

=
(2pq2 + q3 + pqr + rq2)η + (pq2 + q3)η

(2pq2 + q3 + pqr + rq2) + (pqr + pr2)
,

(33)

and we have
(pq2 + q3)η

pqr + pr2
=

(pq2 + q3)η/(pq)

(pqr + pr2)/(pq)
=

(q + q2/p)η

r + r2/q
. (34)
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Suppose q = βp and r = (β +4)p, where β > 1 and 4 > 0, the condition that makes
Equation 33 smaller than η is

q + q2/p

r + r2/q
=

βp+ β2p2/p

(β +4)p+ (β +4)2p2/(βp)
=

β + β2

(β +4) + (β +4)2/β
< 1

⇒ 4
2

β
+ 34− (β2 − β) > 0

⇒4 >
(
√

9 + 4(β − 1)− 3)β

2
.

(35)

(1) On the one hand, from the proof of Proposition 1 we know that traditional NCut
doesn’t cut along L3 when q2 > qr. This condition can be also represented as:

β2 > β +4. (36)

Assume that both Equation 35 and 36 holds, we have:

β2 − β > 4 >
(
√

9 + 4(β − 1)− 3)β

2

⇒ β − 1 >

√
9 + 4(β − 1)− 3

2
⇒ β > 1,

(37)

which always holds according to p < r.
(2) On the other hand, traditional NCut cuts along L3 when q2 < qr. This condition can

be also represented as:
β2 < β +4⇒ 4 > β2 − β. (38)

We also have the condition 4 > β2 − β > (
√

9+4(β−1)−3)β
2 holds.

Therefore, after LDAT the value of NCut becomes smaller than η where exists density
difference. The effect of LDAT is not so obvious inside each cluster of the area with
similar density. However, if p << r, C(Xb, Yb) + C(Yb, Xb) becomes much smaller than
that in the uniform distribution. In short, if |X| ∼ |Y |, after LDAT C(Xb, Yb)+C(Yb, Xb)
between areas with the most different density carries the smallest value. So in Figure
9(a) it leads to the cutting line to be much closer to L3. It means that LDAT alleviates
the density bias of NCut. In the special case of Figure 10, the cutting line with the
most different density distribution on the two sides is L3, therefore after LDAT, NCut
also tends to cut along L3 other than L1 and L2. 2

In Figure 11 the positive effect of LDAT is quite evident when applied to the con-
ventional spectral algorithms (RWC). Compared with the simple RWC result in Figure
2(c), RWC+LDAT boosted performance more than 25% (Figure 11(b)), which will be fur-
ther verified in Section 6. Note that since LDAT is an straightforward transformation
of affinity matrix, it can work well with any type of similarity kernels, which gives rise
to a novel feature compared with other methods only rely on Euclidean space [Zhang
et al. 2011] [Yang et al. 2011] [Correa and Lindstrom 2012].

However, LDAT has a strong assumption that the affinity matrix W contains suffi-
cient and accurate neighborhood information. Although this requirement can be easily
satisfied for those small and simple datasets, it becomes quite challenging when the
datasets are large and complex (with high-dimensions). Especially if we only keep k-nn
neighborhood for each instance, the constrained information will be highly vulnerable
to the change of k given only simple kernel function like Gaussian kernel (see blue
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(a) RWC+SNN (W (GLS) with
σ(G) = 2),
NMI = 0.6686
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(b) RWC+LDAT (W (GLS)

with σ(G) = 2),
NMI = 0.7555
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(c) AHK+LDAT (W (GLS)

with σ(G) = 2),
NMI=0.8097

Fig. 11. Figure 11(a) and 11(b) show the effect of shared nearest neighbor (SNN) and our proposed LDAT,
both built upon W (GLS) and a positive random walk normalization (RWC). It demonstrates LDAT’s ad-
vantage of better recognizing density differences among clusters than SNN and other algorithms shown in
Figure 2 and 4. The LDAT built upon AHK, shown in 11(c), has the best NMI result through being aware of
both density and manifold structures.

Fig. 12. LDAT performance on the dataset in Figure 2(a) with different neighborhood size k. k is set as the
percentage of n/c (n is #instances and c is #clusters). AHK+LDAT has better and more stable performance
than RWC+LDAT as k changes.

curve in Figure 12). In our research we perform LDAT on top of AHK, in order to
reflect both manifold-aware and density-aware structure. In the next section we will
describe and further analyze the combined framework.

5. THE COMPLETE PROPOSED FRAMEWORK
We have introduced a robust heat-diffusion-based kernel (AHK, Section 3) and a local-
density-bias-corrected affinity transformation (LDAT, Section 4). We now incorporate
these two techniques into a systematical framework to provide a more effective and
powerful clustering algorithm, as documented in Algorithm 4.

Here AHK stably provides sufficient and accurate affinity information of the high-
dimensional datasets with complex distribution. Therefore AHK supplies a sturdy
platform for the subsequent LDAT. LDAT is also extremely crucial, due to its nice prop-
erties of precisely considering the local density and cleanly separating the boundary
instances between clusters with diverse densities. It makes corrections and improve-
ments to the traditional NCut-based spectral clustering. By systematically integrating
AHK and LDAT, we set up a robust manifold-and-density-aware clustering algorithm.
Its running time is O(n3 + n2log2n) when the eigen-decomposition method [Pan and
Chen 1999] is used.

Although AHK is quite effective in recognizing manifolds even under skewed condi-
tions, it has a negative side-effect of getting over-connection due to the natural prop-
erties of random walk. This side-effect might lead to an undesirable uniform affinity
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ALGORITHM 4: AHK+LDAT-Clustering(X, c, k)
Input: Input data X ∈ Rn×m where n is #instances and m is #features, c is #clusters, and k

is the neighborhood size.
Output: Cluster assignments of n instances.

1 Construct the AHK affinity matrix Hlbn as in Algorithm 2;
2 Set the diagonal of Hlbn to be zero to avoid over-diffusion ;
3 Only keep the k-nn affinity information for each instances ;
4 Transform the Hlbn using LDAT as in Algorithm 3 ;
5 Compute the first c eigenvectors ψ, ψ = {ψ1, ψ2, . . . , ψc} ;
6 Extract the first c nontrivial eigenvectors ψ, ψ = {ψ1, ψ2, . . . , ψc} ;
7 Re-normalize the rows of ψ ∈ Rn×c into Yi(j) = ψi(j)/(

∑
l ψi(l)

2)1/2 ;
8 Run k-means with c and Y ∈ Rn×c.

since an infinite number of pathes between any two instances tend to draw them de-
ceivably close to each other without proper control. To mitigate this problem, we only
use the off-diagonal terms while ignoring the diagonal term of AHK (Step 2 of Algo-
rithm 4). It avoids the infinite diffusion getting lost on those instances with a lot of
connections, as their degrees are enormous [Luxburg et al. 2010].

In order to show the positive effect of AHK and LDAT respectively, we perform case
study separately.

(1) First of all, AHK helps to improve the manifold reconstruction quality of LDAT.
Compared with RWC+LDAT, we test AHK+LDAT on the synthetic example of Fig-
ure 2(a), the result is shown in Figure 11(c). It can be observed that AHK can di-
rectly helps the subsequent LDAT to gain more cluster-aware separation (by clearly
separating the blue and green clusters from the red one), and obtain 7%+ per-
formance increment compared with RWC+LDAT. Moreover, AHK+LDAT demon-
strates more stable performance than RWC+LDAT as the neighborhood size k
changes, which is shown in Figure 12.

(2) Secondly, to confirm AHK+LDAT’s superiority on AHK alone, we test AHK+LDAT
on the 20ngB dataset and Figure 6(i) shows the corresponding manifold reconstruc-
tion. Clearly LDAT helps to make the intra-cluster instances more condense to their
cluster center. It boost the performance more than 7% compared with AHK alone.

Supplementary experiments on real benchmark datasets will be presented in Section
6 to further support the above discovery.

6. EXPERIMENTAL RESULTS AND QUANTITATIVE ANALYSIS
In this section we analyze and verify our proposed AHK, LDAT, and the combination
of AHK+LDAT in terms of clustering effectiveness and robustness.

6.1. Experimental Setup
Datasets. We verify the effectiveness of our proposed methods by evaluating on eigh-
teen benchmark datasets (Table I) with three types of affinity constructions. Gaussian
kernel is used for the first seven datasets from UCI. Network connectivity with undi-
rected edges (all weighted as 1) are applied to the next five datasets ranging from
political blogs to scientific paper citation domains. The last six text datasets use cosine
similarity: the first three are the subsets of 20 Newsgroup [Joachims 1996] and the last
three are the subsets of RVC1 [Lewis et al. 2004]. To reduce sampling bias, we ran-
domly samples from different clusters to make each (sub)datasets 20 times, and record
the average clustering performances. 20ngA contains 200 documents from misc.forsale
and soc.religion.christian. 20ngB adds 200 documents from talk.politics.guns to 20ngA.
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Table I. Statistics of our evaluation datasets.

Data Set # inst. # attr. # clus.
1 Wine 178 13 3
2 Glass 214 9 6
3 Vehicle 846 18 4
4 Vowel 990 11 11
5 Yeast 1484 8 10
6 Images 2100 19 7
7 Pendigits 3498 16 10
8 Polbooks 105 105 3
9 UMBC 404 404 2

10 MSP 1067 1067 2
11 Citeseer 2114 2114 6
12 Cora 2485 2485 7
13 20ngA 400 400 2
14 20ngB 600 600 3
15 20ngC 800 800 4
16 RCV1-2 1600 29992 2
17 RCV1-3 2400 29992 3
18 RCV1-4 3200 29992 4

20ngC adds 200 documents from rec.sport.baseball to 20ngB. RCV1-2 contains 1600
documents, among them 800 from C15 and another 800 from ECAT. We add 800 docu-
ments from GCAT to RCV1-2 to create RCV1-3. RCV1-4 has 800 more documents from
MCAT upon RCV1-3.

Baselines. Eight popularly used clustering algorithms are chosen for comparison:
symmetric normalized spectral clustering (NJW) [Ng et al. 2002] and random walk
spectral clustering (RWC) [Meila and Shi 2001] are chosen since they are the classic
spectral clustering algorithms. RWC+SNN is RWC algorithm built upon shared near-
est neighbors (SNN) [Jarvis and Patrick 1973] [Ertoz et al. 2002] to update similarity.
Additionally, we choose Graph Degree Linkage (GDL) [Zhang et al. 2012] as the rep-
resentative of recent graph-based methods with agglomerative (or hierarchical) mod-
eling. Density-based spatial clustering of applications with noise (DBSCAN) [Ester
et al. 1996] [Tran et al. 2013] is a density-driven clustering algorithm because it finds
a number of clusters starting from the estimated density distribution of correspond-
ing instances. Self-Tuning (ST) spectral clustering [Zelnik-Manor and Perona 2004]
and local density adaptive similarity clustering (SCDA) [Zhang et al. 2011] are two
locally adaptive clustering methods which adjust classification according to different
neighborhood density measurements. We also select the k-nn Diffusion Maps cluster-
ing (kDM) [Coifman and Lafon 2006] as another candidate since it is a diffusion-based
algorithm with robustness on noise perturbation.

Evaluation Metrics. We use normalized mutual information (NMI) [Strehl and
Ghosh 2003] as the evaluation metric due to its popularity and its information-
theoretical interpretation. Suppose S ∈ Rn×1 is the result label vector for all data
instances generated by one particular clustering algorithm and T ∈ Rn×1 is the true
label vector. The NMI score is calculated as follows:

NMI(S, T ) =
I(S;T )√

H(S)×H(T )
, (39)

whereH(S) andH(T ) are the entropies, and I(S;T ) is the mutual information between
S and T . The NMI score is normalized by their entropies and it ranges from zero to
one where the larger score indicates the better clustering result.

Parameter Settings. As most of the spectral clustering algorithms assume that the
number of clusters c is known a priori, so do our algorithms. Our proposed methods
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have three parameters: Gaussian scaling factor σ (if Gaussian kernel is used to con-
struct AHK), the size of neighborhood k (to control k-nn connections), and the reduction
parameter α in LDAT.

Gaussian scaling factor σ is also used in the other included clustering competitors. To
obtain an adaptive parameter and at the same time preserve local density information,
we compute the average distance between each instance to its q-nearest neighbors, and
use this value (noted as σq) to set the Gaussian scaling parameter. In the remaining
section, we will test the algorithm performance with different q in the range of [2, 50],
with 1 as the step size. When we test the stability of algorithms against the other two
parameters k and α (Section 6.5 and 6.6), we fix q = 2 by default.

For a proper neighborhood size k, we set its value as half of the average cluster size
k = n/(2c), where n is the number of instances in a dataset and c is the number of
clusters. We assume that this is a safe choice for each instance to assemble its true
local density. In Section 6.5 we will further test the algorithm sensitivity to k in the
range of [10%, 100%] of nc with 10% as step size to verify the rationality of k = 50%.

In Section 4, we already discussed the effect of α on LDAT. In our general experi-
ments, we use α = 1 by default but we will also test RWC+LDAT and AHK+LDAT
with different value of α ∈ [0, 2] in Section 6.6.

For DBSCAN experiments, we set Eps, the neighborhood radius, in the same way as
we set σq. We assign minPts, minimal number of instances considered as a cluster, in
the range of [10,min(n/c, 300)], and only record the best result among them.

Table II. Comparison of NMI between AHK+LDAT and the other seven methods on twelve datasets. Experiments with the first
seven datasets (from Wine to Pendigits) make use of the Gaussian kernel with σq (q ∈ [2, 50]), and the best score across all the q
settings is shown for each algorithm and dataset. Experiments with the datasets from Polbooks to Cora use network connectivity.
The bold-faced numbers indicate the best method for a particular dataset. The numbers in parentheses are the rankings of the
corresponding methods. AV G(GAU) and AV G(NET ) are the average NMI of the algorithms using Gaussian kernel and network
connectivity respectively.

Dataset RWC kDM ST SCDA NJW DBSCAN GDL AHK+LDAT
Wine 0.4355 (6) 0.4421 (4) 0.4604 (1) 0.4179 (7) 0.4375 (5) 0.2341 (8) 0.4604 (1) 0.4493 (3)
Glass 0.3615 (8) 0.3858 (5) 0.3813 (6) 0.4054 (3) 0.3686 (7) 0.4445 (1) 0.4018 (4) 0.4325 (2)
Vehicle 0.1876 (3) 0.1492 (4) 0.0964 (5) 0.0901 (7) 0.1968 (2) 0.0745 (8) 0.0964 (5) 0.2476 (1)
Vowel 0.4109 (5) 0.4249 (2) 0.4094 (6) 0.3196 (7) 0.4205 (4) 0.0983 (8) 0.4206 (3) 0.4351 (1)
Yeast 0.3019 (1) 0.2876 (2) 0.2694 (5) 0.2701 (4) 0.2619 (6) 0.0587 (8) 0.2591 (7) 0.2811 (3)
Images 0.5581 (4) 0.5958 (2) 0.4321 (7) 0.4981 (5) 0.5887 (3) 0.3296 (8) 0.4466 (6) 0.6746 (1)
Pendigits 0.7131 (4) 0.7129 (5) 0.5972 (7) 0.7056 (6) 0.7315 (3) 0.5046 (8) 0.7858 (2) 0.8787 (1)
AV G(GAU) 0.4241 (4) 0.4283 (3) 0.3780 (7) 0.3867 (6) 0.4294 (2) 0.2492 (8) 0.4101 (5) 0.4856 (1)
Polbooks 0.5862 (1) 0.5745 (2) 0.5629 (3) — 0.5423 (4) 0.4325 (6) — 0.5402 (5)
UMBC 0.0241 (6) 0.7488 (1) 0.7375 (2) — 0.7375 (2) 0.1136 (5) — 0.7151 (4)
MSP 0.0114 (5) 0.0114 (5) 0.0231 (4) — 0.0541 (3) 0.0887 (2) — 0.2004 (1)
Citeseer 0.3139 (5) 0.3628 (3) 0.3524 (4) — 0.3728 (2) 0.2073 (6) — 0.3871 (1)
Cora 0.1434 (6) 0.2551 (3) 0.2051 (5) — 0.3966 (2) 0.2103 (4) — 0.4325 (1)
AV G(NET ) 0.2158 (5) 0.3905 (3) 0.3762 (4) — 0.4207 (2) 0.2103 (6) — 0.4551 (1)

6.2. General Comparison with Different Affinity Constructions
Table II and III summarize the clustering performance of seven algorithms: RWC,
kDM, ST, SCDA, NJW, DBSCAN, GDL, and our proposed AHK+LDAT. Specifically,
for the first seven datasets using Gaussian kernel, we document the best performance
across q ∈ [2, 50] for each algorithm. SCDA and GDL are only defined on Euclidean
distance/space and therefore could not work with network connection and cosine simi-
larity.

Generally speaking, AHK+LDAT outperforms those selected algorithms across the
three commonly-used affinity construction methods. In Table II our AHK+LDAT shows
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Table III. Comparison on text datasets, each of which has an increasing number of clusters. The bold-faced numbers
indicate the best method for a particular dataset. The numbers in parentheses are the rankings of the corresponding
methods. AV G(COS) is the average performance scores.

Dataset RWC kDM ST SCDA NJW DBSCAN GDL AHK+LDAT
20ngA 0.0235 (5) 0.0235 (5) 0.0497 (4) — 0.1002 (3) 0.3456 (2) — 0.6916 (1)
20ngB 0.3321 (5) 0.4625 (2) 0.3435 (4) — 0.3487 (3) 0.2429 (6) — 0.7213 (1)
20ngC 0.2438 (5) 0.3368 (2) 0.2958 (3) — 0.2927 (4) 0.2058 (6) — 0.7076 (1)
RCV1-2 0.2204 (5) 0.2249 (4) 0.4039 (1) — 0.0417 (6) 0.3134 (2) — 0.2341 (3)
RCV1-3 0.2172 (6) 0.5220 (2) 0.4039 (4) — 0.4134 (3) 0.3523 (5) — 0.5467 (1)
RCV1-4 0.4546 (3) 0.3638 (4) 0.2889 (6) — 0.5136 (2) 0.3478 (5) — 0.5438 (1)
AV G(COS) 0.2486 (6) 0.3223 (2) 0.2635 (5) — 0.2851 (4) 0.3013 (3) — 0.5742 (1)

the best average score. 1) Gaussian kernel: AHK+LDAT obtains 0.4856 average NMI
which is 13.09% higher than the second best algorithm NJW, and 16.14% better than
RWC. 2) Network connectivity: the average NMI of AHK+LDAT reaches 0.4551,
which is 8.18% higher than the second best algorithm (NJW), and 110.89% better than
RWC. Table III shows that for datasets with an increasing number of clusters, our
AHK+LDAT on cosine similarity has better and more stable performance than the
other algorithms. In particular, AHK+LDAT outperforms the second best method kDM
by 78.16%.

Our AHK+LDAT either has the best or ranks top three over all the candidate algo-
rithms for each dataset. The only two exceptions are Polbooks and UMBC. However,
for UMBC our AHK+LDAT score is more than 95% of the best score from kDM. As
for Polbooks, though the NMI score of AHK+LDAT is only about 92% of the best per-
formance, the dataset size is quite small. Intuitively, the density distribution and its
variation on such a small dataset is not obvious due to the small sample size v.s. that
of a larger one.

Compared with the other algorithms, DBSCAN fails miserably since it is mainly
defined in Euclidean space and suffers from the “curse of dimensionality” and lack of
manifold awareness. GDL, ST and SCDA, although based on the theory that supports
local density adaptation, are unable to maintain desirable performance across all the
datasets, which is mainly caused by their suboptimal local density approximations.
Originated from diffusion equations, kDM shows its stability on all the three types of
datasets/kernel functions. NJW has comparable performance on Table II but not Table
III, partially due to that it does not have any correction for local density bias.

6.3. Respective Effect of AHK and LDAT
To verify the effect of AHK and LDAT respectively, we document the experiments of
RWC, RWC+SNN, RWC+LDAT, AHK, and AHK+LDAT in Table IV.

(1) For the data experiments using Gaussian kernel, AHK increases NMI by 5.43%
compared with RWC, while LDAT boosts up 13.90%. Compared with RWC+SNN,
RWC+LDAT raise 3.12%. Therefore here the effect of LDAT is more obvious than
that of AHK. Therefore although both using LDAT, AHK+LDAT is only 2% better
than RWC+LDAT. And AHK+LDAT outperforms AHK by about 20%.

(2) For those network datasets, AHK increases 93.47% while LDAT only raises about
2% over RWC. It means AHK helps a lot here: AHK+LDAT raises 9% compared with
AHK only, but on the other hand AHK+LDAT is 107% better than RWC+LDAT.

(3) In the experiments of text dataset, AHK enhances performance by 99.68% and
LDAT 86.89% when both of them are compared with RWC. AHK+LDAT outper-
forms RWC+LDAT by 23.59%, and outperforms RWC+SNN by 26.23%. On the other
hand, AHK+LDAT also outperforms AHK by about 15.67%.
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Table IV. Comparison between RWC, RWC+SNN, RWC+LDAT and AHK, AHK+SNN and AHK+LDAT. Ex-
periments with the first seven datasets (from Wine to Pendigits) make use of the Gaussian kernel with σq
(q ∈ [2, 50]), and the best score across all the q settings is shown for each algorithm and dataset. Experiments
with the datasets from Polbooks to Cora use network connectivity. Cosine kernel is applied on the last six text
datasets. The bold-faced numbers indicate the best method for a particular dataset. The numbers in paren-
theses are the rankings of the corresponding methods. AV G(GAU), AV G(NET ) and AV G(COS) are the
average NMI of the algorithms using Gaussian kernel, network connectivity and cosine kernel respectively.

Dataset RWC RWC+SNN RWC+LDAT AHK AHK+SNN AHK+LDAT
Wine 0.4355 (5) 0.4375 (3) 0.4375 (3) 0.4244 (6) 0.4417 (2) 0.4493 (1)
Glass 0.3615 (6) 0.4575 (2) 0.4618 (1) 0.4266 (4) 0.4067 (5) 0.4325 (3)
Vehicle 0.1876 (6) 0.2031 (4) 0.2173 (3) 0.2262 (2) 0.1880 (5) 0.2476 (1)
Vowel 0.4109 (4) 0.3725 (6) 0.4321 (3) 0.4432 (1) 0.4008 (5) 0.4351 (2)
Yeast 0.3019 (1) 0.2974 (2) 0.2763 (4) 0.2571 (6) 0.2756 (5) 0.2811 (3)
Images 0.5581 (6) 0.6577 (3) 0.6926 (1) 0.5751 (5) 0.5991 (4) 0.6746 (2)
Pendigits 0.7131 (6) 0.8068 (3) 0.8157 (2) 0.7328 (5) 0.7701 (4) 0.8787 (1)
AV G(GAU) 0.4241 (6) 0.4618 (3) 0.4762 (2) 0.4408 (4) 0.4403 (5) 0.4856 (1)
Polbooks 0.5862 (1) 0.5745 (3) 0.5667 (4) 0.5833 (2) 0.5401 (6) 0.5402 (5)
UMBC 0.0241 (5) 0.7488 (1) 0.0241 (5) 0.5927 (4) 0.5942 (3) 0.7151 (2)
MSP 0.0114 (6) 0.0756 (4) 0.0124 (5) 0.1383 (3) 0.1580 (2) 0.2004 (1)
Citeseer 0.3139 (5) 0.3644 (3) 0.3324 (4) 0.3697 (2) 0.2873 (6) 0.3871 (1)
Cora 0.1434 (6) 0.2550 (4) 0.1640 (5) 0.4037 (2) 0.3522 (3) 0.4325 (1)
AV G(NET ) 0.2158 (6) 0.4037 (3) 0.2200 (5) 0.4175 (2) 0.3864 (4) 0.4551 (1)
20ngA 0.0235 (6) 0.7587 (1) 0.7581 (2) 0.7175 (3) 0.7002 (4) 0.6916 (5)
20ngB 0.3321 (6) 0.4609 (4) 0.4428 (5) 0.6724 (2) 0.6501 (3) 0.7213 (1)
20ngC 0.2438 (6) 0.2754 (5) 0.3588 (4) 0.4659 (3) 0.4699 (2) 0.7076 (1)
RCV1-2 0.2204 (5) 0.2221 (4) 0.2249 (2) 0.2234 (3) 0.1290 (6) 0.2341 (1)
RCV1-3 0.2172 (6) 0.5487 (1) 0.5327 (3) 0.3876 (5) 0.4982 (4) 0.5467 (2)
RCV1-4 0.4546 (6) 0.4635 (3) 0.4701 (5) 0.5117 (4) 0.5307 (2) 0.5438 (1)
AV G(COS) 0.2486 (6) 0.4549 (5) 0.4646 (4) 0.4964 (2) 0.4964 (2) 0.5742 (1)

In short, both AHK and LDAT can improve RWC, but in different aspects: AHK alle-
viates the clustering sensitivity to the scaling parameter and data perturbation, while
LDAT provides more insight to the density change across different clusters. Table IV
shows that RWC+LDAT and AHK all increase RWC’s performance. When both AHK
and LDAT are applied, AHK+LDAT obtains the best performance in general.

6.4. Robustness on Adaptive Scaling Parameter (q)
To systematically demonstrate the superior robustness of AHK and AHK+LDAT across
different Gaussian scaling parameter q, we test several algorithms on seven datasets:
wine, glass, vehicle, vowel, yeast, image, and pendigits datasets. The test range of q is
[2, 50] with one as the step size. Figure 13 shows the performance of eight algorithms.

DBSCAN (Figure 13(a)) and GDL (Figure 13(e)) are extremely unstable and there
are little clue about how to tune q in an unsupervised way. With manifold awareness,
NJW (Figure 13(b)) shows better and more stable clustering performance. Compared
with RWC (Figure 13(c)), RWC+LDAT (Figure 13(f)) achieves higher quality of perfor-
mances, especially with glass datasets (41.15% ↑), yeast (13.04% ↑), image (54.25% ↑)
and pendigits (7.25% ↑). On the other hand, compared with RWC+SNN, RWC+LDAT
has better performance on wine (3.03% ↑), glass (5.54% ↑) and vowel (7.81% ↑). This con-
firms that LDAT helps to improve clustering results by providing density awareness
in the cluster overlapping area. AHK (Figure 13(g)) enhances the clustering stability
across q especially on wine, glass and image datasets, but it doesn’t necessarily retain
the best performance.

Overall, the combination of AHK+LDAT has the best result on average and per-
forms consistently across different values of q. The stability of AHK+LDAT inherently
originates from the AHK with LBN, and its outperformance partly comes from LDAT.
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(h) AHK+LDAT as q change

Fig. 13. Stability with different adaptive scaling parameter q.
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Fig. 14. Stability under different neighborhood size k.

6.5. Robustness on Neighborhood Size (k)
To reveal the stability with respect to the neighborhood scaling parameter k across
datasets, we test k ∈ [10%, 100%] of n

c on kDM, RWC+SNN, RWC+LDAT and
AHK+LDAT, the algorithms that built upon k-nn neighborhood. We also report results
on wine, glass, vehicle, vowel, yeast, images, and pendigits datasets.

Although it doesn’t provide the best performance, kDM (Figure 14(c)) indeed has
a stable performance across different k since it builds on diffusion map. The peak
performance of RWC+LDAT (Figure 14(b)) on each dataset mostly surpass the peak
performance of kDM because of the power of LDAT. However it fails to sustain stable
result across different k. But still RWC+LDAT is more stable than RWC+SNN in that
LDAT updates the similarity on a probabilistic interpretation rather than the direct
(original) similarity. From the same point of view, AHK+LDAT obviously has better
stability than RWC+LDAT since AHK contributes a lot on the manifold-awareness
and therefore the whole algorithm has stronger support from statistics. Figure 14(d)
shows that our AHK+LDAT demonstrates consistently better performance when we
choose the neighborhood size k = 50%× n

c .

6.6. Robustness on Reduction Degree (α) in LDAT
Figure 15 shows the stability of RWC+LDAT and AHK+LDAT when α is being tuned.
The integration along all the time scales and LBN provide AHK an advanced random
walk process, which leads to better average performance of AHK+LDAT. The only two
exceptions are glass and wine, where RWC+LDAT outperforms AHK+LDAT. But if
the datasets are getting larger, more sampling points will support a better manifold
reconstruction (like image and pendigits).

ACM Transactions Knowl. Discov. Data, Vol. 9, No. 4, Article 29, Publication date: June 2015.



Density-aware Clustering based on Aggregated Heat Kernel and Its Transformation 29:31

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
0

0.2

0.4

0.6

0.8

1

alpha

N
M
I

Wine

Glass

Vehicle

Vowel

Yeast

Image

Pendigits

(a) RWC+LDAT as α change

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
0

0.2

0.4

0.6

0.8

1

alpha

N
M
I

(b) AHK+LDAT as α change

Fig. 15. Stability under different reduction factor α.

Generally speaking, α ∈ [0.9, 1.1] makes LDAT sustainably performs better than
RWC (LDAT when α = 0) for both RWC+LDAT and AHK+LDAT. Therefore by default
we recommend α to be one.
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Fig. 16. Algorithm performance on different noise levels.

6.7. Robustness to Different Noise Levels
We conduct experiments on controlled noisy datasets to examine the performance of
our algorithms and make comparison with the other algorithms. The yeast and RCV1
datasets are used for this experiment. We added uniformly-distributed noise to create
more datasets, each of which has a different percentage of noise, i.e. 0%, 10%, 20%,
· · · , 100%. To study the robustness against noise comprehensively and avoid tuning
scaling parameter q for the best case scenario, we iteratively evaluate with all possible
values for the scaling parameter q and record the average performance result. The
experimental results are displayed in Figure 16.

Overall, AHK+LDAT shows both robust and better performance across different
noise conditions. Although RWC+LDAT shows better performance than NJW for most
cases, its effectiveness decreases dramatically and demonstrates a similar trend to
that of NJW. Similar to AHK+LDAT, kDM shows stable performance across differ-
ent noise percentages, occasionally even outperforms AHK+LDAT in the case of yeast
dataset with a small percentage of noise.

6.8. Scalability Analysis
This section analyzes the algorithm scalability. The experiment was done on a 2.3 GHz
Intel Core i7 processor with 8 GB 1600 MHz DDR3 memory.
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Fig. 17. Scalability Analysis.

Figure 17 shows that SCDA is the most time-consuming algorithm, which is not sur-
prising since it requires more time to compute the joint region of the ε-neighborhoods.
On the other hand, DBSCAN is the most efficient algorithm in time with R* tree
and a non-matrix based implementation. NJW and RWC are in need of eigen-
decomposition, therefore their running time is more than GDL. Our proposed AHK,
similar to kDM, also requires second construction of similarity matrix and another
eigen-decomposition, so their scalabilities are worse than NJW and RWC, but still bet-
ter than SCDA.

7. CONCLUSION
This paper presented a novel clustering algorithm that seamlessly integrated two ro-
bust and effective techniques, i.e. Aggregated Heat Kernel(AHK) and Local Density
Affinity Transformation (LDAT). Consequently, our proposed approach achieved re-
markable performance improvements for those datasets with heterogeneous density
distributions. Three primary advantages of our work are: (1) Its manifold reconstruc-
tion is robust to the scaling parameter tuning and noise appearance; (2) It alleviates
local density bias in Normalized Cut; and (3) It functions well with any affinity mea-
surement, and is universally applicable. Our comprehensive experiments validate that
the proposed algorithm outperforms the majority of the existing clustering algorithms.
Future work will focus on analyzing the interaction effect between local density aware-
ness and manifold reconstruction.
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