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We discuss the linear and two-photon spectroscopic selection rules for spin-singlet excitons in monolayer
transition metal dichalcogenides. Our microscopic formalism combines akfulgpendent few-orbital band
structure with a many-body Bethe-Salpeter equation treatment of the electron-hole interaction, using a model
dielectric function. We show analytically and numerically that the single-particle, valley-dependent selection
rules are preserved in the presence of excitoffiects. Furthermore, we definitively demonstrate that the bright
(one-photon allowed) excitons haseype azimuthal symmetry and that dgskype excitons can be probed via
two-photon spectroscopy. The screened Coulomb interaction in these materials substantially deviates from the
1/gor form; this breaks the “accidental” angular momentum degeneracy in the exciton spectrum, such that the
2p exciton has a lower energy than theeéXciton by at least 50 meV. We compare our calculated two-photon
absorption spectra to recent experimental measurements.

I. INTRODUCTION mine the excitonic absorption. We will then in SEc] Il ana-
lyze the linear optical properties and present selection rules,
The transition metal dichalcogenides (TMDCs) are a fam 20 In the absence and presence of excitects, defini-
ily of layered semiconducting crystals that includes MoS tively finding thats-type excitons are optically bright. Lastly,
MoSe, WSy, and WSe. Isolated monolayers of TMDCs in Sec[TV we will calculate the two-photon absorption sig-
have been recently investigated for two major reasons. Firspgl which will be shown to probp-type excitons and we will

the emergent direct band-gap occurs at the corners of th%lsc:uss some of the implications for recent experiments. We

hexagonal Brillouin zone (so-called ‘valleys) and the conclude in Se€.V, and make connection to other recent theo-
nearby band structure topology leads to valley-dependent 0|5-et'ca| works. We‘?ote that a preliminary version of this work
tical selection ruleé-® Second, the carrier confinement and appeared in Ref. 21.

reduced dielectric screening leads to large many-body ef-

fects, such as the formation of strongly bound excitoh$,

trions®11=13 and biexciton¥ with very large binding ener-

gies. A unified understanding of the optical properties must

treat both of these aspects on equal footing, and significant

effort is now being focused on investigating the detailed spec-

troscopy of excitons in monolayer TMDCs.

In the ongoing fort to understand excitons in these ma- Il. SINGLE-PARTICLE BAND STRUCTURE
terials, multiple spectroscopic techniques have been em-
ployed, including reflectanc®i®1® photoluminescence exci-
tation spectroscop§ scanning tunneling spectroscoBy:? We will consider two models for the single-particle band
and two-photon luminescen&é?2°A rigorous knowledge of  structure.  First, we will consider a widely used long-
the spectroscopic selection rules for excitons in monolaye\l,'\,ave|ength, two-band mod2lin particular, this minimal
TMDCs is crucial for the proper interpretation of these andmodel allows for a largely analytical treatment, which ex-
future experiments. In this paper, we develop a model-baseglhses many of the subtleties of the theory, including selection
framework which is SﬁiCiently detailed to pI‘OVide quantita' rules and excitonféects. Second' we will use a recenﬂy pre-
tive results, but also sliciently simple to allow precise state- sented nonlinear three-band mo&alyhich requires a numer-
ments about symmetry-determined selection rules. We dqca| treatment but captures higher-ordéfeets. This also en-
scribe the connection to our previous work based on an efsyres that our conclusions are generally valid and not specifi-
fective mass theory of excitoisand identify the key micro-  cally dependent on the simplified two-band picture. For sim-
scopic physical factors that determine the properties of excipjicity we will henceforth neglect spin-orbit coupling, though
tons and their interaction with photons. We also provide thet can be straightforwardly included in the single-particle de-
first theoretical treatment of two-photon absorption in MONO-scription3:22:23 Specifically, in all models of the band struc-
layer TMDCs. ture, the spin projectios, is still a good quantum number in

The outline of the paper is as follows. In SEg. Il we will the presence of spin-orbit coupling. In this sense, the follow-
discuss simple microscopic models of the single-particle banthg discussion applies to theexciton (and not th8-exciton)
structure in monolayer TMDCs, and in particular we will an- and conventional factors of two for spin will not appear. At
alyze the transition matrix elements whichmpletelydeter-  this level of theory, the formalism for thB-exciton is identi-
mine the independent-electron absorption padially deter-  cal, and its contribution is simply shifted to higher energies.
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A. Two-band model

The first model considered has the form of a conventional ~

two-band, massive Dirac Hamiltonian, 1 — pET
. 1 — 2-band
H:(k) = Bg/2 alrGx—iay) ) (1) ——- 3-band

at(rgy + iqy) -Ey/2

Energy (eV

The variabler = +1 indexes the two “valleys,” known as the
andK’ (or K and—K) points, which occur at alternating cor-
ners of the hexagonal first Brillouin zone. The Hamiltonian T K M r

has been linearized in the wavevectdifglience with respect

to the neare¥ point, i.e.q = k— K. Thisis agappedversion FIG. 1. Single-particle band structure of Mofredicted by a lin-
of the conventional graphene Hamiltoni&rnin graphene, the earized two-band model (blue solid) and a non-linear tiaeed
spinor basis corresponds to carbmrorbitals on the two dis- model (red dashed) compared to first-principles densitytfanal
tinct sublattices; in the TMDCs, the basis correspondséo ththeory with the local density approximation (DFT, soliddki
transition metald,) = |¢¢) orbital and the metal symmetry-
adaptedd,._y2) + it|dyy) = |#y) orbital. The above Hamil-

tonian was first used for TMDCs by Xiao et-awho pre- Fig.[, the band structure predicted by these two models is

dicted opt|cal selectloq rules Ieadllng to splln-valley dmg_p compared to the band structure calculated by density func-
Such spin-valley coupling was quickly confirmed experimen-.

tally, by monitoring the circular polarization of photolimes- tional theory with the local density approximation.
cencel®
The eigenvalues of the two-band Hamiltonian are

real, which is stficient to ensure continuity ikR-space. In

C. Transition matrix elements

1
Eon(k) = +5 \[Ef +4(ata)? = xe(k) (2) An analysis of optical selection rules requires the momen-
. tum matrix elements between single-particle states. In the
and the eigenvectors are present model Hamiltonians, the momentum matrix elements
1 ‘ normal to the layer are zero by symmetry. Here we focus on
Weg) = — [ Vai(k)lée) + \/a_,(k)e”"”“|¢§>] (3a) the momentum in the plane. By using the commutation rela-
' V2 tionp = (—-im/A)[r, H], we can write these momentum matrix
W) = 5 [ VTR0 + Ve @) cemensas
PY(k) = = el [, H] W)
wherea. (k) = 1+ Ey/[2¢(k)] and tangs, = gy/0x. Therel- n (4)
ative phase appearing within each eigenvector is associated _m (Ece — Evi) WvielVicler)
with an electronic “chirality” (related to Berry’s phasghich h

is well-known in graphen&"2°Note that theoverallphase of  where we have used tiespace representation of the position
each eigenvector is arbitrary, and the phase conventiosectho operatory = iV,,. We can now use a generalized Feynman-
here is such that the first element of each eigenvector idypureHellman theorem to write this as

real. m
P"(k) = %(WV,kaH(k)Wc,k) %)

B. Three-band model (note that this expression neglects the on-site, intrazito
contribution?’ however this vanishes here fdr— d transi-
A more detailed Hamiltonian — using three bands derivedions). For the simple two-band Hamiltonian, this gives
from the transition metal,2), |dxy), and|d,._,») atomic or- 0 (% — 00
bitals — was given recently by Liu et 2. The form of the ma- VieH(k) = oo g (X 1) . (6)
. : e at(rX +iy) 0
trix elements and material-specific parameters can be found

in Ref.122. We note than in addition to using three bands inThe appropriate matrix element can then be taken between the
stead of two, this Hamiltonian hamt been linearized with  conguction and valence band eigenstates of the Hamiltpnian

respect to wavevector near theandK’ points, which gives  yie|ding a transition dipole vectaP(k) with linear x- and
a more accurate description throughout the entire Brifloui y. 5oarization components

zone. While it cannot be so easily diagonalized analyticall

the Hamiltonian can be straightforwardly diagonalized nu- PY(k) = T@t [a (k)e ™ _q (k)eimk] @)
merically. For phase consistency in later calculationsewe X 2 " - ’

force the same phase convention as for the two-band eigen- PYC(k) = iﬂt ke ™k 4 o (k)d™x 8
vectors, i.e. that the first element of each eigenvectorrislpu v () h [a+( ) a-(k) ] ®)
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FIG. 2. Valence to lowest conduction band momentum matexnents for a linearized two-band model (top) and a non-litlerze-band
model (bottom). Blue is positive, red is negative, and wliteero. The results are qualitatively very similar in theriediate vicinity of the
K andK’ points, but difer elsewhere in the Brillouin zone.

The same procedure can be done for the three-band Hamiltshown in Fig[B. Note that while the matrix elements them-
nian, by taking the gradient and calculating (numericdlyy)  selves have an ambiguity in the phase (i.e. they are not ob-
appropriate matrix element between conduction and valencgervable), the squared matrix elements are completely inde
bands. A comparison of the real and imaginary parts of the@endent of the phase convention. In $ec. ]Il B, we will show
x- andy-components of the two fferent models of the band how the nodal structurepftype symmetry) of the momentum
structure is shown in Fif] 2 throughout the entire first Brilh ~ matrix elements is canceled, leading to brighype excitons
zone. which still respect the valley selectivity

Valley-dependent selection rules have been shown to arise
specifically for the case of circularly polarized lighEor cir-
cular polarizations, the above expressions can be combined

give, in the two-band case, I11. LINEAR OPTICAL PROPERTIESAND SELECTION
RULES
1
P¥(k) = — | PY(k) + iPY°(k)
* V2 [ * Y ] ©) In general, the transition probability per unit time is give
_ mat( =" )gi% by
=F—|1F7 ,
V2n 2s(k) o
- = 2 _E -
leading to the valley-dependent intensities, W(w) = 7 ZF: Mirl”6(Er — B — ) (11)
2 mPadt? Ey \2 . . . .
|P‘f(k)| = > (1¢ —3 ) . (10)  whereVg is the matrix element which couples the initial and
2h 2¢(k) final states with energieg, and Er. For the linear (one-

Near theK andK’ points, 2(k) — Eg, such thatPi(k) o« photon) abso_rption,\_/ve hate= (_eN!””C)"'ﬁ’ \_NhereA is the

. 2 ) i T vector potential and is the polarization. Within the presently
(1F 7)e*’* and|PL(K)|" oc (1 ¥ 7)? i.e. circular polarization  considered model Hamiltonians, symmetry excludes cogplin
can selectively excite electrons at tkeor K’ point. For ex-  tg photons with electric vector polarized perpendiculahi
ample, right-handed circular polarizatiodfi(k), selectively  plane of the monolayer. Here we explicitly consider the case
excites at theK (v = +1) point. Again, this analysis can be \ith electric vector polarized in the plane. We will evalu-
carried out numerically for the three-band model. A compari ate this expression first in the independent particle pécamd
son of the the selection ruIe|§2‘f(k)|2, for the two models is then in the presence of excitoniffects.
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|Pye(ke)|? |Pe(k)|? where we have taken the infinite-system limit. Let us specif-
1.0 Jpipialgdt- -l L ) O Lol - ically consider the linearized two-band model with right-
] F ] - handed circular polarizatiord - P¥°(k) = P'(k), for which
05 - 0.53 n we can carry out the integration in Ef.{15) semi-analytycal
& ] C ] C Considering only one valley (say= +1), we can change to
L 0.0 F 0.0 E 2 !
. n - - polar coordinates about thépoint,
-0.54 .05 r
] g 1 - 4n€? [
K VC, 2
. - . - & (w) = —— kIPY“(K)|“6(2¢(K) — hiw)dk. 16
s T 4 K@) = s [ PRS0 - )l (16)
-1.0 -05 00 05 1.0 -1.0 -05 0.0 05 1.0 _ _ o _ _
L (2 L (2 Note that by integrating out to infinity, we are incurring an
= () = () error at large wavevectors (energies). Since the dispersio
(k)2 pre(k)[2 lation is monotonic, we can change variabletk = ede/a’t?,
|Pe(k) |P2e(k)| . .
1.04 - 1.04 - and use the squared matrix element from above to find
: g : g 1€ [ Eg\?
= 0.5: - 0-5: n sg(a)) =22 fdgH(Zs - Ege (1+ Zg) 6(2e — hw)
s ] C . C w* Jo
5‘/ 0.0+ - 0.04 - e E.\2 17)
A : ] I = —0(hw - Eg)[1+ 2| .
-0.54 - -0.51 C 2hw (e g)( * hw)
-1.0 et L0 e Accounting for the other valleys;(w) = &f(w) + &5 (w),

-1.0 -05 00 05 1.0 -1.0 -05 0.0 05 1.0 yields

ks (2F) ks (2F) 2
e2(w) = %O(Ew ~Ey)

Eg\? Eg\?
) . (1 + —g) + ( - —g) }
FIG. 3. Valence to lowest conduction band momentum matrix el hw hw
ements squared, for circular polarization, for a lineatizgo-band 2
model (top) and a non-linear three-band model (bottom).ciBla _ ﬁ@(hw _E )(1+ Eg ]
positive and white is zero. The results are qualitativelgy\smilar fiw 9 (hw)? )’
in the immediate vicinity of th& andK’ points, but difer elsewhere
in the Brillouin zone. At energies just above the gap, the dielectric functionkis i
that of a conventional 2D semiconductor, i&s>(w) = cst,
but at higher energies it behaves like graphene (due torthe li
A. Independent particle absorption ear dispersion), i.avex(w) = cst However, the linear disper-
sion is unrealistic for TMDCs, as can be seen in the full band

For an uncorrelated initial ground std@ and an uncorre-  Structure (Figl11).
lated final excited stateikc\,,k|0), it is simple to show

B. Exciton absorption and the BetheSaIpeter equatio
V F = —<0|A * pCT Cvk|0> = _A * P V(k) (12)
! mcC L mcC ’

We now consider the spin-singlet optical properties inelud
ing the excitonic &ects arising from the strong electron-hole
interaction. Thecorrelatedexcited states within the single-

Er — B = Eo(k) - Bu(k). (13) excitation approximation can be written as
and therefore BZ i
Y on Xy =" > Ak(k) ¢, CuklO), (19)
W(w) — f (ren_'?‘:) ZlA . Pcv(k)|2 k VvC
cvk (14)  where |0) is again an uncorrelated (determinental) ground
x 8(E¢(k) — Ey(k) - Tw). state. This form for the excited state wavefunction underli

the time-dependent Hartree-Fock and Bethe-Salpeteriequat
(BSE) formalisms; here we will pursue the latter, which is a
many-body perturbative theory in the screened two-particl
422 a?K interaction. For a perio_dic crystal exciton Wavefunction,
g2(w) = —5— Zf =3 A PY(k)? Eq. (19), the BSE is an eigenvalue probf8ior the exciton
mPw? £ ez (27) (15)  energyEy,
X 6(Ec(k) — Ev(k) — hw),

The imaginary part of the dielectric function follows*&s



1 BZ
ExAlk) = (Eci ~ Eur) AGR) + 7 D D el KW s e s )G o (K). (20)
k' v.C

The electron-hole interaction kern€f" is the sum of a frequency-dependent screened Coulomb dtiteraand an unscreened
exchange interactio#?,

Wtk KNy wotho k) = = f d’r f Ay (P )We e (P)W(T, 7, )k (7)1 (1) (21a)

W rte Ky oo i) = f dr f dr s (P (P) e = 7| N b () (7). (21b)
If we (i) neglect the exchange interaction, (ii) neglect tteguency-dependence and local-fiefteets of the screened direct
interaction, i.eW(r, ', w) ~ W(r — ', w = 0), and (iii) make a ‘zero dlierential overlap’ approximation for the atomic orbitals,

we find

<l/’v,kl/’c,k|KEth’,k"/’c’,k’) & _<'ﬁc,k|¢’c’,k’><'ﬁv’,k’|¢/v,k>w(k - k/)- (22)

In the above, we have neglected the possible orbital streibtuthe screened interactio; (r — ).
|

At this point, we wish to emphasize that the orbital overlapCoulomb interaction that weakly break certain degenesacie
prefactor in the screened interaction is crucially impartds ~ (see below). In this case, the spectrum of Hgd. (25)[add $26) i

an explicit example, in the two-band picture, we have no longer identical to that of the BSE with the screened inter
1 action given in Eq[(22).
Tt N = 2[4 ) It remains to be shown whether the exciton wavefunctions
Werler) 2[ @ (k) (k') (23a)  of the original problem, as described by the BSE (25), have
+ \/a_(k)a_(k')e“f("’k‘%’)], the same selection rules or the same spatial symmetries as th
1 wavefunction of the real-space Wannier equation (26). Fo an
W g Wl ) = —[ Va_(k)a_(k) alyze the spatial symmetries, we can calculate the reaespa
U2 , (23b)  wavefunction corresponding to the solution of the BSE, with
+ \/a+(k')a+(k)e”(¢’“_¢’“’)]- the hole position fixed at the origin. We find
As before, near th&k and K’ points, 2(k) — E,, [i.e. —0)= X *
a.(k) ~ 1 anda_(k) ~ 0], and in this limit, ’ Fxlre.m =0) = Zk: Aclkler(relu,(0)
X Sitgr ke _ RX (27)
W) ~ 1 (24a) ~ ) Ak)e ke = Ri(re),
. k
<'ﬁ\T,k/|'ﬁ\T,k> ~ @T0e—0K), (24b)

_ ) _ demonstrating that the wavefunction which solves the real-

The BSE, Eq.[(20), then yields a Wannlie, two-band pic-  space Eq[{26) is indeed (approximately) the same as the real

ture with an unusual phase factor in the screened InterB,CtIO space BSE wavefunction. At a less approximate |eve|’ the
spatialsymmetriegs, p, d, etc.) will be identical. This is one

ExAJ(k) = (Eck — Eui) Al(k) of the main conclusions of this work.
184 Nt On ) AX (L (25) To determine the selection rules, we now consider the op-
~A ZW(k — k)TN (K. tical absorption in the presence of correlated excitonic ef
K fects. Assuming as before an uncorrelated initial (ground)

statell) = |0), but now using a Wannier-like final exciton state

i i —iTe H H H
Multiplying through bye™"? gives a conventional Wannier IX) as in Eq.[ID) gives

equation for the pseudo-wavefunctidfj(k) = e 7 A% (k).

If the bands can be approximated as parabolic, this means tha Lo X ve
the energyspectrunof the BSE is identical to that of a corre- (HA-pIX) = Z Avlk)A - PH(E), (28)
sponding real-space Wannier equation with a screened inter k
actionW(r), as we have employed in previous wér, which leads to the dielectric function
1 ~ ~ 2
— V2 W) | AX(r) = |Ex - Eq| AX(r).  (26) 4r2e?
[ 2u Rilr) = [Ex - Bg| A £2(0) = —— DDA - PY(k)| 6(hw — Ex). (29)
X k

However, as explained in a recent work by Srivastava
and Imamogl#? systematically continuing the expansion of Recall that for right-handed circular polarization, thermem-
Eqgs. [2%) for smalk — k' leads to additional terms in the tum matrix element near th€’ (r = —1) point is nearly zero
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— Two-band A with yop = 6.6 A for intrinsic MoS. Results are presented
——- Three-band 1 for a 120x 120 sampling of the Brillouin zone, which we have
_ found necessary to converge the binding energy to roughly 0.
1 eV accuracy, in agreement with the fubl initio BSE study
- presented in Ref| 7. Specifically, for Mpthis sampling gives
1 a 1s exciton binding energy of 0.41 eV, however an extrapo-
lation to the infinite sampling limit gives approximatel\bQ.
eV, in good agreement with our prior result obtained in Ref. 6
(0.54 eV). In Fig[4, the conduction bands have been rigidly
shifted to increase the band gap to 2.41 eV, such thatshe 1
exciton peak occurs near its experimentally observed \a@flue

: 2.0 eV (due to the spin-orbit interaction, this peak is atyua
Energy [eV] split into the so-calledA and B peaks at about 1.9 and 2.0
] ] ) ] eV respectively). An important conclusion to be drawn from
FIG. 4. Imaginary part of the dielectric function for Mg&alculated Fig.[ is that the more realistic band structure generatis on

in the presence of excitonidfects. The band gap has been rigidly - . i
increased to 2.41 eV such that the éxciton peak occurs near 2.0 minor quantitative dferences iz(w), compared to that gen
erated by the two band model.

eV (spin-orbit splitting intoA andB peaks is neglected, as described

in the text). A Gaussian broadening of 50 meV (FWHM) has been The labeling of states in Fid.] 4 is done via inspection
applied to all peaks. of the wavefunction, in either reciprocal or real-spacer Fo

example, in Fig[b we show the selection-rule-determining
productAf,‘C(k)P"C(k) [which is closely related to the pseudo-

g2(w) [arb. units]

and near th& (7 = 1) point it is given by wavefunctionA%(k)] for right-handed polarization. The sym-
metries of the exciton wavefunctions are apparent, anddhe v
Vamat y e ; !
- PY(k) = P"(k) ~ gt = pyeion (30) ley selectivity is also recovered in the presence of exaton
h effects.
Therefore we can restrict our attention konearK, which Focusing on the features in teg(w) spectrum that derive
gives from thes-type exciton states, the Rydberg series is nonhydro-

, . genic, as discussed in detail in Refs. 10 and 16. This follows
X - pIX)y = Pg Z AX(k)e % = PoAS(r =0)  (31)  from the unusual form of the screened Coulomb interaction
k~K for these monolayer thick materials. In particular, it dees
substantially from the /lsgr form that dominates in conven-
4222 tior]al semicondgctors. The Hamilto_nian with this Iat‘t‘ae'm
T 2o Z |Avc(7“ _ O)|2 5(hiw — Ex), 32) ac,t,lon has additional symmetry Whl(_:h leads to the “acciden-
mPw < tal” angular momentum degeneracy in the hydrogen spectrum.
Here that symmetry is broken: we find that for a given prin-
which is jUSt the usual Elliott formula for the excitonic ab- Cipa| quantum number, the |arge|’ angu|ar momentum states
sorption2? In particular, the selection rules are conventionalagre more strongly bound, i.eE;s < Ezp < Ezs < Eag and
in that they are determined by the behavior of the wavefuncso on. The same behavior has been recently observed in a
tion at the origin in real-space, leading to bright statewi fylly ab initio BSE calculatior?? and the present work pro-
s-type azimuthal symmetry. We emphasize that the phase fagides a simple physical explanation for this behavior imter
tor appearing in the momentum matrix element is essentiallyf the efective screened interaction (see also Refs. 32 and 33
cancelled by the conjugate phase factor in the exciton enveor similar findings). To verify this unconventional distisn
lope wavefunction, which itself originates from the chanfie  of dark exciton states requires a nonlinear spectroscogie m
basis in the screened interaction, EEql (22). Thereforegmigt  surement, which we discuss in the next section. Furthermore
can the excitons be labeled in analogy with the hydrogen s&we also note a small splitting of thep23d, and 3 dark exci-
ries in terms of their spatial symmetries but, to lowest orde ton states. In particular, the 20 meV splitting of the 2ates
they also obey identical selection rules. This is the secongs in good agreement with recent resdf$2 As mentioned
main conclusion of this work. before, Srivastava and Imamoglu have traced this degenerac
As usual, the same analysis cannot be done analyticallyreaking to the orbital overlaps in EG.{22) and explained th

on the three-band model, but it can be straightforwardly careffect in terms of Berry curvature in the single-particle band
ried out numerically. The dielectric function calculateid v  structure®®

Eq. (29) for the two considered band structure models of

MoS; is plotted in Fig[%; in particular, the orbital overlaps

in Eq. (22) are calculated numerically, without the approxi IV. TWO-PHOTON ABSORPTION
mation given in Eqs[{24). As described in Réfs. 6 land 10, the

screened interaction used in the calculations is given by

and therefore

&2(w) =

Our theoretical framework for the two-photon absorption
2n€? essentially follows the early work of Mah#nfor 3D semi-

W(k) = k(1 + 27y20K) (33) conductors and Shimi2# for 2D quantum wells including



Ay (k) Pre(k) A3 (k) Pre(k) Slater determinant and thatis diagonal in reciprocal space.
O 0 ——— To have a nonzero Ed.{B5) requires that the real-space exci-
] F 1 : ton wavefunctionA™ andAM have orbital angular momenta
051 £ 053 n which differ by +1; this is the same two-photon selection rule
8= 001 F 001 E as found in conventional semiconductors including conside
2] F ] F ation of exciton &ects. Combined with the result of the pre-
0.5 L 053 o vious section — that one-photon absorption produeggpe
] n ] - excitons — we conclude that two-photon absorption produces
-1.0+ e 1.0 et only p-type excitons. With these results, the two-photon ab-
-10 -05 00 05 10  -1.0 -05 00 05 10 sorption essentially follows the early work of MaR4afor 3D
ke (25) ke (27) semiconductors or Shimi2ufor 2D quantum wells.
The primary complication in the evaluation of two-photon
AZe(k)Pe(k) A3 (k) Pre (k) absorption is the evaluation of the internal sum over in&rm
e a0 — diate states in EqL(84). We follow the approximation intro-
] : : : duced by Maha# and used by ShimiZi that allows the sum
057 F 057 q to be eliminated with a completeness relation. Explicitly i
als 0.0_5 _ 0 oé d co_rporating the above result_s, the first term in Egl (34) @n b
o ] E ] . written as (the second term is analogous)
o5 - :' Al =0 ()
_1.0: IIIIIIIIIIIIIIII F _1_0: IIIIIIIIIIIIIIII F _Ihp de Z ECM — EI A VTA\/C(T)
10 05 00 05 1.0  -1.0 05 0.0 05 1.0 . (36)
2 2 —1hto AF
ke (5) ko (3F) ~ E, —(Ep) - Ficos [ VrAvc(T)]T:O

FIG. 5. XRecipvrgcaI space plots of the selection-rule-titeing  \yhere(E,) is an average intermediateype) exciton energy

productA(k)P*(k). In the presence of right-handed circular po- i ced to facilitate the (complete) sum over interraésli

larization, it is seen that excitons are only created atipmint, and states; for simplicity we will henceforth s&E,) to zero as its

not at theK’ point, as was found in Refl 3 and in SEc. JIC in the 7 > ™ f plicity ol al h ']3 |

absencef exciton afects. primary influence is to simply alter the prefactor. In costra
to the hydrogenic exciton case, where further results can be
obtained analytically, the matrix elements here must bé eva

explicit consideration of excitons. For a two-photon piss;e uated numerically.

the transition rate is again given by EQ.J11), except we now The two-photon transition rate is thus given by

have two perturbing fieldsji = A\ - p (i = 1,2), whereA

. . ; A ) e \4

is the vector potential); is the polarization, andw; is the W(Q) = 27h (_) (A1A9)? (hPg)?

photon energy. The matrix element of the perturbation can be

evaluated by a sum over intermediate stftés )\1 v, Avc(T)] 2

. R X +{le 2| 5(hlQ-E

Vie = (i)zAlAZZ[<I|Az~p|M><M|>\1~p|F> Z Eg - fiws ‘ (62~ Er)

mc - Evm — E —hwy (34) (37)
(A1 - PIMXMIA, - pIF) | wherehQ = fhiw +hiw,. The simplest case to consider is when

Em =B - hawr A1 = A2 andhw; = hw; ~ Eg/2, which gives

The two-photon spectroscopy of single-particle stategvs t “E o2

ial, and so we restrict our analysis to the excitonic caseénAs W(Q) = Wo Z P\ : VT‘A\/C(T)L':O S(hQ ~ Er) (38)

F

the one-photon exciton absorption, Hg.l(31) holds for the ma

trix element connecting the ground aimdermediateexciton  \where

states. In contrast, the matrix element between two exciton

states (intermediate and final) is 32! ALASPS

Wo = (39)
MPCIE2
(MIAz-pIF) = 7 )" Al (k) - kAL(K) ’
k

If both photons have the same circular polarization, thén th
- AM* (1\a=17¢k ) . . Jo AF iTor experiment probes valley-selectipeype excitons, which are
¢ Z A (k)72 - kA(k)e (35) dark in the linear measurement. Using photons with opposite
. . polarizations would create-type excitons in both valleys.
= —ihfdzf ()AL - Ve AL (r). Motivated by recent nonlinear spectroscopic measurements
on WSe (Ref.|9) and WS (Ref.[19), in Fig[6 we show the
In the above, we have restricted the analysis to two banes ( results of a numerical evaluation of EJ.138) for these twe ma
and used the facts that the expectation valup &f Zero in a  terials; the exciton wavefunctions and their derivativaseh



been obtained from the real-spadeetive mass treatment Abs theory —— TPA theory

of the two-band model (i.e. the small splitting of tipeex- Abs expt * TPPLE expt
citons is neglected). The agreement with experiment, fén bo — T T T T T T T T T T T T
the linear and nonlinear response, is seen to be quite good. " (@) WSe

In the calculations, we have used the same screening length® 10 |

x20 = 7.0 A for both materials, which yields an exciton bind- 5 08 -
ing energy of 0.48 eV (in accord with our previous ref)lts & |
We note that this exciton binding energy is slightly lardert % 0.6 |
that determined in Refsl 9 and 10 (0.37 and 0.32 eV for WSe 5 i
and WS respectively). g 04r
In the narrow linewidth limit, the two-photon absorption £ 0.2 -
identifies thep-type excitons with energies slightly below that L
of the corresponding-type exciton. For a larger linewidth, 0.0 TR A s s s -
the 2p transition is still resolved and responsible for the 15 16 17 18 19 20 21 22

main peak seen in experiment, while the remaining transi-
tions merge to yield a weak feature before the continuum on-
set. Importantly, ratio between the Deak height and the
higher-energy signal (near the continuum onset) is detexci

by the spectral linewidth. It is thus encouraging that onor-si
ulated spectrum simultaneously reproduces tphdirtewidth

and this intensity ratio; the required broadening suggésts

Intensity [arb. units]
©c o r
» 0] o

= .

it should be dfficult to observe the Btransition at this resolu- 0.
tion. This leaves open the origin of the small feature obsgrv 0.2
near 2.5 eV in the experimental spectrum for WS -
Finally, we point out that a recent study on VWSes- 0-01 o » 2 : "3

ing one- and two-photon photoluminescence excitation-spec
troscopy?® has identified the 2and 2 transitions to have the Energy [eV]

same energy to meV accuracy. This is in quite stark contrast

with the results of the present work, which suggest that théIG. 6.  Two-photon absorption (TPA) intensity for monolaye
2p exciton should be lower in energy lay least50 meV. We () WSe and (b) WS evaluated numerically with Eql_(B8) (blue

hope that future work, both experimental and theoretical, i lines). The spectra have been artificially broadened wittaasSian
devoted to investigating this discrepancy linewidth (FWHM) of 80 meV (thicker line) and 20 meV (thinner

line). The experimental two-photon photoluminescencdtation
(TPPLE) spectrum for WS€Ref.|9) and WS (Ref.[19) is included
for comparison (blue circles). The theoretical linear apson spec-
V. CONCLUSIONS trum from the same model (FWHM of 50 meV) is overlaid for refer
ence (grey lines) along with the experimental result (giestes) for

In this work, we have expanded th&eztive mass theory WS& (Ref.9) and W (Ref.[15).

presented in Refs) 6 and|10 to include a fuligependent
model of the band structure, in harmony with other re-
cent work:32:36 This extension allows for deviations from servation will be key in future analyses of two-photon spec-
parabolicity, including trigonal warping behavior whiclagh  troscopies on TMDCs. A recent manuscript contains results
been emphasized in other conte3&g’ We find that two- and  from a fully ab initio BSE calculation on WSand also finds
three-band models of the single-particle band structure gi this peculiar angular momentum behawidilt is clearly en-
nearly identical results for the exciton properties withisim- ~ couraging that our simple low-energy theory — featuring a
plified BSE formalism, suggesting that trigonal warping is few-band representation of the single-particle statesarap-
a secondary féect. Furthermore, our numerical results arepropriate treatment of screening with a model dielectriwfu
nearly identical to those of theffective mass treatment from tion —is able to correctly reproduce the optical selectidas,
our previous worlé:19 justifying its use in those contexts. We the character of bright and dark exciton states, the broken a
have definitively proved that spin-singlet excitons wattype ~ gular momentum degeneracy, the quantitatively large excit
azimuthal symmetry, which have been the most stuéifed, binding energies, and the spectral features of the nonlinea
are indeed the optically bright excitons. As in our previoustwo-photon absorption. In this regard, we believe the model
work 1216 we confirm that the disposition of bright exciton presented here represents perhaps the simplest predigtive
states is distinctly non-hydrogenic. imal model capable of unifying these wide-ranging featimes
The dark spin-singlet excitons have also been investigategionolayer TMDCs.
and found to exhibit another deviation from the hydrogen Note added -As discussed in the main text, a recent
model, in the form of a broken angular momentum degenerpreprint analyzes the impact of the band overlap factors in
acy. Using an approach similar to ours, the authors of Réfs. 3the dfective Coulomb interaction, Eq._(22), and systemati-
and 33 have identified the same qualitative behavior. This obcally develops the next order termskn- k', demonstrating
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