

BNL-108233-2015-CP

Unsupervised Feature Selection on Data
Streams

Hao Huang

Presented at the 24th International Conference on Information and Knowledge
Management

Melbourne, Australia
October 19-23, 2015

October 2015

Computational Science Center

Brookhaven National Laboratory

U.S. Department of Energy
ASCR

Notice: This manuscript has been authored by employees of Brookhaven Science Associates, LLC under
Contract No. DE- SC0012704 with the U.S. Department of Energy. The publisher by accepting the
manuscript for publication acknowledges that the United States Government retains a non-exclusive, paid-up,
irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others
to do so, for United States Government purposes.

This preprint is intended for publication in a journal or proceedings. Since changes may be made before
publication, it may not be cited or reproduced without the author’s permission.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government nor any
agency thereof, nor any of their employees, nor any of their contractors,
subcontractors, or their employees, makes any warranty, express or implied, or
assumes any legal liability or responsibility for the accuracy, completeness, or any
third party’s use or the results of such use of any information, apparatus, product,
or process disclosed, or represents that its use would not infringe privately owned
rights. Reference herein to any specific commercial product, process, or service
by trade name, trademark, manufacturer, or otherwise, does not necessarily
constitute or imply its endorsement, recommendation, or favoring by the United
States Government or any agency thereof or its contractors or subcontractors.
The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof.

Unsupervised Feature Selection on Data Streams

ABSTRACT
Massive data streams are continuously being generated from
sources such as social media, broadcast news, etc., and typ-
ically these datapoints lie in high-dimensional spaces (such
as the vocabulary space of a language). Timely and accu-
rate feature subset selection in these massive data streams
has important applications in model interpretation, compu-
tational/storage cost reduction, and generalization enhance-
ment. In this paper, we introduce a novel unsupervised fea-
ture selection approach on data streams that selects impor-
tant features by making only one pass over the data while
utilizing limited storage. The proposed algorithm uses ideas
from matrix sketching to efficiently maintain a low-rank ap-
proximation of the observed data and applies regularized
regression on this approximation to identify the important
features. We theoretically prove that our algorithm is close
to an expensive offline approach based on global singular
value decompositions. The experimental results on a vari-
ety of text and image datasets demonstrate the excellent
ability of our approach to identify important features even
in presence of concept drifts and also its efficiency over other
popular scalable feature selection algorithms.

1. INTRODUCTION
The curse of dimensionality plagues many complex learn-

ing tasks. A popular approach for overcoming this problem
is by reducing the dimensionality of the feature space as that
directly results in a faster computation time. At the same
time, it is appealing to have feature interpretability, which
some of the popular dimensionality reduction methods (e.g.,
PCA, spectral embeddings) do not possess because of their
lack of direct connection to the observed feature space. In
our work, we propose a novel approach to unsupervised fea-
ture selection, which is the problem of choosing a subset of
important (original) features without any label information.
The selected feature subset minimizes a very intuitive eval-
uation criteria while accounting for noise and redundancy.
This in turn could lead to better 1) model interpretation,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WOODSTOCK ’97 El Paso, Texas USA
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

2) computational efficiency, and 3) generalization ability for
the learning task.

One of the most important characteristic for any good fea-
ture selection approach is the ability to handle huge volumes
of data. Most modern data such as documents, images, mul-
timedia from the web naturally arrives in a streaming fash-
ion. However, detecting an informative feature subset in a
large volume of data stream is also a difficult problem due to
the following reasons: 1) the data stream could be infinite,
so any off-line algorithm that attempts to store the entire
stream for analysis will eventually run out of memory, 2) the
feature importances change dynamically over time due to
concept-drift, important features may become insignificant
and vice-versa, and 3) for various online applications, it is
important to obtain the feature subset in close to real-time.

Although there is considerable amount of previous lit-
erature on feature selection both in the batch [4, 16] and
online setting [35, 26, 19], none of them handles large vol-
ume data stream effectively, given limited memory and CPU
time, without any prior knowledge about labels. In practice,
streams often contain inherently correlated data [22], so it
is possible to reduce a large volume numerical stream into
just a handful of hidden basis that compactly describe the
key patterns of the data. We exploit this idea to reduce the
complexity of streaming feature selection analysis.
Our Techniques. In this paper, we propose a streaming
feature selection approach that easily adapts to the con-
cept/topic drift arising in the data stream, and at every
timestep provides a feature importance score (weight). Our
streaming feature selection algorithm uses ideas from ma-
trix sketching1 to maintain a low-rank approximation of the
entire observed data at every timestep, and this approxima-
tion is continually updated as new data arrives. For matrix
sketching, we modify a recent algorithm (called Frequent Di-
rections) proposed by Liberty [17]. The Frequent Directions
algorithm operates in a streaming model and constructs a
sketch matrix using a simple idea of “shrinking” a few or-
thogonal vectors. However, just the low-rank approxima-
tion cannot by itself provide feature weighting. In our re-
search this low-rank approximation is exploited and at every
timestep the feature importance score is generated by per-
forming a regression analysis. A regularization is added to
prevent overfitting to the data (we explain the choice of reg-
ularization in Section 3.3). The idea of using regularized re-
gression for feature selection in an unsupervised setting was
recently proposed by Cai et al. [4], who empirically showed

1A sketch of a matrix Z is another matrix Z ′ that is much
smaller than Z, but still approximates it well [17].

that it leads to a better choice of features for clustering
and classification applications. Their main idea is to obtain
feature importance using a regularized regression where the
spectral embedding of the dataset is used as the regression
target. However, the formulation presented in Cai et al. [4]
operates in a batch setting and requires access to the entire
affinity matrix for the regression step, which is not possi-
ble in a streaming setup. Our algorithm on the other hand,
requires just one pass over the data, which is an essential
requirement for any “true” streaming algorithm.

To the best of our knowledge, ours is the first unsupervised
feature selection algorithm operating in a true data stream-
ing setting. Our feature selection algorithm is effective and
efficient in the following ways:

(a) It is space and time efficient while requiring only one
pass over the data. For a stream at time t consisting
of nt (> 1) datapoints in an m-dimensional space, our
algorithm requires only O(mnt) space (linear in the size
of the input) and O(mnt`) time, where the sketch matrix
is of sizem×`. In practice, it suffices to set `much smaller
compared to m and nt. Therefore, both the memory and
computation requirements are almost linear in the input
size (as the input at time t is an m× nt matrix).

(b) It easily adapts to unseen patterns on the data stream and
provides at every timestep an updated identification of
the informative feature subset (i.e., at every timestep t it
provides a feature ranking based on all the data that have
arrived till time t), which gives it the ability of handling
concept drift2 (related experiments in Section 5.4).

(c) We provide theoretical support for our algorithm (Sec-
tion 3.4), and show that it has a comparable performance
to an expensive offline approach that uses singular value
decompositions.

Empirical studies show that our streaming approach is
efficient in terms of both space and time, while approaching
the performance of popular batch algorithms on a wide array
of datasets from both the text and image domains.

2. PRELIMINARIES
Notation. We denote [n] = 1 : n. Vectors are always
in column-wise fashion and are denoted by boldface let-
ters. For a vector v, v> denotes its transpose and ‖v‖
denotes its Euclidean norm. For a vector (a1, . . . , am) ∈
Rm, diag(a1, . . . , am) ∈ Rm×m denotes a diagonal matrix
with a1, . . . , am as its diagonal entries. Let Im denote an
identity matrix of dimension m × m. We use rank(Z) to
denote the rank of Z. For a matrix Z ∈ Rm×n, we use
zi,j to denote its (i, j)th element. Spectral norm is defined
as ‖Z‖ = sup {‖Zv‖ : ‖v‖ = 1}. We also use entry-wise
norms denoted by ‖Z‖p, where p = 2 gives (Frobenius norm)
‖Z‖2F =

∑
ij z

2
i,j, p = 1 gives ‖Z‖1 =

∑
i,j |zij|, and p = ∞

gives ‖Z‖∞ = maxi,j |zi,j|. We use Z � 0 if Z is a positive
semidefinite (PSD) matrix and Z � Y if Z − Y � 0. Given
a set of matrices, Z1, . . . , Zt, we use the notation Z[t] to
denote the matrix obtained by horizontally concatenating
Z1, . . . , Zt, i.e., Z[t] = [Z1| . . . |Zt].

2As we discuss later, in some feature selection applications,
one might wish to reweigh the points to emphasize more on
the recent points that the older points, which can also be
easily handled in our framework.

We use Svd(Z) to denote the singular value decomposition
of Z, i.e., Svd(Z) = UΣV>. Here U is an m×m orthogonal
matrix, Σ is an m × n diagonal matrix, and V is an n × n
orthogonal matrix. The diagonal entries of Σ, where σ1 >
σ2 > · · · > σm (given m 6 n), are known as the singular
values of Z. We follow the common convention to list the
singular values in non-increasing order. For a symmetric
matrix S ∈ Rm×m, we use Eig(S) to denote its eigenvalue
decomposition, i.e., UΛU> = Eig(S). Here U is an m ×m
orthogonal matrix and Λ is an m×m diagonal matrix whose
(real) entries are λ1, . . . , λm are known as the eigenvalues of
S (again listed in non-increasing order).

The best rank-k approximation (in both the spectral and
Frobenius norm sense) to a matrix Z ∈ Rm×n is Z(k) =∑k
i=1 σiuiv

>
i , where σi (i 6 k) are the top-k singular values

of Z, with associated left and right singular vectors ui ∈ Rm

and vi ∈ Rn, respectively. We use Svdk(Z) to denote the
truncated singular value decomposition of Z(k), i.e., Z(k) =
Svdk(Z) = U(k)Σ(k)V

>
(k). Here Σ(k) = diag(σ1, . . . , σk) ∈

Rk×k, U(k) = [u1, . . . , uk] ∈ Rm×k, and V(k) = [v1, . . . , vk] ∈
Rn×k. The following well-known theorem bounds the ap-
proximation error of the best rank-k approximation.

Theorem 2.1. [Golub et al. [8]] Let Z ∈ Rm×n with
n > m, and let σ1 > · · · > σm be the singular values of Z.
Let Svdk(Z) = UkΣkV

>
k . Then

min
rank(X)6k

‖Z− X‖F = ‖Z−U(k)Σ(k)V
>
(k)‖F =

√√√√ m∑
j=k+1

σ2k+1.

3. FEATURE SELECTION ON STREAMS
In this section, we propose an online feature selection al-

gorithm that operates in a streaming setting. We start by
describing the problem of feature selection on data streams.
Due to space constraints, we omit detailed proofs here.

3.1 Problem Formulation
We assume that the data items arrive in streams. Let

{Yt ∈ Rm×nt , t = 1, 2, . . . } denote a sequence of stream-
ing items, where Yt represents the data items introduced at
timestep t. Here m is the size of feature space, and nt > 1 is
the number of data items arriving at time t. 3 We normalize
Yt such that each column in Yt has a unit L2-norm. Under
this setup, feature selection aims at selecting the most infor-
mative feature subset based on certain evaluation criteria.

3.2 Our Motivation and Framework
Our main idea is based on maintaining, at each timestep t,

a low-rank approximation of all the seen (till time t) data
stream. By using a regression analysis on this low rank-
matrix, we can weigh each feature with an up-to-date im-
portance score.

In case of unsupervised feature selection, the evaluation
criteria for selecting the feature subset is not provided ex-
plicitly, and the general idea is that we want to capture the
most important characteristics of dataset without loosing
too much information. To this end, we perform a spectral
decomposition on the affinity matrix to obtain a “flat” em-
beddings of the datapoints [2]. The intuition being that it

3One could consider, a setting where only one point comes
at a time (i.e., nt = 1), but by allowing nt > 1, we allow
more flexibility in our setup.

is much easier to capture the global trends of the stream
in this embedded space than in the original space. Let
Y[t] = [Y1| . . . |Yt] = UtΣtV

>
t . Since Y[t] is column-wise nor-

malized to have unit euclidean norm, Y>[t]Y[t] = VtΣ
2
tV
>
t

forms the cosine affinity matrix of Y[t].
Cai et al. [4] proposed an unsupervised feature selection

approach using Vt as the target variable in regression. The
resulting regression problem can be stated as:

min
X
‖Y>[t]X− Vt‖2F, (1)

where each column in X ∈ Rm×nt contains the combination
coefficient for different features in approximating the eigen-
vectors of Y>[t]Y[t] (or equivalently the right singular vectors

of Y[t]). Note that the solution for (1) is Xt = UtΣ
−1
t (as-

suming all the singular values in Σt are non-zero).
Now consider a rank-k approximation of Y[t] as defined by

Theorem 2.1 (for an appropriately chosen parameter4 k), let

Y[t](k)
= Svdk(Y[t]) = Ut(k)

Σt(k)
V>t(k)

.

Given the low-rank approximation of Y[t], instead of using
Vt as the regression target, we could use Vt(k)

in (1). This

yields the following (least-squares) regression problem:

min
X
‖Y>[t]X− Vt(k)

‖2F. (2)

Note that the solution for (2) is Xt = Ut(k)
Σ−1
t(k)

(assuming

the top-k singular values of Σt are non-zero).
However, simply using (2) may lead to an unstable solu-

tion (if the input matrix is ill-conditioned) and also over-
fitting to the data [4]. Therefore, we add a regularization
term, and define:

Xt = argminX=(xi,j)
‖Y>[t]X− Vt(k)

‖2F + α
∑
i,j

|xi,j|
p, (3)

where α is the regularization parameter that controls the
trade-off between the loss function and the p-norm (p ∈
{1, 2}). Generally, a regression formulation with L1- (p =
1) and L2-norm (p = 2) regularization are referred to as
lasso and ridge regression respectively. The general formula
of (3) was first concretized by Cai et al. [4] for the case of
p = 1, who referred to it as Multi-Cluster Feature Selection
(MCFS).

Generally speaking, after we obtain Xt = (xti,j) from (3),
we can assign feature importance score wt = (wt1 , . . . , wtm) ∈
Rm (with the interpretation that the higher the score, the
more important the feature is). One of the simplest way is
by using the following equation introduced in [4]:

∀i ∈ [m], wti = max
16h6k

|xti,h |, (4)

The aforementioned prototype algorithm for feature weight-
ing is documented in Algorithm 1. The subsequent feature
selection process can be done by ranking the w vector (in
non-increasing order) and choosing the top-h features with
the largest score (given that h features are needed).
Other Kernels. Although we concentrate on the cosine
kernel, the above framework can be generalized to other
kernel functions. One approach would be to use the ran-
dom feature map transformations known for all radial-basis
function kernels [24]. For instance, a Gaussian kernel can be

4We defer the discussion on setting of k to later. Readers
could think of k as a small number k� min(m,nt).

Algorithm 1: GenFeatWeight (prototype algorithm
for feature weighting)

Input: Y[t] ∈ Rm×n[t] , k, and p ∈ {1, 2}
Output: Feature importance score wt ∈ Rm at time t

1 Ut(k)
Σt(k)

V>t(k)
← Svdk(Y[t])

(with Σt(k)
= diag(σt1 , . . . , σtk))

2 Xt ← argminX=(xi,j)
‖Y>[t]X− Vt(k)

‖2F + α
∑
i,j |xi,j|

p

3 ∀i ∈ [m], wti ← max16h6k |xti,h |

approximated using random Fourier features [24] such that
Gaussian kernel evaluation between a pair of datapoints can
be approximated by the Euclidean inner product between
the transformed pair. Using this randomized feature map
one could, in a streaming fashion, transform all the data-
points, and then work exclusively with these transformed
datapoints in a framework similar to detailed above.
Windowed Inputs. In our above problem formulations, all
data till time t is used for selecting the top features at time
t. However, some applications might require features to be
selected based on a rolling window of inputs or by providing
higher weights on the recent inputs, etc. Our algorithm
could be easily adopted to these scenarios by modifying the
matrix sketch construction. For simplicity, we ignore these
aspects in this paper.

3.3 Lasso (p = 1) vs. Ridge (p = 2) Regression
The first efficiency issue in using (3) is due to the regular-

ization type. It is well-known that ridge regression penal-
izes regression coefficients, rather than accomplishing vari-
able/feature selection, while lasso regression to some extent
automatically sets insignificant coefficients to be zero. How-
ever, there is no previous analysis in the framework of Algo-
rithm 1 about the performance difference obtained by using
either lasso or ridge regressions. In this subsection, we in-
vestigate this important topic.

A simpler situation arises when the design matrix of the
regression problem consists of orthogonal columns. In this
case, it is easy to show theoretically that ridge and lasso
regression select almost the same features (Corollary 3.2).

Lemma 3.1 (Restated from [40]). Let X̂ denote the

simple least squares coefficients, or in other words, X̂ ←
argminX‖Y>X − A‖2F. Let X̃R and X̃L denote the estimators
obtained from lasso and ridge regressions, respectively. If
Y> has orthogonal columns, then X̂ = YA, and we have the
following closed-form expressions:

∀i ∈ [m], j ∈ [k], X̃Li,j = sign(X̂i,j){|X̂i,j|− α/2}+,

X̃R = X̂/(1+ α),

where for any scalar z, z+ denotes the positive part, which
is z if z > 0 and 0 otherwise.

Let wR and wL be the feature importance score calculated
from X̃R and X̃L using (4). The following corollary follows

because X̃L and X̃R are based on thresholding or scaling X̂.

Corollary 3.2. If wL has h non-zero weight features,
then under the assumption of Lemma 3.1, the ranking of the
top-h features in wL coincides with the ranking of the top-h
features in wR.

The above corollary implies, under the column orthogonal-
ity constraint on the design matrix, the performance of ridge
and lasso regression in Algorithm 1 (especially, for the im-
portant features), are almost the same. Therefore, we can
potentially use the more computationally cheaper regular-
ization without significant loss in performance.

0.3 0.4 0.5 0.6 0.7 0.8

0.3

0.4

0.5

0.6

0.7

0.8

Ridge Performance (NMI)

L
a
s
s
o
 P

e
rf

o
rm

a
n
c
e
 (

N
M

I)

(a)

Ridge Lasso
0

5

10

15

20

25

30

A
v
e

ra
g

e
 R

u
n

n
in

g
 T

im
e

 (
s
e

c
o

n
d

s
)

(b)

Figure 1: Performance comparison between ridge
(p = 2) and lasso (p = 1) regression in the framework
of (3). The top 1000 features are picked using (4). In
Figure 1(a), red triangles show the tests when ridge
outperforms lasso, while green circles show the tests
when lasso outperforms ridge. Although in general
lasso slightly outperforms ridge regression, the run-
ning time test in Figure 1(b) shows that ridge regres-
sion is far more efficient than lasso. The parameter
α was manually tuned here (we will further analyze
the setting of α in Section 5).

Note that the orthogonality of the design matrix is a
very rigid constraint. However, as we will see later (Al-
gorithm StreamFeatWeight) in our setting, the design
matrix will be of form (UΣ)>, where U is a matrix with or-
thogonal columns and Σ is a diagonal matrix (in our case,
matrix of singular values). Since such a design matrix may
not be too far from having orthonormal columns, we have a
much higher chance of observing similar results from lasso
and ridge regression (as in Corollary 3.2) than in a general
regression setting.5 We conducted the following experiments
to verify this hypothesis. We randomly sampled 45 data-
points from three text datasets (“20 Newsgroup”, “RCV1”,
and “Reuters21578”, refer to Section 5.1 for details about
these datasets). For both cases of p = 1 and p = 2 in Algo-
rithm GenFeatWeight, we generated the top 1000 feature
set from wL and wR respectively. We then used a simple

5Note that if U has orthogonal columns and Σ is a diagonal
matrix, then (UΣ)> has orthogonal rows but depending on
the singular values in Σ, the columns in (UΣ)> may not
exactly be orthogonal.

K-means algorithm on these selected features to evaluate
their effectiveness in identifying the (true) document classes
(the reasoning behind performing such an evaluation is ex-
plained in Section 5). Figure 1(a) shows the clustering result
under the Normalized Mutual Information (NMI) measure,
and the results suggest that lasso and ridge regression have
comparable performance in general. However, in terms of
running time (Figure 1(b)), ridge regression is substantially
better than lasso regression.6 Since our goal is to handle
large streaming datasets, ridge regression appears as a bet-
ter choice7, since it obtains results very similar to lasso re-
gression in the framework of Algorithm GenFeatWeight,
but with far lesser running time. Therefore, we concentrate
on ridge regression from here on.

The simple closed form solution for (3) with p = 2 is as
shown in the following lemma.

Lemma 3.3. Consider the ridge regression solution,

Xt = argminX=(xi,j)
‖Y>[t]X− Vt(k)

‖2F + α
∑
i,j

x2i,j.

Then we have the following:

Xt = Ut(k)
diag(σt1/(σ

2
t1

+ α), . . . , σtk/(σ
2
tk

+ α)),

where σt1 , . . . , σtk are the top-k singular values in Y[t](k)
.

Even though Algorithm GenFeatWeight is quite sim-
ple, in a streaming environment the number of data items
in Y[t] could become extremely large, which could lead to
both computational and memory bottlenecks in running the
algorithm. For example, the computational complexity of
computing a truncated rank-k SVD is O(mn[t]k) [8] (given

Y[t] ∈ Rm×n[t]), which is prohibitive when the number of
columns in Y[t] becomes very large (n[t] → ∞). Our goal
in the next section is to propose and analyze an efficient
approach that has similar effectiveness as Algorithm Gen-
FeatWeight in identifying top features but does so by uti-
lizing limited storage and just one pass over the data in a
streaming setting.

3.4 Matrix Sketching for Feature Weighting
As mentioned above the main bottleneck in Algorithm Gen-

FeatWeight is in generating a low-rank approximation of
Y[t]. To overcome this problem, we propose an approach
based on matrix sketching that we outline next.

In his recent paper, Liberty [17] showed that by adapt-
ing the Misra-Gries approach for approximating frequency
counts in a stream [20], one could obtain additive error
bounds for matrix sketching. More formally, in the setting
of [17], the input is a matrix Z ∈ Rp×d. In each step, one row
of Z is processed by the algorithm (called Frequent Direc-
tions) in a streaming fashion, and the algorithm iteratively
updates a matrix Q ∈ Rq×d (q� p) such that for any unit
vector x ∈ Rd, ‖Zx‖2 − ‖Qx‖2 6 2‖Z‖2F/q.

Recently, Ghashami and Philips [7], reanalyzed the Fre-
quent Directions algorithm of Liberty [17], to show that it
provides relative error bounds for low-rank matrix approx-
imation. Instead of Q, their algorithm return Qk (a rank-

6For lasso regression, we use the algorithm proposed by
Cai et al. [4].
7Again note that this is not to be misconstrued as a general
statement on the effectiveness of ridge vs. lasso regression in
other settings.

k approximation of Q) and their main result shows that
‖Z‖2F − ‖Qk‖2F 6 q/(q− k) · ‖Z− Zk‖2F.

Our approach for constructing a low-rank approximation
of Y[t] (outlined between Steps 1-4 in Algorithm Stream-
FeatWeight) is based on extending the Frequent Direc-
tions algorithm of [17] to a more general setting where in
every timestep, we add nt > 1 new columns.8 As in Fre-
quent Directions, our algorithm requires just one pass over
the data stream. Here, Bt ∈ Rm×` is the matrix sketch. The
parameter ` > k, but is generally much smaller than m or
nt. We discuss more on the setting of ` later. The Step
5 in Algorithm StreamFeatWeight is obtained by using
Lemma 3.3 to solve the following ridge regression problem
(note that the SVD of Bt = Ũt(`) Σ̆t(`)I`, so the identity

matrix I` represents the right singular vectors of Bt):

X̃t = argminX=(xi,j)
‖B>t X− [e1, . . . , ek]‖+ α

∑
i,j

x2i,j, (5)

where ei ∈ R` is a vector with 1 at location i, and 0 elsewhere
(i.e., standard basis vector).

Algorithm 2: StreamFeatWeight (streaming update
of feature weights at time t)

Input: Yt ∈ Rm×nt , Bt−1 ∈ Rm×`, and α ∈ R
Output: Feature importance score w̃t ∈ Rm and

matrix sketch Bt at time t
1 Ct ← [Bt−1|Yt]

2 Ũt(`) Σ̃t(`) Ṽ
>
t(`)
← Svd`(Ct)

(with Σ̃t(`) = diag(σ̃t1 , . . . , σ̃t`))

3 Σ̆t(`) ←

diag
(√

σ̃2t1 − σ̃2t` ,
√
σ̃2t2 − σ̃2t` , . . . ,

√
σ̃2t`−1

− σ̃2t` , 0
)

4 Bt ← Ũt(`) Σ̆t(`)
5 D̃t(k)

← diag(σ̆t1/(σ̆
2
t1

+ α), . . . , σ̆tk/(σ̆
2
tk

+ α))

(where σ̆ti is the ith diagonal element in Σ̆t(`))

6 X̃t ← Ũt(k)
D̃t(k)

7 ∀i ∈ [m], w̃ti ← max16p6k |x̃ti,p |, where X̃t = (x̃ti,p)

At any time t, the running time of Algorithm Stream-
FeatWeight is O(max{mnt`,m`

2}) (= O(mnt`) if we as-
sume ` 6 nt) by using power-iteration or rank-revealing QR
decomposition for SVD [8] in Step 2. This computational
complexity is much smaller than the O(mn[t]k) time com-
plexity of Algorithm StreamFeatWeight (since nt` �
n[t]). Between iterations, the algorithm only maintains the
Bt matrix which takes O(m`) storage. The overall space
complexity of Algorithm StreamFeatWeight is linear in
the size of the input (i.e., O(mnt)) at every time t, com-
pared to Algorithm GenFeatWeight for which, at time t,
the space complexity is O(mn[t])

The major focus of the rest of this section is to provide
theoretical support for Algorithm StreamFeatWeight, by
showing that the w̃t from Algorithm StreamFeatWeight
is a good approximation of wt obtained from Algorithm Gen-
FeatWeight (with p = 2).

8A similar sketching based low-rank matrix approximation
approach was recently used in an entirely different context
of anomaly detection by Hao and Kasiviswanathan [11]

3.4.1 Theoretical Comparison (Bounding ‖wt − w̃t‖)
We start with observation that,

‖wt − w̃t‖ 6 ‖Ut(k)
Dt(k)

− Ũt(k)
D̃t(k)

‖F

= ‖Ut(k)
Dt(k)

− Ũt(k)
Dt(k)

+ Ũt(k)
Dt(k)

− Ũt(k)
D̃t(k)

‖F

6 ‖Ut(k)
Dt(k)

− Ũt(k)
Dt(k)

‖F + ‖Ũt(k)
Dt(k)

− Ũt(k)
D̃t(k)

‖F

6 ‖Ut(k)
− Ũt(k)

‖F‖Dt(k)
‖+ ‖Ũt(k)

‖‖Dt(k)
− D̃t(k)

‖F

6 ‖Ut(k)
− Ũt(k)

‖F‖Dt(k)
‖+
√
k‖Dt(k)

− D̃t(k)
‖∞. (6)

Therefore, a bound on ‖wt − w̃t‖ follows from respective

bounds on ‖Ut(k)
−Ũt(k)

‖F and ‖Dt(k)
−D̃t(k)

‖∞. Note that

since the columns in Ũt(k)
are orthonormal, ‖Ũt(k)

‖ 6 1.

Bounding ‖Ut(k)
− Ũt(k)

‖F. Here we use a recent result by

Huang and Kasiviswanathan [11], who established an up-

per bound on ‖Ut(k)
− Ũt(k)

‖F by modifying the analysis of

Frequent Directions by Ghashami and Philips [7] and com-
bining it with some recent matrix perturbation results. To
formally state their result we need few more definitions. Let

κ = κk(Y[t]) = σt1/σtk ,

where σti is the ith singular value of Y[t].

1. Define Γa as,

Γa =
κ2‖Y[t](k)

‖2F − ‖Bt(k)
‖2F

‖Y[t](k)
‖2F − ‖Bt(k)

‖2F
. (7)

It is easy to establish that for all t, ‖Y[t](k)
‖2F > ‖Bt(k)

‖2F
(using an analysis from [11]), and by definition κ > 1,
therefore Γa > 1. Furthermore, for small k’s (as in our
setting), typically κ is bounded, yielding Γa = O(1).

2. Define Γb as,

Γb = 1+
2

κ2 − ‖Bt‖2/‖Y[t]‖2
. (8)

Again it is easy to establish that Y[t]Y
>
[t] � BtB>t [17], and

therefore, ‖Bt‖2 6 ‖Y[t]‖2. Typically κ is also bounded
away from 1, yielding Γb = O(1).

Proposition 3.4 (Huang and Kasiviswanathan [11]).
Let λi denote the ith eigenvalue of Y[t]Y

>
[t] and L = mini 6=j |λi−

λj| > 0. If

` =Ω

(√
mκ2‖Y[t]‖2ΓaΓbk‖Y[t] − Y[t](k)

‖2F
L2

)
,

for Γa, Γb defined in (7), (8) respectively, then

‖Ut(k)
− Ũt(k)

‖F 6
√
2L√

L+ 8κ2‖Y[t]‖2 4
√
L2 + 16κ4‖Y[t]‖4

.

Remark: For small k’s, and assuming 1 < κ 6 O(1) (imply-
ing Γa = O(1) and Γb = O(1)), the above bound on ` could
be simplified to,

` = Ω

(√
m‖Y[t]‖2‖Y[t] − Y[t](k)

‖2F
L2

)
.

The assumption of L > 0 is also something that is commonly
satisfied in practice, especially if m is reasonably smaller
than the number of data items in Y[t].

Bounding ‖Dt(k)
− D̃t(k)

‖∞. Let σti and σ̆ti be the ith

singular value of Y[t] and Bt respectively. We have,

‖Dt(k)
− D̃t(k)

‖∞ = max
i∈[k]

∣∣∣∣∣ σti
σti

2 + α
−

σ̆ti
σ̆2ti + α

∣∣∣∣∣
6 max
i∈[k]

(
|σti − σ̆ti |

σ̆2ti + α

)
.

A standard application of Weyl’s inequality [8], along with a
bound on ‖κ2Y[t]Y>[t] − BtB>t ‖ provides the following propo-
sition.

Proposition 3.5.

‖Dt(k)
− D̃t(k)

‖∞ 6
‖Y[t] − Y[t](k)

‖F
σ̆2tk + α

√
ΓaΓbk

`− k
.

Putting it all Together (Bounding ‖wt − w̃t‖). The
following theorem follows by combining (6) with Proposi-
tions 3.4 and 3.5.

Theorem 3.1. Let Y1, . . . , Yt be a sequence of matrices
with Y[t] = [Y1| . . . |Yt]. Let Y[t](k)

= Ut(k)
Σt(k)

V>t(k)
be the

best rank-k approximation of Y[t]. Let σtk and σ̆tk be the
kth singular value of Y[t] and Bt respectively. Then wt (gen-
erated by the Algorithm GenFeatWeight) and w̃t (gener-
ated by Algorithm StreamFeatWeight), under conditions
from Proposition 3.4, satisfy:

‖wt − w̃t‖ 6
k‖Y[t] − Y[t](k)

‖F
σ̆2tk + α

√
ΓaΓb

`− k

+
σtk

σ2tk + α

√
2L√

L+ 8κ2‖Y[t]‖2 4
√
L2 + 16κ4‖Y[t]‖4

.

The above theorem shows that, under reasonable assump-
tions and setting of `, both Algorithms GenFeatWeight
and StreamFeatWeight generate very identical feature
vector weights at every timestep t. But as we discussed ear-
lier, Algorithm StreamFeatWeight is far more efficient
both in space and time consumptions.

A point to note is that the Algorithm StreamFeatWeight
can be used with any value of `, the above bound on ` only
guarantees that its feature selection results are similar to
that of Algorithm GenFeatWeight.

3.5 Discussion on Normalization
We generate Vt(k)

using a cosine affinity matrix from L2-

norm column normalized Y[t]. If we follow the same con-
struction with a slightly different normalization, Y[t] to be
zero mean and unit variance, then we obtain as regression
target, the principal components (PCA) of Y[t]. Each princi-
pal component captures different view of Pearson correlation
coefficient matrix, and these principal components might be
another good choice for the regression target. However, it is
unclear how to construct this zero mean and unit variance
normalization of Y[t] in a strict streaming fashion which is
desired in this paper. The works of [18, 12] use N−1Y>[t]Y[t]
for building random walk normalized cosine affinity matrix
where the diagonal matrix Ni,i =

∑
j(Y
>
[t]Y[t])i,j. Since we

did not use the random walk normalization, Vt(k)
is not ap-

proximating the normalized graph cut any more. However,
in our case, Vt(k)

is not directly used for clustering, but just

an intermediate step to select the important feature subset.

In our experiments (Section 5), we achieve quite similar re-
sults to the MCFS approach [4], where the affinity matrix is
normalized in a batch setting.

4. RELATED WORK
We now justify the utility of our proposed approach by

briefly comparing it with a few existing methods.
Our basic idea is to use regression analysis for feature

selection. Many feature selection algorithms based on this
idea have been proposed in the past decade. These algo-
rithms operate by minimizing some appropriately defined
objective function. Weston et al. [30] added an `0-norm con-
straint on the solution to enforce sparsity, which naturally
leads to a natural variable (feature) selection. But mini-
mizing with `0-regularization is NP-hard, therefore `1-norm,
as a convex relaxation to `0-norm, was utilized in [31, 4].
Other norms on the regularization term such as `2-norm [6]
and `2,1-norm [37, 10, 16] have also been explored for fea-
ture selection. One of the latest work in this area, proposed
by Zhu et al. [39], performs feature selection by transfering
models learnt on external (auxiliary) data sources, but it
requires the dimensionality of target data to be high and
the number of datapoints to be small, which usually is not
the case in data streaming. Few other recently proposed
approaches in this area include [36, 13]. Although these
methods are effective and robust to some degree, they are
extremely inefficient, in both time and space, to be applica-
ble in a streaming setting.

Feature selection algorithms operating in a online setting
were proposed in [35, 26, 19], but they all require multi-
ple passes over the data to converge to a stable model, and
hence are not pass-efficient. Few other efficient feature se-
lection methods such as [9, 33, 34] seem not well-suited to
operate in a streaming environment. In this paper, we pro-
pose a streaming algorithm that at every timestep efficiently
assigns each feature an importance score (weight) that can
be subsequently used to rank (or select) the (top) features.

Also in the streaming setting, the approach of projected
clustering [1, 21] can be viewed as a technique for “local”
feature selection. The idea here is to have each cluster spe-
cific to a particular feature subset that optimizes a quality
criterion for that cluster. However, the feature subsets could
be quite different across different clusters, therefore it leads
to a complicated interpretation of clustering. Moreover, it is
also very difficult to compare different clusters since their op-
timized subspaces are not in the same domain. On the other
hand, our proposed approach provides a single comprehen-
sive feature subset that covers all the clusters. Thereby, it
gives an easy interpretation for clustering different classes.

In a somewhat orthogonal setting, online feature selection
operating on feature streams9 (instead of data streams as
considered in this paper) have been investigated in [23, 38,
32, 15, 29].

5. EXPERIMENTAL ANALYSIS
In this section, we experimentally demonstrate that our

proposed Algorithm StreamFeatWeight is highly scal-
able, while still providing almost similar quantitative results
to other expensive batch feature selection approaches.

9Roughly, in this setting, feature vectors are streamed over
time, e.g., one new feature is introduced at every timestep t.

Dataset #instances #features #clusters

1 Reuter21578 8,293 18,933 65
2 TDT2 9,394 36,771 30
3 20Newsgroup 18,846 26,214 20
4 RCV1 193,844 47,236 103
5 USPS 9,298 256 10
6 MNIST 70,000 784 10
7 Tiny 1,000,000 3,072 75,062

Table 1: Statistics of the experimental datasets.

0 1 2 3 4 5 6 7 8 9 10

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

Index of α

N
M

I

Reuters21578

TDT2

20Newsgroup

RCV1

Figure 2: The effect of α on four text datasets. For
each dataset, we randomly generate 30 subsets and
record the average K-means (NMI) result on the top
1000 features. The x-axis is the index i of α = 2iσk
(where k is number of clusters in each dataset). It
can be observed that the NMI results show smooth
changes across different α, and i = 3, 4, 5 are reason-
able choices.

5.1 Experiment Setup
It would be the best to evaluate feature selection results

based on ground truth feature importance. But in real world
applications, we cannot easily find such ground truth be-
cause: 1) it is highly subjective to select candidate features
because there are many similar features/terms, and 2) fea-
ture selection is typically an intermediate step for the rest of
data analysis pipeline. However, we do have many datasets
with ground truth cluster labels. This can be utilized to
evaluate the quality of selected feature subset, by performing
an unsupervised clustering on the feature-reduced dataset.
If the selected feature subset is “good”, then clustering the
data restricted to just this subset of features should yield a
“good” clustering result. Therefore, we evaluate the unsu-
pervised feature selection algorithms by performing an un-
supervised K-means clustering on the selected feature space.
We used the popular Normalized Mutual Information (NMI)
as our evaluation metric (detailed definition of NMI can be
referred to [27]). All the experiments were run on an In-
tel(R) Xeon(R) CPU X5650 2.67GHz processor with 128GB
memory.

Baselines. From now on, we refer to Algorithm Stream-
FeatWeight as FSDS (Feature Selection on Data Streams).
We chose the following unsupervised feature selection ap-
proaches as baseline methods: Multi-Cluster Feature Se-
lection (MCFS) [4], LaplacianScore [9], and Algorithm
GenFeatWeight with p = 2 (henceforth, referred to as
GFW-p2). MCFS (based on lasso regression) and Lapla-
cianScore (based on finding local manifold structure) are
both batch feature selection algorithms and were selected for
comparison because they capture the essence of two popular
approaches to feature selection.

Since we use clustering to measure the performance of fea-
ture selection, we also included for comparison the classical
K-means (Kmeans) and a recent streaming variant of K-
means (StreamKM) [25]. Both these K-means algorithms
are operated on the whole feature set (unlike other compared
approaches). To the best of our knowledge there are no other
streaming unsupervised feature selection algorithms.

Datasets and Preprocessing. We evaluated the above al-
gorithms on four popular text datasets (Reuter21578, TDT2,
20Newsgroup, and RCV1) and three image datasets (USPS,
MNIST, and Tiny), whose statistics are summarized in Ta-
ble 5.1. 20Newsgroup is a balanced dataset that covers 20
news topics. Reuters21578, TDT2, RCV1 are unbalanced
datasets with quite different sizes of clusters. All these
datasets can be found in [3]. Both the USPS and MNIST
datasets have 10 classes of handwritten digits. Tiny is a large
web-image collection for non-parametric object and scene
recognition (downloaded from [28]). Among 80 million im-
ages, we randomly selected 1 million images and evaluated
the result on 60, 000 labeled images that cover 100 classes
(from [14]). We directly performed experiments on the Tiny
images with all the 3, 072 raw features, which are 32 × 32
color images in RGB color channels.

MCFS and LaplacianScore algorithms are space and time
inefficient due to computations of normalized Laplacian ma-
trix and eigenvalue decomposition (also solving lasso re-
gression for MCFS). We cannot evaluate such algorithms
on large benchmark datasets. Therefore the majority of
datasets were selected to compare the effectiveness of all the
baselines. For the three image datasets, we used the approx-
imation of Gaussian kernel using random feature maps [24].
For every timestep t, we used the same random projection
basis and offset setting (refer to [12] for more details about
implementing these random feature maps).

Parameter Settings. The number of selected features, h,
was set from 200 to 2400 (in increments of 200) for text
datasets, and from 25 to 200 (in increments of 25) for image
datasets (since the number of meaningful features in raw im-
ages is usually small). In our streaming setting, the number
of singular vectors k was set to be the same as the num-
ber of clusters in the dataset, which was assumed to be a
priori known as in prior works [9, 4], and the size of each
data stream (nt’s) as 1000 (we will further analyze stabil-
ity against nt in Section 5.4). Our proposed algorithm has
two specific parameters: the size of matrix sketch ` (which
is set as the square root of the feature size as suggested by
the analysis in Section 3.4) and the regularization parameter
α. There are prior works in deciding the best regularization
parameter α [5]. However, given the target problem is unsu-
pervised and the dataset is big, we performed the following
experiments on sampled datasets to select α. We randomly
generated 30 subsets from four text datasets respectively,
and evaluated the average quality of the top-1000 selected
features using Lemma 3.3 with various values of α. Since
the singular value distributions (σj’s) of most datasets usu-
ally decay rapidly, we set α as 2iσk for i ∈ R. The average
NMI result is presented in Figure 2. It can be seen that the
best results appear when i is around 3 to 5. Therefore we
set i = 3 by default, and set α = 23σk for all our experi-
ments. For the random feature maps using Gaussian kernel,
we set bandwidth-scale as 5000 and the projected dimension
as dn/ke (following [12]).

For MCFS and LaplacianScore, we followed [4, 9] for their
respective parameter settings. For the NMI evaluation step,
we utilized the standard within-cluster sum of squares K-
means (with 100 inner loops and 100 outer loops) to obtain
stable cluster assignments.

5.2 General Performance Comparison
We make the following observations based on Figure 3:

(1) Compared with Kmeans/StreamKM on the whole fea-
tures space, feature selection can indeed improve clus-
tering performance on these high dimensional datasets.
This is an argument in favor of performing feature selec-
tion (similar observations have been made elsewhere).

(2) In general, the regression-based algorithms (FSDS, GFW-
p2, and MCFS) perform much better than the Lapla-
cianScore algorithm. It is because LaplacianScore eval-
uates features individually, so that the selected feature
subset may come from similar global patterns. On the
other hand, the other three algorithms have more com-
prehensive views due to their use of regression-based fea-
ture selection.

(3) GFW-p2 has very comparable result with MCFS (which
can be seen as evidence supporting the lasso vs. ridge
argument in Section 3.3), although the latter performs
better than the former in some specific spots (e.g., with
smaller number of features in the TDT2 dataset).

(4) On average, FSDS achieves more than 99% NMI of GFW-
p2 on the text datasets. It confirms our theoretical proof
(Theorem 3.1) that feature weight vectors produced by
Algorithms GenFeatWeight and StreamFeatWeight
are close to each other.

(5) Typically, FSDS achieves about 97% ∼ 99% NMI of MCFS
on the text datasets. This observation shows that in
our problem setting (Sections 3.2 and 3.3), a streaming
ridge-based method is capable of obtaining similar per-
formance as that of a batch lasso-based method (MCFS).
The FSDS performs worse than MCFS when the number
of features is small (TDT2 dataset). It could probably
be because the regression target of MCFS that comes
from normalized spectral analysis may boost the quality
of the small number of the selected features. However, if
the number of features is large enough, FSDS and MCFS
have very comparable performances.

(6) For the experiments on the image datasets (with approxi-
mated Gaussian kernel), FSDS has similar or even better
performance than MCFS (Figure 3(e) and 3(f)).

(7) On large datasets, such as RCV1 (Figure 3(d)) and Tiny
(Figure 3(g)), MCFS and LaplacianScore algorithms ran
out of memory since they require constructing the affinity
matrix (which takes O(n2) space). Memory troubles also
prevented GFW-p2 from completion on the Tiny dataset.

5.3 Scalability Comparison
Figure 4 shows the scalability comparison between the

feature selection algorithms using Tiny dataset (k is set as
10 here). FSDS requires just few minutes to generate feature
importance scores on a dataset with a million points. We
observed that FSDS is on average about 10 times faster than
LaplacianScore and about 50 times faster than MCFS. Also
FSDS outperforms GFW-p2 when the dataset size is above

10, 000 and the difference between their running times will
grow as the dataset size increases.

On the 20Newsgroup dataset, FSDS takes about 23 sec-
onds, and is about 3, 35, and 100 times faster than GFW-p2,
LaplacianScore, and MCFS respectively. Similarly, on the
MNIST dataset, FSDS takes about 4 seconds, and is about
4, 64, and 400 times faster than GFW-p2, LaplacianScore,
and MCFS respectively

10
4

10
6

10
8

10
−4

10
−2

10
0

10
2

10
4

Dataset Size (n)

T
im

e
 (

s
e

c
o

n
d

s
)

FSDS
GFW−p2
LaplacianScore
MCFS

Figure 4: Scalability experiments on the Tiny
dataset. Except FSDS (our proposed approach),
none of the other compared approaches could scale
beyond ≈ 105 points (failing because of their ex-
tremely high memory overhead).

5.4 Stability under Concept Drift, Batch Sizes
It is well-known that streaming algorithms are generally

sensitive to the order of data, or concept drift. To test the
performance of FSDS in such scenarios, we used the data
stream sorted by timestamps as input. The performance of
FSDS in this realistic testing environment is shown in Figure
5, with different sizes of feature set. We also compare against
a scheme where we just use a static feature subset (#f = 200)
without adapting to concept drift. This static feature subset
was determined by FSDS using only the first 2, 000 samples.
For the two unbalanced datasets Reuters21578 and TDT2,
the larger clusters appear in the very beginning. There-
fore, initially the approach based on static feature subset
performs quite close to FSDS. However, as time goes on
and concept drift becomes more prominent, FSDS contin-
ues maintaining a good stable performance across all the
three datasets, which demonstrates that FSDS is capable of
quickly adapting to concept drift.

FSDS tests across different batch sizes (nt’s) and feature
subset sizes indicate very stable behavior (Figure 6).

5.5 Efficient Storage
For many streaming applications, we not only want to

identify the top-h features in the data but also want to
store the data restricted to these top-h features at any time,
to enable some further data mining analyses. In general,
such analysis in streaming setting would require storing the
whole data at each timestep as the set of the top-h features
dynamically changes over time. However, using FSDS, we
empirically noticed that storing the data stream restricted
to top g × h features at each intermediate timestep, and a
final selection of only those features which appear in the top
g× h features in each of the intermediate timestep, suffices
to get good results, even when g is a small number (i.e., 4).
The results are shown in Figure 7. The number of features
tested in these experiments are h = {200, 400, 600, 800, 1000}
with g = {1, 2, 3, 4}. We also report FSDS results where we

Size of Selected Features
200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400

N
M

I

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

FSDS
MCFS
GFW-p2
LaplacianScore
StreamKM
Kmeans

(a) Reuter21578
Size of Selected Features

200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400

N
M

I

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

FSDS
MCFS
GFW-p2
LaplacianScore
StreamKM
Kmeans

(b) TDT2
Size of Selected Features

200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400

N
M

I

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

FSDS
MCFS
GFW-p2
LaplacianScore
StreamKM
Kmeans

(c) 20Newsgroup
Size of Selected Features

200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400

N
M

I

0.05

0.1

0.15

0.2

0.25

0.3

FSDS
GFW-p2
StreamKM
Kmeans

(d) RCV1

Size of Selected Features
25 50 75 100 125 150 175 200

N
M

I

0.35

0.4

0.45

0.5

0.55

0.6

0.65

FSDS
MCFS
GFW-p2
LaplacianScore
StreamKM
Kmeans

(e) USPS
Size of Selected Features

25 50 75 100 125 150 175 200
N

M
I

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

FSDS
MCFS
GFW-p2
LaplacianScore
StreamKM
Kmeans

(f) MNIST
Size of Selected Features

200 300 400 500 600 700 800 900 1000

N
M

I

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

FSDS

StreamKM

Kmeans

(g) Tiny

Figure 3: Performance of the compared algorithms on different datasets. A randomly shuffled data stream is
used for the online algorithms. Kmeans and StreamKM algorithms were executed on the whole feature set
(hence they always have horizontal lines). For all other approaches, the quality of feature selection methods
is measured by executing K-means clustering on the selected feature subset. For the RCV1 and Tiny datasets,
MCFS and LaplacianScore experiments ran into memory issues as they require storing the quadratic sized
affinity matrix. Memory issues also prevented the completion of GFW-p2 on Tiny. Our proposed approach
(FSDS) achieves at least 97% NMI of MCFS while operating in a highly scalable streaming setting.

2000 3000 4000 5000 6000 7000 8000 8293
0.2

0.3

0.4

0.5

0.6

Samples in Time Order

N
M
I

 #f = 200

 #f = 500

 #f = 1000

fixed features (200)

(a) Reuter21578

2000 3000 4000 5000 6000 7000 8000 9000 9394
0.3

0.4

0.5

0.6

0.7

0.8

Samples in Time Order

N
M
I

 #f = 200

 #f = 500

 #f = 1000

fixed features (200)

(b) TDT2

2000 4000 6000 8000 10000 12000 14000 16000 18000
0.2

0.3

0.4

0.5

Samples in Time Order

N
M
I

 #f = 200

 #f = 500

 #f = 1000

fixed features (200)

(c) 20Newsgroup

Figure 5: Concept drift test across time for FSDS. The results show that FSDS provides a stable performance
even in presence of inherent concept drift in the data stream.

2500
2000

1500

Size of Batch

1000
500

250
400

Size of Selected Features

800

1200

1600

2000

0.5

0.45

0.4

0.35

0.3
2400

N
M

I

(a) Reuter21578

2500
2000

1500

Size of Batch

1000
500

250
400

Size of Selected Features

800

1200

1600

2000

0.7

0.6

0.5

0.4
2400

N
M

I

(b) TDT2

2500
2000

1500

Size of Batch

1000
500

25025
50

Size of Selected Features

75
100

125
150

175

0.3

0.4

0.5

0.6

0.7

200

N
M

I

(c) USPS

2500
2000

1500

Size of Batch

1000
500

250
25

Size of Selected Features

50
75

100
125

150
175

0.6

0.5

0.4

0.3

0.2
200

N
M

I

(d) MNIST

Figure 6: Stability test for FSDS across different batch sizes and feature subset sizes.

200 400 600 800 1000
0.44

0.445

0.45

0.455

0.46

0.465

0.47

0.475

0.48

Size of Selected Features

N
M

I

g=1

g=2

g=3

g=4

Full

(a) Reuter21578

200 400 600 800 1000
0.63

0.64

0.65

0.66

0.67

0.68

0.69

0.7

0.71

Size of Selected Features

N
M

I

g=1

g=2

g=3

g=4

Full

(b) TDT2

200 400 600 800 1000
0.34

0.36

0.38

0.4

0.42

0.44

0.46

0.48

Size of Selected Features

N
M

I

g=1

g=2

g=3

g=4

Full

(c) 20Newsgroup

200 400 600 800 1000
0.18

0.2

0.22

0.24

0.26

0.28

Size of Selected Features

N
M

I

g=1

g=2

g=3

g=4

Full

(d) RCV1

Figure 7: Performance comparison of FSDS with different values of g.

store the entire data, and then use the data to obtain the
final top h features (we call this strategy Full). Even set-

ting g = 1, we already achieve about 91% NMI compared to
the Full (FSDS) at h = 200. As we increase g, the results

get better and it suggests that it could be enough to store
data restricted to the top O(h) features at each timestep to
enable further analyses.

6. CONCLUSION
We proposed an unsupervised feature selection algorithm

for handling high dimensional data points arriving in a stream-
ing fashion. Our algorithm uses ideas from matrix sketching
to generate a continuous low-rank approximation of the in-
put, which is then used in a regularized regression framework
to obtain the individual feature weights. The algorithm only
requires one-pass over the data, utilizes limited storage, and
operates in near-real time. Theoretical results and exper-
imental validation confirm that our proposed algorithm is
efficient in both space and time for the task of streaming
unsupervised feature selection.

7. REFERENCES
[1] C. C. Aggarwal, J. Han, J. Wang, and P. S. Yu. A

framework for Projected Clustering of High
Dimensional Data Streams. In VLDB, 2004.

[2] M. Belkin and P. Niyogi. Laplacian Eigenmaps and
Spectral Techniques for Embedding and Clustering. In
NIPS, volume 14, pages 585–591, 2001.

[3] D. Cai. Datasets. http://bit.ly/1IpMnAy.

[4] D. Cai, C. Zhang, and X. He. Unsupervised Feature
Selection for Multi-cluster Data. SIGKDD, 2010.

[5] S. Chatterjee and A. S. Hadi. Regression Analysis by
Example. John Wiley & Sons, 2013.

[6] A. Dasgupta, P. Drineas, B. Harb, V. Josifovski, and
M. W. Mahoney. Feature Selection Methods for Text
Classification. In SIGKDD, pages 230–239, 2007.

[7] M. Ghashami and J. M. Phillips. Relative Errors for
Deterministic Low-Rank Matrix Approximations. In
SODA, pages 707–717, 2014.

[8] G. H. Golub and C. F. Van Loan. Matrix
Computations, volume 3. JHU Press, 2012.

[9] X. He, D. Cai, and P. Niyogi. Laplacian Score for
Feature Selection. In NIPS, pages 507–514, 2005.

[10] C. Hou, F. Nie, D. Yi, and Y. Wu. Feature Selection
via Joint Embedding Learning and Sparse Regression.
IJCAI, 2011.

[11] H. Huang and S. Kasiviswanathan. Streaming
Anomaly Detection Using Randomized Matrix
Sketching. http://bit.ly/1FaDw6S.

[12] H. Huang, S. Yoo, D. Yu, and H. Qin. Diverse Power
Iteration Embeddings and Its Applications. In ICDM,
2014.

[13] H. Huang, S. Yoo, D. Yu, and H. Qin. Noise-resistant
Unsupervised Feature Selection via Multi-perspective
Correlations. In ICDM, 2014.

[14] A. Krizhevsky, V. Nair, and G. Hinton. CIFAR-100
Dataset. http://bit.ly/1chapl0.

[15] H. Li, X. Wu, Z. Li, and W. Ding. Online Group
Feature Selection from Feature Streams. In AAAI,
2013.

[16] Z. Li, Y. Yang, J. Liu, X. Zhou, and H. Lu.
Unsupervised Feature Selection using Nonnegative
Spectral Analysis. 2012.

[17] E. Liberty. Simple and Deterministic Matrix
Sketching. In SIGKDD, pages 581–588, 2013.

[18] F. Lin and W. W. Cohen. A Very Fast Method for
Clustering Big Text Datasets. In ECAI, 2010.

[19] C. Maung and H. Schweitzer. Pass-efficient
Unsupervised Feature Selection. In NIPS, 2013.

[20] J. Misra and D. Gries. Finding Repeated Elements.
Science of computer programming, 2(2), 1982.

[21] I. Ntoutsi, A. Zimek, T. Palpanas, P. Kröger, and
H.-P. Kriegel. Density-based Projected Clustering over
High Dimensional Data Streams. In SDM, 2012.

[22] S. Papadimitriou, J. Sun, and C. Faloutsos. Streaming
Pattern Discovery in Multiple Time-series. In VLDB,
2005.

[23] S. Perkins and J. Theiler. Online Feature Selection
Using Grafting. In ICML, 2003.

[24] A. Rahimi and B. Recht. Random Features for
Large-scale Kernel Machines. In NIPS, 2007.

[25] M. Shindler, A. Wong, and A. W. Meyerson. Fast and
Accurate k-means for Large Datasets. In NIPS, 2011.

[26] Q. Song, J. Ni, and G. Wang. A Fast Clustering-based
Feature Subset Selection Algorithm for
High-dimensional Data. TKDE, 25(1), 2013.

[27] A. Strehl and J. Ghosh. Cluster Ensembles–A
Knowledge Reuse Framework for Combining Multiple
Partitions. JMLR, 2003.

[28] A. Torralba, R. Fergus, and W. T. Freeman. 80 million
Tiny Images: A Large Data Set for Nonparametric
Object and Scene Recognition. TPAMI, 2008.

[29] J. Wang, P. Zhao, S. Hoi, and R. Jin. Online Feature
Selection and its Applications. TKDE, 26(3), 2014.

[30] J. Weston, A. Elisseeff, B. Scholkopf, and M. Tipping.
Use of the Zero Norm with Linear Models and Kernel
Methods. JMLR, 2003.

[31] D. M. Witten and R. Tibshirani. A Framework for
Feature Selection in Clustering. JASA, 2010.

[32] X. Wu, K. Yu, H. Wang, and W. Ding. Online
Streaming Feature Selection. In ICML, 2010.

[33] S. Xiang, X. Shen, and J. Ye. Efficient Sparse Group
Feature Selection via Nonconvex Optimization. In
ICML, 2013.

[34] S. Xiang, T. Yang, and J. Ye. Simultaneous Feature
and Feature Group Selection through Hard
Thresholding. In SIGKDD, pages 532–541, 2014.

[35] H. Yang, M. R. Lyu, and I. King. Efficient Online
Learning for Multitask Feature Selection. TKDD,
7(2):6, 2013.

[36] S. Yang, L. Yuan, Y. C. Lai, X. Shen, P. Wonka, and
J. Ye. Feature Grouping and Selection over an
Undirected Graph. In SIGKDD, 2012.

[37] Y. Yang, H. T. Shen, Z. Ma, Z. Huang, and X. Zhou.
l2,1-norm Regularized Discriminative Feature
Selection for Unsupervised Learning. IJCAI, 2011.

[38] J. Zhou, D. P. Foster, R. A. Stine, and L. H. Ungar.
Streamwise Feature Selection. JMLR, 7, 2006.

[39] X. Zhu, Z. Huang, Y. Yang, T. H. Shen, C. Xu, and
J. Luo. Self-taught Dimensionality Reduction on the
High-dimensional Small-sized Data. Pattern
Recognition, 46(1), 2013.

[40] H. Zou and T. Hastie. Regularization and Variable
Selection via the Elastic Net. Journal of the Royal
Statistical Society, 67(2), 2005.

	Introduction
	Preliminaries
	Feature Selection on Streams
	Problem Formulation
	Our Motivation and Framework
	Lasso (p=1) vs. Ridge (p=2) Regression
	Matrix Sketching for Feature Weighting
	Theoretical Comparison (Bounding "026B30D wt - t "026B30D)

	Discussion on Normalization

	Related Work
	Experimental Analysis
	Experiment Setup
	General Performance Comparison
	Scalability Comparison
	Stability under Concept Drift, Batch Sizes
	Efficient Storage

	Conclusion
	References
	ADP524B.tmp
	BNL-108233-2015-CP
	Unsupervised Feature Selection on Data Streams
	Hao Huang
	Presented at the 24th International Conference on Information and Knowledge Management
	Computational Science Center
	Brookhaven National Laboratory

