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Self-replicating systems based on information-coding polymers are of crucial impor-

tance in biology. They also recently emerged as a paradigm in material design on

nano- and micro-scales. We present a general theoretical and numerical analysis

of the problem of spontaneous emergence of autocatalysis for heteropolymers capa-

ble of template-assisted ligation driven by cyclic changes in the environment. Our

central result is the existence of the first order transition between the regime dom-

inated by free monomers and that with a self-sustaining population of sufficiently

long chains. We provide a simple, mathematically tractable model supported by nu-

merical simulations, which predicts the distribution of chain lengths and the onset

of autocatalysis in terms of the overall monomer concentration and two fundamental

rate constants. Another key result of our study is the emergence of the kinetically-

limited optimal overlap length between a template and each of its two substrates.

The template-assisted ligation allows for heritable transmission of the information

encoded in chain sequences thus opening up the possibility of long-term memory and

evolvability in such systems.
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I. INTRODUCTION

Life as we know it today depends on self-replication of information-coding polymers.

Their emergence from non-living matter is one of the greatest mysteries of fundamental

science. In addition, the design of artificial self-replicating nano- and micro-scale systems is

an exciting field with potential engineering applications1,2. The central challenge in both of

these fields is to come up with a simple physically-realizable system obeying laws of thermo-

dynamics, yet ultimately capable of Darwinian evolution when exposed to non-equilibrium

driving forces. Chemical networks of molecules engaged in mutual catalysis is a popular

candidate for such a system3–6. Information-coding heteropolymers In fact, the most suc-

cessful experimental realization of an autonomous self-replicating system involves a set of

mutually catalyzing RNA-based enzymes (ribozymes)7 that show evolution-like behavior8.

This is viewed as a major evidence for RNA-world hypothesis (see e.g. Refs. 9–11. )

The ribozyme activity requires relatively long polymers made of hundreds of nucleotides

with carefully designed sequences. Polymers of sufficient length can be generated e.g. by

traditional reversible step-growth polymerization that combines random concatenation and

fragmentation of polymer chains. Furthermore, the polymer length in this type of process

can be drastically increased in non-equilibrium settings such as temperature gradients12.

However, even when long chains are formed, the probability of the spontaneous emergence

of a sequence with an enzymatic activity remains vanishingly small, due to the exponentially

large number of possible sequences.

Thus there is a strong need for a mechanism that combines the emergence of long chains

with dramatic reduction of informational entropy of the sequence population. A promising

candidate for such mechanism is provided by template-assisted ligation. In this process

pairs of polymers are brought together by hybridization with a complementary polymer

chain serving as the template and eventually ligated to form a longer chain. Unlike the non-

templated reversible step-growth polymerization used in Ref. 12, this mechanism naturally

involves the information transmission from a template to the newly-ligated chain, thus open-

ing an exciting possibility of long-term memory and evolvability. An early model involving

template-assisted polymerization was proposed by P. W. Anderson and colleagues13,14. It

also has been subject of more recent experimental and theoretical studies15,17. In particular,

in Ref. 15 it has been demonstrated that, for a specific choice of parameters, a combination
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of non-template and template-assisted ligation can lead to the emergence of long (around

100 monomers) oligonucleotides.

In this work we carried out the theoretical and numerical analysis of a generic system in

which the polymerization is driven solely by template-assisted ligation. Unlike in the models

with significant contribution of non-templated concatenation, the emergence of long chains

in our system represents a non-trivial chicken-or-egg problem. Indeed, the formation of long

chains depends on the presence of other chains serving as templates.

In our model the “primordial soup” of monomers is driven out of equilibrium by cyclic

changes in physical conditions such as temperature, salt concentration, pH, etc. (see Fig.

1ab). Polymerization occurs during the “night” phase of each cycle when the existing het-

eropolymers serve as templates for formation of progressively longer chains. During the

“day” phase of each cycle all multi-chain structures separate and the system returns to the

state of dispersed individual polymers.

We consider a general case of information-coding heteropolymers composed of z types of

monomers capable of making z/2 mutually complementary pairs. For example, RNA is made

of z = 4 monomers forming 2 complementary pairs A−U and C−G responsible for double-

stranded RNA structure. Similarly, we assume that hybridization between complementary

segments of our generalized polymers results in formation of a double-stranded structure.

During the night phase of each cycle chains form a variety of hybridized complexes. The

ligation takes place in a special type of such complexes shown in Fig. 1b. The end groups

of two “substrate” chains S1 and S2 are positioned next to each other by the virtue of

hybridization with the third, “template” polymer T . Once the substrates are properly

positioned, the new covalent bond joining them together is formed at a constant rate. We

further assume that each of the intra-polymer bonds can spontaneously break at a constant

rate making the overall fragmentation rate of a chain proportional to its length. If one was

to leave a mixture of polymers in the night phase long enough, hybridization of multiple

chains would result in the formation of a gel-like aggregate shown in Fig. 1c, effectively

stopping ligation. During the day phase of the cycle (Fig. 1a) all structures of hybridized

polymers dissociate while keeping their stronger internal bonds intact. Thus the day phase

plays the role of the “reset” returning the system to a mixture of free polymers ready for

the next night phase.

One of the major assumptions used in our study is the Random Sequence Approximation
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FIG. 1. The schematic representation of fundamental processes in our system. a) The

”day” phase during which all hybridized complexes between heteropolymers dissociate and ligation

completely stops, while fragmentation continues in all phases of the cycle. b) The ”night” phase

during which some polymer chains hybridize and then undergo template-assisted ligation. The

ends of substrates S1 (green) and S2 (red) hybridized with a template T (purple) are ligated at a

constant rate with the newly formed bond shown in blue. c) If the ”night” phase is sufficiently long

heteropolymers enter the aggregation regime in which ligation effectively stops.
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(RSA) according to which each monomer in every chain can be of any type with equal

probability 1/z. On the one hand, the RSA greatly simplifies the problem and allows

us to get a concise analytical solution. On the other hand, in order to understand the

transmission of sequence-encoded information and the long-term memory in our system this

approximation need to be relaxed in future studies.

II. RESULTS

A. Optimal overlap length k0

In general the interaction strength between any two chain segments increases with the

overlap length k of the region over which they are complementary to each other. Here we

assume a simple linear relationship in which the binding free energy is given by ∆G0+k ·∆G,

where ∆G is the (negative) binding free energy between two complementary monomers, while

∆G0 is the initiation free energy.

The equilibrium hybridization probability emerges out of the competition between two

opposing kinetic processes of association and dissociation. On the one hand, the association

rate exponentially decreases with the overlap length k since the probability of finding a pair

of polymers with complementary sequences of length k, is proportional to 1/zk. On the

other hand, the dissociation rate between a substrate and its template also exponentially

decreases with k as exp(−k · ∆G/kBT ) due to greater thermodynamic stability of longer

complementary duplexes. The net result is that the hybridization probability is proportional

to exp(k · ε), where

ε = −∆G/kBT − log(z) (1)

is the effective parameter combining thermodynamic and combinatorial factors. Template-

assisted ligation happens at appreciable rates only for ε > 0, i.e. when ∆G < −kBT log(z).

For a finite time window t only the duplexes with short overlaps will reach this equilibrium.

Duplexes with longer overlaps have lifetimes much longer than t. Thus for them the hy-

bridization probability is limited by the association rate alone ∼ 1/zk. Therefore, the overall

hybridization probability as a function of k is strongly peaked (see Fig. 2 and Appendix A

for details). As time t increases, this peak slowly (logarithmically in t) shifts towards larger

values of k with its final value k0 set by either the end of the night phase or (in case of long
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FIG. 2. Time evolution of the hybridization probability. The probability that a segment of

length k is hybridized to its complementary partner (Eq. (22) in Appendix A) is strongly peaked

at k = k0 ∼ log t (see Eq. (23) in Appendix A). Different colors from red to violet correspond to

linearly increasing times t since the beginning of the night phase of the cycle.

nights) by the onset of the aggregation regime (Fig. 1c).

B. Major parameters of the model

In what follows we focus on slow dynamical processes taking place over multiple day/night

cycles. The main input parameter from the intra-night kinetics to the multi-cycle dynamics

is the hybridization cutoff length k0 discussed above. The multi-cycle dynamics can be

described in terms of time-averaged ligation and fragmentation rates, λ and β, respectively.

We define λ as the rate of bond formation provided that the ends of the two substrates are

already properly positioned next to each other due to their hybridization with the template.

We further assume that the characteristic fragmentation time 1/β is much longer than the
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duration of the day-night cycle ensuring the separation between short and long timescales

in the problem. Both λ and β are averaged over the duration of the day-night cycle with

the understanding that fragmentation happens continuously throughout the cycle (possibly

with different day and night rates), while the ligation only occurs during the night phase.

Thus λ implicitly depends on relative durations of night and day phases.

Let C be the overall monomer concentration including both free monomers and those

bound in all chains. In the case of random sequence composition, the population of het-

eropolymers is fully characterized by their length distribution fl, defined in such a way that

C · fl is the concentration of all polymers of length l. By this definition fl is subject to the

normalization condition
∑∞
l=1 lfl = 1. The fraction of polymers with a specific sequence is

then given by z−l · fl.

C. Detailed balance ansatz

For template-assisted ligation the effective two-polymer merger rate µ is given by the

ligation rate λ multiplied by the probability of hybridization of a template T with two

substrates S1 and S2 bring them into end-to-end configuration shown in Fig. 1b. The major

step in constructing an approximate analytical solution of the problem is the assumption of

a detailed balance between template-assisted ligation and fragmentation in the steady state

of the system:

βfl+m = µfl · fm . (2)

Here, the left-hand side describes the rate at which a chain of length l +m breaks into two

pieces of lengths l and m correspondingly. Conversely, the right-hand side is the effective

merger rate (hybridization + ligation) at which polymers of lengths l and m are joined to

form a longer chain of length l + m. Note that according to this description the rate at

which a polymer breaks into arbitrary two pieces is proportional to its length or rather its

number of intra-polymer bonds.

The detailed balance approximation is not a priory justified in driven, non-equilibrium

systems such as ours. However, for chains longer than the optimal overlap length k0 the

probability of hybridization and thus the effective merger rate µ saturate (see Methods for

derivation and details) . Once both µ and β are independent of polymers’ lengths, our

system becomes mathematically equivalent to the well known reversible step-like polymer-
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ization process for which the detailed balance approximation hold true by the virtue of laws

of equilibrium thermodynamics. In spite of this superficial similarity, our system remains

intrinsically non-equilibrium since the effective merger rate µ depends on hybridization be-

tween templates and substrates cycled through day and night phases as shown in Fig. 1ab.

In addition, the Eq. (2) is expected to break down for chains shorter than k0.

To validate our mathematical insights, the analytic solution shown below was followed by

numerical simulations of the system carried out without the detailed balance approximation.

The agreement between our analytical and numerical results for polymers longer than k0

confirms the validity of our approach.

The Eq. (2) is satisfied by the exponential length distribution:

fl = (β/µ) exp(−l/L̄) , (3)

where the characteristic chain length, L̄, is determined by the normalization condition∑∞
l=1 lfl = 1 or (β/µ)L̄2 = 1. This result was obtained by replacing the discrete sum

with the integral, which works in the limit L̄� 1 (see Eq. 26 in Appendix B for the exact

formula in which this approximation is relaxed). Hence, the characteristic chain length in

the steady state exponential distribution is given by

L̄ =

√
µ

β
(4)

D. Onset of autocatalysis

µ is an effective two-polymer merger rate proportional to the probability of finding two

terminal ends attached to a template followed by ligation. This probability depends on

(a) the overall concentration C and the length distribution of potential templates (b) the

strength and kinetics of interactions between the complementary segments on a template

and its two substrates.

For short overlaps k ≤ k0 the hybridization probability follows the equilibrium formula:

∼ exp(k · ε). This increase is followed by an abrupt drop for k > k0 (see Fig. 2). By

neglecting the contribution of overlap lengths longer than k0 one gets

µ = λ
(
C

C0

)2 k0∑
k1=1

exp(k1 · ε)
k0∑
k2=1

exp(k2 · ε) ·

·
∞∑

l=k1+k1

(l − k1 − k2 + 1)fl . (5)
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Here λ is the bare ligation rate, k1 and k2 are the overlap lengths between the tem-

plate and each of the two substrates. We also introduced the reference concentration

C0 = exp[−∆G0/kBT ] (in molar) absorbing the initiation free energy. The term (C/C0)2

reflects the fact that the template-assisted ligation is a three-body interaction involving two

substrates and one template. The last sum in the r.h.s. of the Eq. (5) is equal to the

probability of finding a template region of length k1 + k2 within a longer heteropolymer. It

takes into account that a chain of length l ≥ k1 + k2 has l − k1 − k2 + 1 sub-sequences of

length k1 + k2. Requirements of sequence complementarity between the template and each

of two substrates were absorbed into the definition of ε within the RSA.

Substituting the exponential distribution fl given by the Eq. (3), performing the triple

summation in Eq. (5), and neglecting the terms ∼ 1/L̄ (but not ∼ k0/L̄) within the expo-

nents approximately gives µ = λ(C/C0)2 exp(2k0 · (ε − 1/L̄))/ [1− exp(−ε)]2. Substituting

this expression into the Eq. (4) results in the self-consistency equation for L̄:

L̄ exp

(
k0

L̄

)
=

C

C0

·
√
λ

β
· exp (k0ε)

1− exp(−ε)
, (6)

(see the Eq. (30) in the Appendix B for a more precise expression derived without the large

L̄ approximation). The l.h.s. of this equation reaches its minimal value of e · k0 at L̄ = k0.

As a result, the equation has solutions only for concentrations C above a certain threshold

value given by

Cdown = k0C0

√
β

λ
exp(1− k0ε) · (1− exp(−ε)) (7)

For C significantly larger than this threshold, one can neglect the exponential term in the

l.h.s. of the Eq. (6) so that the characteristic polymer length L̄ linearly increases with the

concentration as

L̄ =
C

C0

·
√
λ

β
· exp(k0ε)

1− exp(−ε)
. (8)

For monomer concentrations C below the threshold we don’t expect long heteropolymers to

form. This suggests a first-order transition between the regimes dominated by free monomers

and that with a self-sustaining population of long heteropolymeric chains.

To verify and refine our predictions we approach this transition from below, starting with

the state dominated by monomers i.e. f1 ' 1. We explore the stability of the monomer

mixture with respect to formation of dimers. In this limit, the dimer fraction f2 obeys the
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following kinetic equation:

df2

dt
= −βf2 + λ

(
C

C0

)2

exp(2ε)f 2
1 f2 , (9)

where the second term in the r.h.s. reflects the fact that a dimer can be formed out of two

monomers and this process needs to be catalyzed by a complementary dimer. The critical

concentration Cup above which dimers would exponentially self-amplify is given by

Cup = C0

√
β

λ
exp(−ε) . (10)

Thus we confirm the existence of an instability in a mixture of monomers with respect

to template-assisted formation of longer chains. Note that, as expected for a first-order

phase transition, the instability threshold Cup (Eq. (10)) approached from below exceeds

the instability threshold Cdown (Eq. (7)) approached from above. Thus, as expected for a

first-order phase transition, the system will be hysteretic for Cdown < C < Cup.

E. Numerical results

To check our calculations we carried out the detailed numerical simulations of our sys-

tem. Specifically, we numerically solved a system of coupled kinetic equations describing

the template-assisted ligation and fragmentation processes and calculated the steady state

distribution fl:

1

2β
ḟn = −

[
n

2
+ Γ2

∑
m

µn,mfm

]
fn +

∑
m>n

fm +

+Γ2
∑
m<n

(1 + δn−m,m)

2
µm,n−mfmfn−m . (11)

Here Γ is the dimensionless control parameter of the model proportional to the monomer

concentration:

Γ =
(
C

C0

)√
λ

β
(12)

and µnm is the merger matrix, which itself linearly depends on the distribution fl as described

in Eq. (34) and (15) in Appendices A and C. Note, that these simulations (unlike our

analytical theory) allow for overlap length dependence of merger rates do not use the detailed

balance ansatz.
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FIG. 3. Chain length distributions. A set of chain length distributions fl plotted for different

values of the control parameter Γ = C
C0

√
λ
β as found by numerical simulations with k0 = 3 and

ε = 1. Distributions in the autocatalytic regime are characterized by long exponentially distributed

tails for chains with l > k0. Note a sharp transition between monomer-dominated and autocatalytic

regimes.

The results of these numerical simulations are in excellent agreement with our analytical

calculations. For high enough concentrations C the length distribution fl has a long expo-

nential tail covering the region l > k0. Chains of length shorter than k0, which do not obey

the detailed balance, exhibit a much faster decay as a function of l (see Fig. 3).

Our simulations also confirmed the existence of a first-order transition to a regime dom-

inated by monomers as concentration C was reduced (the red line in Fig. 4). The decay

length L̄ of the exponential tail of fl for l ≥ k0 plays the role of the order parameter in

this transition. When plotted as a function of concentration C in Fig. 4, it exhibits sharp

discontinuities and hysteretic behavior. Our analytical results given by the Eq. (30) (black
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FIG. 4. A hysteretic first order transition between the monomer-dominated and au-

tocatalytic regimes. Different lines/symbols show the characteristic length L̄ in our numerical

simulations with k0 = 3 for increasing (diamonds), and decreasing (circles) concentration C, corre-

spondingly. The dashed line is the prediction of our simplified model given by the Eq. (30). Arrows

indicate Cup and Cdown given by Eqs. (10) and (7) correspondingly.

dashed line in Fig. 4) are in a good agreement with our numerical simulations. The transi-

tions from monomers to long-chained polymers and back in our numerical simulations occur

at concentrations somewhat higher than their theoretically predicted values Cup (Eq. 10)

and Cdown (Eq. 7) marked in Fig. 4 by the blue and red arrows respectively.
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F. Long-night limit

Our model assumes cyclic changes between ”day” and ”night” phases. In the beginning

of each night phase all polymers are unhybridized, but as time progresses they start forming

duplexes of progressively longer lengths. The probability of finding any given segment in a

duplex remains low at the early stage of this process. However, if the duration of the night

phase is long enough, there would be a time point at which individual polymers would on

average have around one hybridized partner. Note that a single polymer may simultaneously

have more than one hybridized partner as long as the duplexes with different partners do

not overlap with each other. Around this time most polymers in our pool would become

immobilized in a gel-like structure schematically depicted in Fig. 1c. At this point the

formation of new hybridized complexes effectively stops and the value of k0 stops growing.

An indirect experimental evidence for such aggregation phase was recently reported by

Bellini et al.16.

According to our results, the characteristic chain length L̄ given by Eq. (8) exponentially

increases with k0. In the presence of aggregation this growth is eventually arrested. The

upper bound on L̄ reached in this case can be determined self-consistently by requiring

that individual polymers on average have around one hybridized partner. A chain of length

L̄ � k0 contains L̄ − k0 + 1 ' L̄ segments of length k0. The probability of each of these

segments to be hybridized at any particular time is (C/C0) · exp(k0 · ε). Thus the transition

to the aggregated state is expected when

L̄
C

C0

exp(k0ε) ' 1 . (13)

Combining this expression with the Eq. (8) and ignoring the factors of order of 1 one gets the

upper bound L̄max on the characteristic polymer length that could, in principle, be reached

by increasing the duration of the night phase:

L̄max '
(
λ

β

) 1
4

. (14)

III. DISCUSSION

To summarize, above we considered a general case of random heteropolymers capable

of template-assisted ligation. As such our model is applicable to both nucleic acids at the
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dawn of life as well as to artificial self-replicating nano- or micro- structures1,2. The major

conclusions of our study are as follows. We demonstrated that a population of long chains

can be sustained by mutual catalysis sustained exclusively by template-assisted ligation.

This state is separated from the monomer-dominated one by a hysteretic first order phase

transition (Eqs. (7,10)) as a function of the concentration. We also demonstrated that

the template-assisted ligation in our system is dominated by contributions from template-

substrate pairs complementary over a well-defined length k0, that is kinetically limited. The

average length of heteropolymers exponentially increases with k0, with the upper bound

given by a very simple expression, Eq. (14), depending only on the ratio between the

ligation and the breakage rates.

The spontaneous emergence of long polymers demonstrated in our study is of conceptual

importance to the long-standing problem of the origin of life. Indeed, we offer a physically

plausible path leading from the primordial soup dominated by monomers to a population

of sufficiently long self-replicating chains. This transition is one of the least understood

processes in the RNA-world hypothesis. It is known that functional RNA-based enzymes

(ribozymes) need to be sufficiently long, which makes their spontaneous formation pro-

hibitively unlikely. According to our analysis, both the characteristic chain length and the

minimal monomer concentration required for autocatalysis depend on the ratio of ligation

and breakage rates. Large values of this ratio λ/β � 1 would allow long chains to form

at physically possible concentrations C � 1M. One of the reasons that such spontaneous

emergence of long-chained polymers has never been observed is that in experimental sys-

tems studied so far the ratio λ/β remained low due to a very slow ligation process17. Note

that ligation and breakage processes in our system are not direct opposites of each other.

Indeed, the ligation of e.g. nucleic acids requires activated terminal bases carrying free en-

ergy sufficient to form a new intra-polymer bond. To achieve the conditions necessary for

our autocatalytic regime one needs to either use heteropolymers chemically different from

modern nucleic acids or to develop new activation pathways different from what has been

used in experiments so far. The ligation can be further assisted e.g. by the absorption of

polymers onto properly selected crystalline interfaces.

The present study was limited to the simplest version of the problem in which sequences

of all heteropolymers were assumed to be completely random. It provides a useful analyti-

cally solvable null-model against which future variants can be benchmarked. Even though
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the informational entropy of the pool of polymers in our model is at its maximal value, the

template-assisted ligation provides a mechanism for faithful transmission of information to

the next generation. We demonstrated that the spontaneous emergence of long chains is pos-

sible even in the limit where direct (non-templated) bond formation is negligible. This is es-

pecially important since non-templated polymerization is a regular equilibrium phenomenon

and as such has a short memory. In contrast, heritable transmission of sequence information

via template-assisted ligation opens up an exciting possibility of long-term memory effects

and ultimately of the Darwinian evolution in the space of polymer sequences. Incorpora-

tion of sequence effects is the logical next step in the development of our model, and we

are currently working on it. There are several conceptually distinct yet non mutually

exclusive scenarios giving rise to over-representation of certain sequences in the pool of het-

eropolymers. The first one is driven by the sequence dependence of model parameters such

as hybridization free energies, fragmentation and ligation rates, and monomer composition

of the primordial soup. The other scenario is the spontaneous symmetry breaking in the

sequence space13,18. Specifically, our results obtained within the Random Sequence Approx-

imation need to be checked for local and global stability. The local stability analysis deals

with small deviations from a state in which populations of all sequences are equal to each

other, while the global one perturbs the system by strongly over-representing a small subset

of sequences. This can be interpreted, correspondingly, as weak and strong selection limits.

Evidence of local or global instability would signal a symmetry breaking and would provide

a scenario for the dramatic decrease in informational entropy of the population of polymers.

This is analogous to replica symmetry breaking suggested by P.W. Anderson13 leading to a

population dominated by a relatively small subset of mutually catalyzing sequences.
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APPENDIX A: k-MERS AND THEIR HYBRIDIZATION DYNAMICS

To describe the hybridization dynamics during the night phase we introduce the concept

of a k−mer defined as the segment of k monomers with the specific sequence σ within a longer

chain of length l ≥ k. Let C · p(σ)
k , be the concentration of k−mers with particular sequence

σ. Let C · Pk be the concentration of all k−mers of length k, regardless of their sequences.

By definition, Pk =
∑
σ p

(σ)
k . If all the sequences are completely random, p

(σ)
k = Pkz

−k. Each

chain of length l contains (l + 1− k) ’k-mers’, therefore

Pk =
∞∑
l=k

(l + 1− k) fl (15)

Note that Pk has the maximum value of 1 which is approached in the limit when all chains

are much longer than k.

We consider a problem of hybridization of polymers since the start of the night phase of

the cycle when all of them are not hybridized. To describe the hybridization kinetics we

use the fractions of fully hybridized k-mers 1 ≥ ϕ
(σ)
k (t) ≥ 0 as our dynamic variables. By

definition, the concentration of such pairs of bound k-mers is C · p(σ)
k ϕ

(σ)
k (t). We note that

hybridization states of different k-mers are not independent from each other since some of

them overlap. To account for this, we introduce one more variable ψ
(σ)
k ≤ 1− ϕ(σ)

k which is

the fraction of all k-mers with a given sequence σ that are available for hybridization. Now

the binding kinetics of all k−mers can be described by the following set of coupled kinetic

equations:

τϕ̇
(σ)
k = C · p(σ′)

k ψ
(σ′)
k ψ

(σ)
k − exp

(
∆Gσ

kBT

)
ϕ

(σ)
k (16)

Here 1/τ is the hybridization rate, ∆Gσ is the hybridization free energy for a given sequence

σ, and σ′ is the sequence complementary to σ. For simplicity, we consider a symmetric case

where mutually complementary k-mers have the same fraction, p
(σ)
k = p

(σ′)
k . In order to

solve these equation, one needs to specify a relationship between fraction of available k-mers

ψ
(σ)
k and hybridization probabilities, ϕ

(σ)
k , that would take into account mutual overlap of

the sequences. However, at early stages the hybridization probability remains sufficiently

low, and one can therefore assume ψ
(σ)
k = ψ

(σ′)
k ≈ 1 in Eq. (16). This results in a set of

decoupled equations

τϕ̇
(σ)
k = C · p(σ)

k − exp
(

∆Gσ

kBT

)
ϕ

(σ)
k (17)
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The solution is the exponential relaxation of hybridization variables ϕ
(σ)
k towards their equi-

librium values:

ϕ
(σ)
k (t) = K

(σ)
k p

(σ)
k

(
1− exp

(
− t

τ
(σ)
k

))
(18)

In this expression

K
(σ)
k = C exp

(
−∆Gσ

kBT

)
(19)

τ
(σ)
k = τ exp

(
−∆Gσ

kBT

)
. (20)

The single most important factor that determines the hybridization free energy ∆Gσ is

the sequence length k. For simplicity of the analysis we will replace K
(σ)
k with its sequence-

averaged value:

K
(σ)
k ≈ Kk = C exp

(
−∆G0 + k∆G

kBT

)
(21)

This leads to the following result:

ϕk (t) = CPkz
−k exp

(
−∆G0 + k∆G

kBT

)
·

·
(

1− exp

[
− t
τ

exp

(
∆G0 + k∆G

kBT

)])
(22)

As shown in Figure 4 at any given time t this expression is strongly peaked at a single

value of k, which weakly (logarithmically) depends on time:

k ≈ k0 (t) ' −kBT
∆G

log
(
t

τ

)
(23)

ϕk0 ' CPk0 exp
(
−∆G0

kBT
+ εk0

)
(24)

APPENDIX B: EVALUATING THE EFFECTS OF A FINITE L̄.

The equations (3) and (6) in the main text were derived in the limit L̄ � 1. Below we

will relax these approximations to derive the exact formula working for arbitrary L̄.

In deriving the Eq. (3) in the main text we replaced the discrete summation with an

integral. This approximation can be avoided by performing an explicit summation of the

discrete geometric progression:

∞∑
l=1

l · exp(− l

L̄
) =

exp
(
− 1
L̄

)
[
1− exp

(
− 1
L̄

)]2 =
1

4 sinh
(

1
2L̄

)2 . (25)

17



This amounts to replacing L̄ in Eq. (3) with 1

2 sinh( 1
2L̄)

:

1

2 sinh
(

1
2L̄

) =

√
µ

β
. (26)

The exact triple summation of the Eq. (5) in the main text

µ = λ
(
C

C0

)2 k0∑
k1=1

exp(k1 · ε)
k0∑
k2=1

exp(k2 · ε) ·

·
∞∑

l=k1+k1

(l − k1 − k2 + 1)fl . (27)

for fl ∼ exp(−l/L̄) can be carried out in two steps. First, the sum over l combined with

normalization
∑
l l · fl = 1 gives rise to

µ = λ
(
C

C0

)2

exp(1/L̄)
k0∑
k1=1

exp
[
k1 · (ε− 1/L̄)

]
·

·
k0∑
k2=1

exp
[
k2 · (ε− 1/L̄)

]
. (28)

The discrete summation over k1 and k2 results in

µ = λ
(
C

C0

)2

exp(1/L̄)

(
exp[k0(ε− 1/L̄)]− 1

1− exp(−ε+ 1/L̄)

)2

. (29)

The Eq. (6) then becomes

1

2 sinh
(

1
2L̄

) exp

(
k0 − 1/2

L̄

)
=

=
C

C0

·
√
λ

β
·

exp (k0ε)− exp
(
k0/L̄

)
1− exp(−ε+ 1/L̄)

. (30)

Here we neglected the exponentially small term in the enumerator of the r.h.s. of Eq. (29).

The dashed line in Fig. 4 shows L̄ defined by this equation plotted as a function of C.

APPENDIX C: LIGATION-FRAGMENTATION KINETICS

The Eq. (6) describes the effective merger rate µ when lengths n and m of two substrate

chains hybridized to a template are longer than k0. In a more general case one needs to

introduce length-dependent effective merger rate µnm. Under RSA this rate is given by:

µnm = λC2
min(n,k0)∑
k1=1

min(m,k0)∑
k2=1

Pk1+k2

zk1+k2
·

18



· exp

(
−2∆G0 + (k1 + k2) ·∆G

kBT

)
=

= λ
(
C

C0

)2

·
min(n,k0)∑
k1=1

min(m,k0)∑
k2=1

Pk1+k2 ·

· exp ((k1 + k2) · ε) (31)

Here µnm corresponds to a particular order in which chains n and m merge into a longer

chain. Note that for directed chains such as nucleic acids there are two ways of merging

chains, while for undirected polymers there are four.

For nucleic acids, when two chain segments are bound to the same template and are

directly adjacent to each other (Fig. 1ab) there is an additional gain in free energy ∆Gst

due to stacking. It is straightforward to incorporate ∆Gst into our formalism by redefining

C0 as C0 = exp[−(∆G0 + ∆Gst/2)/kBT ] (in molar).

For directed polymers the resulting set of kinetic equations can be written as:

1

2β
ḟn = −

[
n

2
+ Γ2

∑
m

µn,mfm

]
fn +

∑
m>n

fm +

+Γ2
∑
m<n

(1 + δn−m,m)

2
µm,n−mfmfn−m . (32)

Here Γ is the dimensionless control parameter of the model which is proportional to monomer

density:

Γ =
(
C

C0

)√
λ

β
(33)

and µnm is the ”k-mer”- dependent ligation matrix:

µnm =
min(n,k0)∑
k1=1

min(m,k0)∑
k2=1

Pk1+k2 exp (ε · (k1 + k2)) . (34)

This set of kinetic equations gives a complete description of the system in question and was

numerically integrated to compare with our analytical results.
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