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We apply the Feynman-Kleinert Quasi-Classical Wigner (FK-QCW) method developed in our previous work
[K. K. G. Smith, J. A. Poulsen, G. Nyman, and P. J. Rossky, J. Chem. Phys. (submitted for publication)
(2015)] for the determination of the dynamic structure factor of liquid para-hydrogen and ortho-deuterium
at state points of (T = 20.0 K,n = 21.24 nm−3) and (T = 23.0 K,n = 24.61 nm−3), respectively. When
applied to this challenging system, it is shown that this new FK-QCW method consistently reproduces the
experimental dynamic structure factor reported in [K. K. G. Smith, J. A. Poulsen, A. Cunsolo, and P. J.
Rossky, J. Chem. Phys. 140, 034501 (2014)] for all momentum transfers considered. This shows that
FK-QCW provides a substantial improvement over the Feynman-Kleinert linearized path-integral (FK-LPI)
method, in which purely classical dynamics are used. Furthermore, for small momentum transfers, it is
shown that FK-QCW provides nearly the same results as RPMD, thus suggesting that FK-QCW provides
a potentially more appealing algorithm than RPMD since it is not formally limited to correlation functions
involving linear operators.

I. INTRODUCTION

Low-temperature liquid para-hydrogen and ortho-
deuterium have become benchmarks in the development
of approximate quantum dynamics methods1–7 that al-
low for the practical evaluation of a general quantum time
correlation function of the form⟨

Â(0)B̂(t)
⟩
=

1

Z
Tr

(
e−βĤÂ eiĤt/h̄ B̂ e−iĤt/h̄

)
, (1)

Z being the partition function and β the inverse tem-
perature 1/kBT . The reason that these systems provide
such good testing grounds for the development of these
methods is because pronounced nuclear quantum effects
are exhibited by their dynamical properties. This is due
to their low molecular mass, which in turn causes their
thermal de Broglie wavelength’s to be relatively large
at low temperatures. However, these quantum effects
are not significant enough that one must worry about
the quantum statistics of molecular indistinguishability8,
and in addition there exists a relatively simple pair
potential9, which provides a very accurate description of
the molecular interactions9–11. Hence, low-temperature
liquid para-hydrogen and ortho-deuterium are quantum
liquids which are relatively easy to model, thus being
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ideal testing grounds for the development of novel ap-
proximate quantum dynamics methods.

Presently, the most successful approximate quantum
dynamics methods are the Classical Wigner approxima-
tion (CW)12–14, Centroid Molecular Dynamics (CMD)15,
and Ring-Polymer Molecular Dynamics (RPMD)16. All
of them have been shown to provide relatively accurate
and practical approximations to Eq. 1, and, in addi-
tion, to become exact in the harmonic, high temperature
and short time limits12,13,15–17. However, each of these
methods have their own downfalls. For example, CMD
and RPMD begin to break down for correlation functions
involving non-linear operators15,16,18, while the CW ap-
proximation is equally valid for non-linear operators, but,
in general, it does not produce time invariant thermo-
dynamic properties for systems at thermal equilibrium.
Explicitly, for Â = 1 the exact quantum expression in
Eq. 1 has the property that

⟨B̂(t)⟩ = ⟨B̂(0)⟩, (2)

while the purely classical propagation of the initially
quantized phase space distribution in the CW approx-
imation does not ensure this property. As shown in Ref.
19, this downfall can have a significant impact for slow
processes like diffusion due to zero point energy leakage
from intramolecular to intermolecular modes as the sys-
tem is propagated.

Recently, Liu and Miller17,20–22 proposed a route to
remedy this downfall of the CW approximation by re-
placing the classical propagation of the initial quantum
phase space distribution with a form of dynamics that
ensures the equality in Eq. 2. Similarly, we proposed in
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Ref. 23 a different form of dynamics that also ensures
this property by requiring the dynamics to conserve the
initial quantum ensemble within the Feynman-Kleinert
(FK) approximation of the density operator12,24,25.

In the present paper, version 2 of the Feynman-
Kleinert Quasi-Classical Wigner method introduced in
Ref. 23 will be used and referred to as FK-QCW. It was
shown to greatly extend the accuracy of the Feynman-
Kleinert implementation of the CW approximation (FK-
LPI) in the challenging model problems of both the quar-
tic and double well potentials, in which numerically ex-
act solutions are obtainable. Furthermore, we were able
to show that one can introduce an arbitrary frequency
function into the dynamics of this method, resulting in
an entire class of ensemble conserving dynamics that pre-
serve the equality in Eq. 2. The FK-QCW method was
shown to recover the exact classical and high tempera-
ture limits of the quantum time correlation function, and
may be applied to systems with barriers23. Furthermore,
since this method is developed within the framework of
the CW approximation, no problems arise for non-linear
operators.

The purpose of this work is to test how well the
FK-QCW method performs when applied to the stan-
dard benchmark systems of low-temperature liquid para-
hydrogen and ortho-deuterium. We accomplish this task
by computing the dynamic structure factor, which is
experimentally accessible by inelastic X-ray scattering
(IXS). We then provide a comparison between the present
calculations and the experimental determinations, as well
as with the ones obtained by RPMD and FK-LPI as pre-
viously published in Ref. 7. Specifically, it was found in
Ref. 7 that for a momentum transfer of k = 20nm−1,
the FK-LPI method fails to correctly reproduce the IXS
spectrum for the para-hydrogen system, in which quan-
tum effects are more prevalent. In addition, due to the
increased non-linearity of the correlation function at high
momentum transfers, RPMD has been shown in the case
of para-hydrogen to be limited to a maximal momentum
transfer value of k = 15nm−1, see Ref. 1. For larger val-
ues of k, RPMD becomes inaccurate. Hence, a challeng-
ing test case has been established for the development of
improved methods, and it would therefore be interesting
to check how the FK-QCWmethod performs where these
leading methods fail.

This paper is organized as follows: In Section II, we
provide an introduction to the classical Wigner (CW)
approximation to quantum time correlation functions, as
well as the multidimensional generalization of the FK-
QCW method. In addition, we also give a brief intro-
duction to the theory of inelastic scattering. In Section
III we begin by discussing the computational details of
our simulations, followed by a comparison of the FK-
QCW method with the experimental dynamic structure
factor and that obtained by RPMD and FK-LPI previ-
ously published in Ref. 7. The conclusions are presented
in Section IV.

II. THEORY AND METHODOLOGY

A. Classical Wigner

The CW12–14 expression for a general quantum time
correlation function of a many-body system is given by

⟨
Â(0)B̂(t)

⟩
≈ 1

Z (2πh̄)3N

∫ ∞

−∞
dq dp [ e−βĤÂ ]W (q,p)

×[ B̂ ]W (q(t),p(t)) , (3)

where (q(t),p(t)) are the classically evolved quantum
phase space variables propagated from the initial quan-
tum distribution (q,p). Here the Wigner transform of a

general operator Ĉ is given by

[ Ĉ ]W (q,p) ≡
∫ ∞

−∞
dη e−ip·η/h̄

⟨
q +

η

2

∣∣∣Ĉ∣∣∣ q − η

2

⟩
,

(4)
where |q⟩ is the direct product of the single particle po-
sition kets.

Although the CW approximation has been shown
to perform relatively well3,7,12,13,26–28, as we previously
noted, the classical evolution of the quantum phase space
results in thermodynamic properties of equilibrium sys-
tems being incorrectly time dependent. Our newly de-
veloped FK-QCW method corrects this inconsistency by
replacing the purely classical dynamics used within Eq. 3
with a time evolution that ensures that the initial quan-
tum ensemble is conserved such that ⟨B̂(t)⟩ = ⟨B̂(0)⟩, in
accord with the exact quantum time correlation function.
However, since these dynamics were developed within
the Feynman-Kleinert (FK) approximation to the den-
sity operator12,24,25, before we present their multidimen-
sional generalization, we first provide an introduction to
the FK density operator, which allows for a practical

evaluation of the Wigner function [ e−βĤÂ ]W (q,p) ap-
pearing in Eq. 3.

B. Many-body Feynman-Kleinert density operator

The most difficult part in evaluating the CW expres-
sion of Eq. 3 is obtaining the Wigner transform of

e−βĤÂ, since knowledge of the many-body density ma-
trix is required. As in the FK-LPI method, we accom-
plish this within the FK-QCW method by combining the
effective frequency variational theory of Feynman24 and
Kleinert25 (FK) with the quasidensity operator formal-
ism of Jang and Voth29. This Feynman-Kleinert approx-
imation to the density operator allows for an efficient
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evaluation of the Wigner transform of e−βĤÂ and has
been shown to be very accurate when applied to realistic
many-body systems3,7,12,26–28. In addition, the FK ap-
proximation to the density operator gives the best local
harmonic approximation to the systems free energy24,25

and becomes exact in the harmonic and high temperature
limits12

For a many-body system, the FK approximation to the
density operator is explicitly given by

e−βĤ ≈
∫ ∞

−∞
dxc dpc ρFK (xc,pc) δ̂FK(xc,pc), (5)

where (xc,pc) are the 3N dimensional vectors of centroid

positions and momenta and δ̂FK(xc,pc) is the effective
frequency quasidensity operator (QDO). The FK approx-
imation to the centroid phase space density, for a system
of N particles, is given by

ρFK (xc,pc) ≡
1

(2πh̄)3N
exp

(
−β

2
M−1pT

c pc − βW1 (xc)

)
,

(6)
W1 (xc) being the FK approximation to the centroid po-
tential. In Eq. 6, M is the diagonal matrix of particle
masses.
The FK variational effective frequency matrix is deter-

mined from the local curvature of the system’s Gaussian
smeared potential by

Ω2(xc) =
1√

(2π)3N det(A(xc))

×
∫ ∞

−∞
dqM−1/2H(q)M−1/2

× exp

{
−1

2
(q − xc)

T
A−1(xc) (q − xc)

}
, (7)

H(q) being the 3N × 3N classical Hessian matrix and
A(xc) the smearing width matrix which measures the
importance of quantum fluctuations around the classical-
like centroid positions. Defining U(xc) as the orthonor-
mal matrix containing the eigenvectors of the effective
frequency matrix, then

U †(xc)Ω
2(xc)U(xc) = Iω2(xc) (8)

where ω2(xc) is the 3N dimensional vector of eigenvalues
and I is the identity matrix. Using this, one can define
the mass-weighted normal modes as

η ≡ U †(xc)M
1/2q

ηc ≡ U †(xc)M
1/2xc

ν ≡ U †(xc)M
−1/2p

νc ≡ U †(xc)M
−1/2pc, (9)

and the smearing width matrix can be diagonalized
through

U †(xc)M
1/2A(xc)M

1/2U(xc) = Λ(xc), (10)

where

[Λ(xc)]ij = δij
1

βω2
i (xc)

[
βh̄ωi(xc)

2
coth

(
βh̄ωi(xc)

2

)
− 1

]
.

(11)
In terms of the eigenvalues of the effective frequency

matrix, the centroid potential in Eq. 6 is explicitly writ-
ten as

W1(xc) =
1

β

3N∑
i=1

ln

2 sinh
(

βh̄ωi(xc)
2

)
βh̄ωi(xc)

+ VA(xc)

−1

2

3N∑
i=1

Λii(xc)ω
2
i (xc), (12)

where

VA(xc) =
1√

(2π)3N det(A(xc))

∫ ∞

−∞
dq V (q)

× exp

{
−1

2
(q − xc)

T
A−1(xc) (q − xc)

}
(13)

is the FK smeared potential. In 3N dimensions, the
effective frequency QDO written in terms of the mass-
weighted normal modes is simply a direct product of 1-
dimensional QDOs and is given by

δ̂FK (xc,pc) =
3N∏
k=1

√
ωk(xc)

πh̄αk(xc)

∫ ∞

−∞
dηk dη

′
k |η′k⟩ ⟨ηk|

× exp

{
i
νck
h̄

(η′k − ηk)−
ωk(xc)

h̄αk(xc)

(
η′k + ηk

2
− ηck

)2
}

× exp

{
−ωk(xc)αk(xc)

4h̄
(η′k − ηk)

2
}
, (14)

with

αk(xc) ≡ coth

(
βh̄ωk(xc)

2

)
− 2

βh̄ωk(xc)
. (15)

For all but the simplest potentials, determination of
the FK effective frequency matrix is the main compu-
tational load in applying the FK approximation to the
density operator since Eqs. 7 and 10 must be solved iter-
atively. For a discussion of efficient ways to determine the
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FK effective frequency matrix using different numerical
schemes, the interested reader is referred to Ref. 27.
Using the FK approximation to the density operator,

the Wigner transform of e−βĤÂ becomes

[ e−βĤÂ ]W (q,p) ≈
∫ ∞

−∞
dxc dpc ρFK (xc,pc)

×[ δ̂FK(xc,pc)Â ]W (q,p) . (16)

Due to the Gaussian form of the QDO in Eq. 14,
an analytical expression for the Wigner transform of

δ̂FK(xc,pc)Â is readily obtained for any operator Â de-
pending only on position or momentum.

C. FK-QCW in many dimensions

The multi-dimensional generalization of the FK-QCW
dynamics derived in Eq. 67 of Ref. 23 simply become

˙̃qk(t) = fk(xc(t))p̃k(t)

˙̃pk(t) = −fk(xc(t))q̃k(t), (17)

where

q̃k(t) ≡

√
ωk(xc(t))

h̄αk(xc(t))
(ηk(t)− ηck(t))

p̃k(t) ≡

√√√√ tanh
(

βh̄ωk(xc(t))
2

)
h̄ωk(xc(t))

νk(t) (18)

are the kth elements of the dimensionless normal mode
coordinates (q̃(t), p̃(t)), and fk(xc(t)) is an arbitrary fre-
quency function. As shown in Ref. 23, the 1-dimensional
version of these dynamics gives the exact real, but not
imaginary, part of the position autocorrelation function
in the harmonic limit if the FK effective frequency is
chosen for the frequency function. Similarly, one can
show that this exact limit is also obtained in the multi-
dimensional case if we choose

fk(xc(t)) = ωk(xc(t)). (19)

In Eq. 18, the time evolved normal modes are given by

η(t) = U †(xc(t))M
1/2q(t)

ηc(t) = U †(xc(t))M
1/2xc(t)

ν(t) = U †(xc(t))M
−1/2p(t)

νc(t) = U †(xc(t))M
−1/2pc(t), (20)

where U(xc(t)) diagonalizes the effective frequency ma-
trix evaluated at xc(t), and the centroid dynamics are
governed by the classical-like equations

ẋc(t) = M−1pc(t)

ṗc(t) = −∇c [VA(xc(t))]A=A(xc(t))
, (21)

the gradient with respect to xc(t) being taken while hold-
ing the smearing width matrix constant.

Once the centroid and dimensionless normal mode co-
ordinates have been propagated through Eqs. 17 and 21,
the instantaneous quantum phase space variables can be
obtained from

q(t) = xc(t) +M−1/2U (xc(t)) η̃(t)

p(t) = M1/2U (xc(t)) ν̃(t), (22)

where

η̃(t) ≡ η(t)− ηc(t)

ν̃(t) ≡ ν(t), (23)

and in terms of the dimensionless normal mode coordi-
nates have the elements

η̃k(t) =

√
h̄αk(xc(t))

ωk(xc(t))
q̃k(t)

ν̃k(t) =

√√√√ h̄ωk(xc(t))

tanh
(

βh̄ωk(xc(t))
2

) p̃k(t). (24)

The FK-QCW approximation to the quantum time
correlation function takes the same form as the CW ex-
pression in Eq. 3⟨
Â(0)B̂(t)

⟩
≈ 1

Z (2πh̄)3N

∫ ∞

−∞
dq dp [ e−βĤÂ ]W (q,p)

×[ B̂ ]W (q(t),p(t)) . (25)

However, within FK-QCW, [ e−βĤÂ ]W (q,p) is obtained
through Eq. 16, and (q(t),p(t)) are propagated from
the initial quantum distribution (q,p) using the ensem-
ble conserving dynamics in Eq. 17. It should be noted
that the Wigner transform of B̂ in this expression is eas-
ily obtainable when B̂ is a function of only position or
momentum operators, since in this case one obtains the
corresponding classical expression
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[B (x̂) ]W (q(t),p(t)) = B (q(t)) (26)

or

[B (p̂) ]W (q(t),p(t)) = B (p(t)) . (27)

For completeness, we note that the multi-dimensional
generalization of the dynamics within the FK-QCW
method that was derived in Eq. 43 of Ref. 23 are very
similar to Eq. 17, the only difference is that p̃k(t) in Eq.
18 takes the form

p̃k(t) ≡

√
1

h̄ωk(xc(t))αk(xc(t))
(νk(t)− νck(t)) , (28)

and Eq. 22 is changed accordingly. As shown in Ref.
23 (see Appendix C therein), these dynamics reduce to
CMD when used within the expression for the Kubo
transformed time correlation function and also become
exact in the harmonic limit, if one uses Eq. 19 for the
frequency function. However, they are not very practi-
cal when used within Eq. 25 for non-linear operators
since they are ill-defined when ωk(xc(t)) becomes imag-
inary. This then makes the FK-QCW dynamics in Eq.
17 preferable for condensed phase systems since one can
show that these dynamics are well defined in this case as
long as |ωk(xc(t))| < π/βh̄. In addition, by adopting the
same convention as FK-LPI12 in which we set νk(t) = 0
for frequencies outside of this range, we are then able to
apply these FK-QCW dynamics for imaginary frequen-
cies as long as |ωk(xc(t))| < 2π/h̄β, which is the entire
range where the FK approximation to the density oper-
ator is well defined.

D. Inelastic Scattering

The quantum time correlation function we apply the
FK-QCW method to in this paper is the intermediate
scattering function given by

F (k, t) =
1

N

N∑
i,j=1

⟨
e−ik·x̂i(0) eik·x̂j(t)

⟩
, (29)

where ⟨· · · ⟩ denotes a canonical ensemble average, and
x̂i(t) is the time-dependent position operator of the ith

particle, given in the Heisenberg picture by x̂i(t) =

eiĤt/h̄ x̂i e
−iĤt/h̄. This correlation function is related to

the dynamic structure factor, S(k, ω), through

S(k, ω) =
1

2π

∫ ∞

−∞
dt e−iωt F (k, t). (30)

The dynamic structure factor gives the spectrum of den-
sity fluctuations and Van Hove30 showed that within the
first Born approximation this quantity is proportional to
the inelastic scattering cross-section. Measured by ei-
ther inelastic neutron or X-ray scattering, the inelastic

scattering cross-section measures the probability that a
neutron or photon transfers momentum h̄k = h̄(kf −ki)
and energy h̄ω = h̄(ωf − ωi) to the sample.

The shape of the dynamic structure factor is defined
by its n’th spectral moments

⟨ωn⟩ ≡
∫ ∞

−∞
dω ωn S(k, ω) = i−n

[
∂nF (k, t)

∂tn

]
t=0

. (31)

The comparison between measured and computed val-
ues of the spectral moments can be used as a metric to
judge the quality of a theoretical simulation. The zeroth
moment of the dynamic structure factor is referred to as
the static structure factor31, S(k), which is related to the
spatial Fourier transform of the pair distribution function
by

S(k) ≡
⟨
ω0

⟩
= 1 +

∫ ∞

−∞
d3r eik·r g(r). (32)

The first moment of S(k, ω) is of special interest since
for a system which interacts through a momentum-
independent potential32, this quantity is exactly given
by

⟨ω⟩ ≡
∫ ∞

−∞
dω ω S(k, ω) =

h̄k2

2m
, (33)

where m is the molecular mass. This relation, in prin-
ciple valid for monatomic systems, can be extended to
molecular ones provided that the rotational and vibra-
tional motions of the molecule can be neglected in the
probed dynamic range.

Since the dynamic structure factor is related to the
temporal Fourier transform of a quantum time correla-
tion function, it obeys the principle of detailed balance

S(k, ω) = eβh̄ωS(k,−ω), (34)

which is straightforward to show by working in the ba-
sis of energy eigenstates. Using this principle of de-
tailed balance along with the symmetry of Eq. 29,
F (k, t) = F (k,−t)∗, one can show that the dynamic
structure factor can be equivalently written using only
the real part of the intermediate scattering function as

S(k, ω) =
2

1 + e−βh̄ω

1

2π

∫ ∞

−∞
dt e−iωt Re[F (k, t)]. (35)

For an isotropic system such as a liquid, the interme-
diate scattering function depends only on the magnitude
of k, such that F (k, t) = F (k, t). Hence when comput-
ing the intermediate scattering function of an isotropic
system, we are free to choose the direction of k.

The FK-QCW approximation to the intermediate scat-
tering function takes the form
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F (k, t) ≈ 1

Z(2πh̄)3N
1

N

N∑
i,j=1

∫ ∞

−∞
dq dp

×[e−βĤe−ik·x̂i ]W (q,p) [eik·x̂j ]W (q(t),p(t)), (36)

where, after choosing k to be parallel to the x-axis,

[eik·x̂j ]W (q(t),p(t)) = exp
(
i k q(t)

3(j−1)+1

)
, (37)

and in terms of the FK approximation to the density
operator,

[e−βĤe−ik·x̂i ]W (q,p) =

∫ ∞

−∞
dxc ρFK (xc)

× exp (−i k q
3(i−1)+1

)
3N∏
n=1

√√√√8πmn tanh
(

βh̄ωn(xc)
2

)
βαn(xc)

× exp
{
−q̃ 2

n − p̃ 2
n

}

× exp

 tanh
(

βh̄ωn(xc)
2

)
ωn(xc)

km
−1/2
i U(xc)3(i−1)+1,n

νn



× exp

− h̄ tanh
(

βh̄ωn(xc)
2

)
4ωn(xc)

(
km

−1/2
i U(xc)3(i−1)+1,n

)2

 ,

(38)
where

ρFK (xc) ≡
1

(2πh̄)3N
exp (−βW1 (xc)) . (39)

We note that the derivation of Eq. 38 is shown in Ref. 26
(see Eq. 18 therein), where it was derived for FK-LPI,
which uses the same FK approximation to the density
operator in Eq. 5.

III. RESULTS

A. Computational Details

To obtain the dynamic structure factor for liquid
para-hydrogen and ortho-deuterium at the state points
(T = 20.0 K,n = 21.24 nm−3) and (T = 23.0 K,n =
24.61 nm−3) respectively, the FK-QCW approximation
to the intermediate scattering function in Eq. 36 was
evaluated by using the Silvera-Goldman (SG) potential9.
The SG potential has been used in a number of pre-
vious studies1,2,4–6,17 and has been shown to provide
very accurate descriptions of the fluid and solid ther-
modynamics, except at extremely high pressure10,11.

This semi-empirical isotropic pair potential, applicable
to both para-hydrogen and ortho-deuterium, treats each
molecule as a spherical particle which is justifiable at low
temperatures since only the J=0 rotational state is pop-
ulated in each isotopoloque. To expedite the determina-
tion of the FK centroid potential we represented the SG
potential as a sum over four Gaussian functions whose
parameters can be found in Table II of Ref. 3.

Starting from an equilibrated centroid configuration,
the real part of the intermediate scattering function was
evaluated using the FK-QCW approximation by per-
forming a molecular dynamics simulation of the centroid
variables, which are propagated according to Eq. 21. For
each centroid trajectory, 100 sets of initial dimensionless
normal mode coordinates (q̃(0), p̃(0)) were sampled ac-
cording to their Gaussian distribution

exp
(
−q̃T (0)q̃(0)− p̃T (0)p̃(0)

)
=

3N∏
n=1

exp
{
−q̃ 2

n − p̃ 2
n

}
,

(40)
which appears in the FK approximation of

[ e−βĤÂ ]W (q,p) (see for example Eq. 38). Using
the frequency function in Eq. 19, the dimensionless
normal mode coordinates were then propagated through
Eq. 17 and the instantaneous (q(t),p(t)) values were
obtained from the relations in Eq. 22. The real part of
the intermediate scattering function was constructed by
averaging over 1,000 consecutive 3 ps centroid trajecto-
ries, in which the centroid momentum was resampled at
the beginning of each trajectory and a time step of 1 fs
was used. In order to obtain statistical uncertainties,
this entire process was repeated six times. For a more
detailed outline of the algorithm used for the integra-
tion of the centroid and dimensionless normal mode
coordinates over one time step ∆t, which allows for the
propagation of (q(t),p(t)) → (q(t+∆t),p(t+∆t)), the
interested reader is referred to Appendix A.

Within the simulation, we employed cubic periodic
boundary conditions with the minimum image conven-
tion and a spherical cutoff at half box length. Further-
more, due to the isotropic nature of the SG potential, the
momentum transfer k was chosen, without loss of gener-
ality, to be in the x-direction. In order to fulfill the Laue
condition33 k = 2πn/l, where l is the length of the sim-
ulation cell and n is an integer, the number of particles
N treated in the simulation had to be varied for each
momentum transfer. N , l and the density used for each
k are listed in Table I.

The dynamic structure factor was obtained from the
real part of the FK-QCW approximation to the interme-
diate scattering function using the relation in Eq. 35,
which ensures that this quantity fulfills the detailed bal-
ance condition. The imaginary part of the intermediate
scattering function was then obtained from the inverse
Fourier transform of this quantity. By processing the
data in this manner, we ensure that the approximate
quantum time correlation function fulfils the detailed bal-
ance condition. Furthermore, since the detailed balance
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TABLE I. The simulation parameters used for the FK-QCW
calculation of Eq. 36.

D2 H2

k (nm−1) N l (bohr) ρ (nm−3) N l (bohr) ρ (nm−3)

5.5 37 21.65 24.61 32 21.66 21.24

12.8 78 27.76 24.61 68 27.85 21.24

15.3 109 31.03 24.61 94 31.03 21.24

20.0 95 29.64 24.61 82 29.65 21.24

condition in Eq. 34 holds for the spectrum of any quan-
tum time correlation function, this procedure could be
applied to any correlation function involving hermitian
operators34, since in this case the general relation

CAB(ω) =
2

1 + e−βh̄ω

1

2π

∫ ∞

−∞
dt e−iωt Re[CAB(t)] (41)

will always hold due to the symmetry16 relation
CAB(t) = CAB(−t)∗, where CAB(t) is given by Eq. 1
and CAB(ω) is its Fourier transform.

B. The Experimental Dynamic Structure Factor

In an inelastic x-ray scattering experiment on a liq-
uid, one must cope with spurious scattering from the
container which must be carefully subtracted from the
raw intensity. Due to random temperature drifts in
the analyzer crystal7 which introduce an uncertainty in
the zero of energy transfer (h̄ω = 0) between the sam-
ple+container and empty container scattering measure-
ments, such a subtraction was not completely straight-
forward for the experimental data used in our previous
study7. In order to deal with these spurious experimen-
tal effects, we developed in Ref. 7 a method that enables
one to use the dynamic structure factor obtained from a
simulation as an input to fix this unknown spectral shift.

Denoting Iraw(k, ω) and IEC(k, ω) as the measured in-
tensities scattered by the sample+container system and
by the empty container, respectively, the unknown shift
in the zero of energy transfer, |δ − θ|, can be taken into
account within the experimental dynamic structure fac-
tor by writing this quantity as

Sexp(k, ω) = α(k) (Iraw(k, ω − δ)− T (k)IEC(k, ω − θ)) ,
(42)

where α(k) is the proportionality factor that relates the
dynamic structure factor to the inelastic scattering cross-
section, and T (k) is the transmission coefficient of the
sample7. Due to the finite resolution of the experiment,
the experimental dynamic structure factor, Sexp(k, ω), in
Eq. 42 is related to the sample’s true dynamic structure
factor, S(k, ω), through a convolution with the instru-

TABLE II. The fitting parameters used in Eq. 42 to refine the
experimental dynamic structure factor using the FK-QCW
results. Here the R2 values are the correlation coefficients of
for the various fits.

D2

k (nm−1) α(k) T (k) δ (meV ) θ (meV ) |δ − θ|(meV ) R2

5.5 7.51x104 0.897 -0.616 -0.545 0.070 0.97

12.8 1.41x105 0.896 -0.090 0.143 0.233 0.99

15.3 2.12x105 0.895 -0.391 -0.205 0.186 0.99

20.0 3.78x105 0.893 -0.678 0.228 0.906 0.99

H2

k (nm−1) α(k) T (k) δ (meV ) θ (meV ) |δ − θ|(meV ) R2

5.5 5.27x104 0.731 -0.134 0.233 0.367 0.97

12.8 1.79x105 0.954 0.183 0.531 0.348 0.93

15.3 1.57x105 0.740 0.188 0.929 0.742 0.97

20.0 4.05x105 0.952 -0.734 -0.703 0.032 1.00

mental resolution function, R(ω), such that

Sexp(k, ω) ≡ S(k, ω)⊗R(ω) =

∫ ∞

−∞
dω′S(k, ω′)R(ω−ω′).

(43)

Using the procedure developed in Ref. 7, the refined
experimental dynamic structure factor is obtained by
performing a least squares fit of Eq. 42 to the results of a
theoretical simulation which have been convoluted with
the instrument resolution function, R(ω), for the deter-
mination of the unknown spectral shifts (δ, θ). Within
this fitting procedure, α(k) is determined for each (δ, θ)
through

α(k) =
h̄k2

2m

∫∞
−∞ dω R(ω) + S(k)

∫∞
−∞ dω R(ω)ω∫∞

−∞ dω ω (Iraw(k, ω − δ)− T (k)IEC(k, ω − θ))
,

(44)
which ensures that the refined experimental quantity ful-
fills the first moment sum rule in Eq. 33. We note that
S(k) in Eq. 44 is the static structure factor, which in
the present work has been obtained from the theoretical
simulation. However, if the experimental measurement
of this quantity was available, one could in principal use
it within the fitting procedure.

Within this study we have reperformed this refinement
process of the experimental quantity using the FK-QCW
method as an input, and the resulting fitting parameters
are shown in Table II. In the next section, we provide a
comparison of the new experimental dynamic structure
factors obtained using the FK-QCW method with the
experimental quantities previously published in Ref. 7,
which were obtained using FK-LPI as an input. In addi-
tion, we also compare the theoretical dynamic structure
factors obtained using the FK-QCW method with the
results of FK-LPI and RPMD, also published in Ref. 7.
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FIG. 1. The FK-QCW (black line with error bars), FK-LPI (blue line), and RPMD (magenta dashed line at low k’s) approx-
imation to the intermediate scattering function for both ortho-deuterium (upper four panels) and para-hydrogen (lower four
panels) for the different momentum transfers considered (as labeled). The real part of the correlation function is the upper
curve while the negative imaginary part is the lower curve in each panel. The FK-LPI and RPMD results were taken from Ref.
7.
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FIG. 2. The refined experimental dynamic structure factors for para-hydrogen, as obtained using either FK-QCW (red dots)
or FK-LPI (blue squares) as the input (see text). The FK-QCW (black dashed dot line), FK-LPI (blue line), and RPMD
(magenta dashed line) dynamic structure factors are convoluted with the instrumental resolution function. The FK-LPI and
RPMD results, as well as the experimental quantity obtained using FK-LPI as an input were taken from Ref. 7.

C. Dynamic Structure Factor

The FK-QCW results for the intermediate scattering
function are shown in Fig. 1. Also included in Fig. 1
are the results obtained by FK-LPI and RPMD previ-
ously published in Ref. 7. Interestingly, for low momen-
tum transfers where RPMD is least troubled by the non-
linearity of the correlation function in Eq. 29, the FK-
QCWmethod predicts nearly the same results as RPMD.
This suggests that FK-QCW provides a method with an
accuracy comparable to RPMD. Yet, FK-QCW does not
suffer from the non-linear operator problem, since it was
developed within the framework of the CW approxima-

tion and can therefore be used to evaluate correlation
functions involving non-linear operators.

When comparing the intermediate scattering functions
of FK-QCW and FK-LPI in Fig. 1, one notices that
a significantly longer decay time is predicted by FK-
QCW for both para-hydrogen and ortho-deuterium at
k = 20.0nm−1. In Ref. 7 we attributed the failure of
FK-LPI for para-hydrogen at this momentum transfer to
the purely classical propagation within this method not
being able to correctly account for the long-time behav-
ior of the correlation function. The fact that the dynam-
ics within FK-QCW predicts a significantly longer decay
time suggests that this method may be able to stand up
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FIG. 3. The refined experimental dynamic structure factors for ortho-deuterium, as obtained using either FK-QCW (red
circles) or FK-LPI (blue squares) as the input (see text). The FK-QCW (black dashed dot line), FK-LPI (blue line), and
RPMD (magenta dashed line) dynamic structure factors are convoluted with the instrumental resolution function. The FK-
LPI and RPMD results, as well as the experimental quantity obtained using FK-LPI as an input were taken from Ref. 7.

to this challenging test case where FK-LPI failed and
RPMD was inaccurate.

The hypothesis just proposed is confirmed in Fig. 2,
where for the case of para-hydrogen at k = 20.0nm−1

FK-QCW is in almost exact agreement with the ex-
perimental dynamic structure factor obtained using this
method as an input. This then shows that the ensemble
conserving dynamics of FK-QCW extends the accuracy
of the FK-LPI method to longer times, where the classical
propagation within the CW approximation fails. In addi-
tion, one sees that the experimental quantities obtained
using FK-QCW or FK-LPI as an input are in relatively
good agreement for all of the momentum transfers con-

sidered. The fact that this is true for para-hydrogen at
k = 20.0nm−1, where FK-LPI fails, shows that the pro-
cess we developed in Ref. 7 to refine the experimental
dynamic structure factor provides a robust method that
allows one to correct for spurious experimental effects,
even when the theoretical input is relatively inaccurate.

For the case of ortho-deuterium at k = 20.0nm−1, one
sees in Fig. 3 that, similar to the case of para-hydrogen,
the FK-QCWmethod reproduces the experimental quan-
tity almost exactly. While FK-LPI is in relatively good
agreement with the experimental quantity for this mo-
mentum transfer, the fact that FK-QCW is more accu-
rate shows that the longer decay time predicted in the
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FIG. 4. The first moment of the dynamic structure factors obtained from the the intermediate scattering function using the
relation in Eq. 33 for both ortho-deuterium (left panel) and para-hydrogen (right panel) using FK-QCW (red circle), FK-LPI
(blue circle), and RPMD (magenta cross). These results are compared with the exact relation of Eq. 33 (black line).

correlation function by the ensemble conserving dynam-
ics of this method, once again, better reflects the true
dynamics of the system.

As seen in Figs. 2 and 3, the similarity of the FK-QCW
and RPMD intermediate scattering functions for both
para-hydrogen and ortho-deuterium at low momentum
transfers translates to similar predictions for their cor-
responding dynamic structure factors. While not com-
pletely systematic due to the case of para-hydrogen at
k = 12.8nm−1, overall one sees a better agreement be-
tween the predictions of these two methods and the ex-
perimental quantity for both systems, as compared to
FK-LPI. This then suggests that the more pronounced
oscillations in the intermediate scattering functions of
FK-QCW and RPMD more accurately describes the
large wavelength density fluctuations of both the para-
hydrogen and ortho-deuterium systems, consistent with
the ensemble conserving dynamics used within FK-QCW
being comparable to RPMD and more accurate than the
purely classical dynamics of FK-LPI.

We note that for para-hydrogen, particularly at k =
12.8nm−1, there is disagreement between the FK-QCW

and the experimental dynamic structure factors. At
first glance this appears to be due to the area under-
neath the FK-QCW dynamic structure factor being too
small, i.e. a shortcomming of the method. However,
this area is precisely equal to the static structure factor
S(k) = F (k, t = 0), for which FK-QCW and FK-LPI are
equivalent, to within statistical accuracy. The FK-LPI
static structure factor was published in Ref. 7, where
it was found to be in agreement with the experimental
measurements of Ref. 35. It is reasonable, then, to look
for alternative explanations. One possibility is an un-
certainty in the absolute scale of the empty container
scattering contribution. Adjustment of that scale was
found to play a role for the cases of para-hydrogen at
k = 5.5nm−1 and k = 15.3nm−1.

The first moment of the dynamic structure factor ob-
tained by FK-QCW, FK-LPI, and RPMD are shown in
Fig. 4. The different dynamics of these three methods
becomes relevant for the first moment since this quan-
tity depends on the time derivative of the intermediate
scattering function through Eq. 31. However, as seen
in Fig. 4, FK-QCW reproduces the exact values of the



12

first moment of the dynamic structure factor to within
the uncertainty of the simulation for all of the momen-
tum transfers considered. While FK-LPI is also able to
reproduce this quantity for all of the momentum trans-
fers considered, this is not true for RPMD. The fact that
these new ensemble conserving dynamics are shown to
obey this exact quantum mechanical sum rule testifies
even more to the accuracy of this new method.

IV. CONCLUSIONS

We have shown that the ensemble conserving dynamics
of the FK-QCW method can be easily applied to realistic
condensed phase systems, such as low temperature para-
hydrogen and ortho-deuterium. Furthermore, it was
found that the dynamics of the FK-QCWmethod greatly
extend the accuracy of the FK-LPI approximation when
the long-time behavior of the quantum time correlation
function becomes important. This was evidenced by the
FK-QCW method nearly exactly reproducing the exper-
imental dynamic structure factor of para-hydrogen at
k = 20.0nm−1, where the purely classical dynamics used
within the FK-LPI approximation fail and RPMD is too
inaccurate.
In addition, where RPMD was applicable due to the

approximate linearity of Eq. 29, we found that FK-QCW
provides an accuracy comparable to RPMD. This then
suggests that FK-QCW may be a top contender in the
realm of approximate quantum dynamics methods, since
FK-QCW is able to assess correlation functions involv-
ing non-linear operators, and will not encounter artificial
frequencies in the simulated absorption spectra arising
from unphysical high frequency oscillations within the
dynamics19,36,37.
Readers wanting to use these results can obtain the

data set containing the refined experimental dynamic
structure factors obtained using FK-QCW as an input
in Figs. 2 and 3 as well as the non-convoluted FK-QCW
dynamic structure factors of para-hydrogen and ortho-
deuterium for all of the momentum transfers considered
from the supplementary material38.
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APPENDIX A: FK-QCW MOLECULAR DYNAMICS
ALGORITHM

Defining the 3N dimensional vector that contains the
FK smeared force as

F c(t) ≡ −∇c [VA(xc(t))]A=A(xc(t))
, (A1)

where the gradient is taken with respect to xc(t), the
algorithm for integrating the FK-QCWmethod dynamics
one time step ∆t using the velocity Verlet algorithm goes
as follows:

q̃k(t+∆t)← q̃k(t) + fk(xc(t))p̃k(t)∆t (A2)

p̃k(t+∆t)← p̃k(t)− fk(xc(t))q̃k(t)∆t (A3)

xc(t+∆t)← xc(t) +M−1pc(t)∆t+
∆t2

2
M−1F c(t)

(A4)

pc(t+∆t)← pc(t) +
∆t

2
[F c(t) + F c(t+∆t)] (A5)

q̃(t+∆t)← U †(xc(t+∆t))U(xc(t))q̃(t+∆t) (A6)

p̃(t+∆t)← U †(xc(t+∆t))U(xc(t))p̃(t+∆t). (A7)

η̃k(t+∆t)←

√
h̄αk(xc(t+∆t))

ωk(xc(t+∆t))
q̃k(t+∆t) (A8)

ν̃k(t+∆t)←

√√√√ h̄ωk(xc(t+∆t))

tanh
(

βh̄ωk(xc(t+∆t))
2

) p̃k(t+∆t) (A9)

q(t+∆t)← xc(t+∆t)+M−1/2U (xc(t+∆t)) η̃(t+∆t)
(A10)

p(t+∆t)←M1/2U (xc(t+∆t)) ν̃(t+∆t). (A11)

It is important to note the intermediate steps A6 and
A7. These are performed to ensure that the dimension-
less normal modes q̃(t + ∆t) and p̃(t + ∆t) are formed
properly for the use in steps A8 and A9 since the eigen-
vector within the jth column of the orthonormal matri-
ces U(xc(t)) and U(xc(t + ∆t)) will typically not cor-
respond to the same normal mode due to the numerical
method used for the diagonalization of Ω2(xc(t)) and
Ω2(xc(t+∆t)).
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