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Abstract — It is well-known that responsive battery energy 
storage systems (BESSs) are an effective means to improve the 
grid inertial response to various disturbances including the 
variability of the renewable generation. One of the major issues 
associated with its implementation is the difficulty in determining 
the required BESS capacity mainly due to the large amount of 
inherent uncertainties that cannot be accounted for 
deterministically. In this study, a probabilistic approach is 
proposed to properly size the BESS from the perspective of the 
system inertial response, as an application of probabilistic risk 
assessment (PRA). The proposed approach enables a risk-
informed decision-making process regarding (1) the acceptable 
level of solar penetration in a given system and (2) the desired 
BESS capacity (and minimum cost) to achieve an acceptable grid 
inertial response with a certain confidence level. 

Index Terms — Inertial response, probabilistic risk assessment, 
solar generation, fast cloud transient, battery energy storage 
system. 

I. INTRODUCTION 

Traditional generating sources and the associated inertia 
are being displaced by renewable sources that have low or 
virtually no inertia. The rapidly increasing penetration of the 
renewables causes a rising concern with the performance of 
grid inertial response [1], especially under light load 
conditions. This is because, in addition to the inertia reduction 
and outages of existing components, large power mismatches 
caused by the fluctuations of renewable generation may often 
occur.  Moreover, many generators no longer participate in 
governor responses and the inertial response has been 
deteriorating constantly in some areas of the U.S. [1].  

The degraded inertial response may increase the risk of 
triggering under-frequency load shedding and cascaded grid 
outages [1, 2]. An effective means to improve the inertial 
response is to use energy storage systems (ESSs) because their 
response speeds are superior to conventional generators. The 
major difficulty is to determine the needed capacity of the 
expensive ESSs for reducing the risk associated with the 
degraded inertial response. 

Deterministically, an ESS capacity can be estimated as the 
product of the system daily (or hourly) load and the number of 
autonomous days (or hours) [3]. It has been recognized, 
however, that probabilistic approaches are more effective than 
the deterministic ones to capture the inherent uncertainties. A 
number of ESS sizing studies using probabilistic methods can 
be found in various references, e.g., [3 - 10]. All of these 
studies either focus on generation planning considering long-

term variability [3 - 7] or smooth-out of short-term 
intermittency of renewables [8 - 9]. A well-being concept was 
developed in [3] to incorporate deterministic criteria into the 
reliability evaluation of generation systems considering 
different ESS capacities. A standalone system was used to 
investigate the needed capacities of wind turbines, hydrogen 
storage tank, and electrolyzer considering wind turbine power 
curve and wind speed distribution in [4]. A statistical unit 
commitment problem was formulated and solved for optimally 
sizing battery energy storage system (BESS) for an isolated 
system in [5]. A risk measure that may be accepted by the 
power producers was used to determine the ESS capacity 
based on a number of scenario forecasts [6]. Both uncertainties 
of renewable generation and hardware failures were 
considered in a generation planning with and without BESS in 
[7]. Studies in [8, 9] attempt to smooth out the individual 
renewable generation. Optimal sizing of a hybrid battery and 
super-capacitor storage system was investigated to smooth out 
the wind generation in [8]. In [9], the ESS was sized as a 
function of residue forecasting uncertainty of wind generation.  

These studies attempt to address variability of renewable 
generation without evaluating their impacts in term of the 
overall system responses to such variability. In [10], sizing 
BESS was studied based on the monthly frequency variation of 
a microgrid in the presence of variable wind generation. A 
sensitivity analysis was performed to numerically achieve the 
minimum capacity using monthly wind generation data. It 
should be noted that ref. [11], although irrelevant to the ESS 
sizing or renewable integration, presented a probabilistic 
transient stability assessment that is relevant to the inertial 
response study in this paper.  

In this study, a probabilistic approach for sizing BESSs is 
proposed from the perspective of the transient responses to 
various disturbances of the entire system. The approach 
consists of (1) development of probabilistic models for the 
disturbances related to component failures and sudden drop in 
solar generation due to fast cloud transients; (2) performance 
of a Monte Carlo analysis to evaluate grid inertial response 
using the samples for all credible disturbances of concern 
under a certain solar penetration level; and (3) calculation of 
measure(s) defined in terms of grid inertial response (e.g., the 
frequency nadir or deviation) for different BESS capacities 
until the inertial response satisfies a pre-defined criterion with 
an acceptable probability conditioning on the disturbance 
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occurrences.  
The proposed approach is an application of probabilistic 

risk assessment (PRA), which is widely used in the nuclear 
power industry [12]. The major feature of this proposed 
approach is that it captures uncertainties of major disturbances 
in the BESS sizing based on the explicit evaluation of the 
system frequency responses to such disturbances. It should be 
pointed out that the proposed approach quantifies the 
probabilistic measure for the impacts on the grid inertial 
responses. To determine the risk measure, the consequence of 
the disturbances is not defined here, but may be defined as the 
potential cost to utilities associated with large frequency 
deviation. Additional cost-benefit analysis can be done after 
this study to determine the minimum cost among alternative 
options for achieving acceptable risk level associated with the 
inertial responses. It should also be stressed that the objective 
of this study is to describe a systematic and implantable 
approach for sizing the ESSs. The numerical results are only 
for an illustration purpose. 

This paper is organized as follows: Section II presents 
probabilistic models for various disturbances affecting the 
inertial responses. Failure data collection, development of 
credible disturbances and the probability calculation are 
discussed in Section III. The random sample generation 
scheme and the detailed procedures for BESS capacity 
determination are shown in Section IV. A case study is 
performed and the results are presented in Section V using an 
example system. Conclusions and future work are described in 
Section VI. 

II. PROBABILISTIC MODELING OF DISTURBANCES AFFECTING 
INERTIAL RESPONSES 

A. A Probabilistic Failure Model for Generator Trips 
The major disturbance affecting the inertia response is a 

loss of generation or a generator failure. A generator may have 
different failure modes such as a generator trip and de-rated 
generation. In this study, only generator trips are modeled. The 
uncertainties related to a generator trip mainly include its 
occurrence frequency and the way a generator trips, which can 
be described by a generator trip model in Fig. 1.  

In Fig. 1, a random variable (r.v) is used to represent the 
unknown time it takes for the generation to ramp-down from 
the original value to zero including the sudden trip scenario of 
a generator. This generator trip model can be implemented by 
gradually increasing the generator internal impedance until the 
generator output drops to near zero within the selected time 
period. 

B. A Probabilistic Model for Solar Transients 
Although it is generally believed that a sudden generation 

change of a large wind farm is very rare (but still possible), a 
fast cloud-transient induced output variation of a utility scale 

solar PV plant is likely to occur [1], which is of primary 
interest for the inertial response studies. 

 
Fig. 1.  An example power output curve of a generator trip. 

Analyzing the data of actual power output from solar plants 
is straightforward to capture the statistics of the solar 
variability. Unfortunately, such data, especially the high-
resolution measurement data, is expensive and generally 
unavailable. On the other hand, the solar resource data 
including solar irradiance and temperature is much easier and 
cheaper to acquire. Therefore, in this study, it is proposed to 
analyze the solar irradiance variations caused by fast cloud 
transients, and feed such data and the electrical circuit model 
of solar plants to estimate the solar power output statistically 
[13]. Also, the generic solar model can provide flexibility to 
evaluate the regional performance of the solar power plants 
consisting of various solar panels using the weather data. 

An example irradiance change pattern induced by a cloud 
transient is shown in Fig. 2, where the irradiance level drops 
from its initial value to the lowest value within about 6 
seconds. The example fast transient is from actual data 
collected from a solar farm in the northeast region of the 
country and, though such big transients are not that often, 
indicates that cloud transients can be very quick.  

To capture the statistics of the cloud transients, a set of 
random variables may be used to characterize the irradiance 
variation. The randomness of a cloud transient accounted for 
in this study includes (1) how often such transients occur; (2) 
the initial irradiance level (r.v1); (3) how fast (r.v2) and how 
much the irradiance changes over the transient (r.v3) (or 
percentage of irradiance changes, r.v4); and (4) the potential 
correlations between the different types of randomness. The 
correlation of the randomness needs to be investigated using 
actual data, as will be shown in Section III. 

Other types of randomness that may need to be modeled 
include (1) how the irradiance level changes after it reaches 
the lowest point (e.g., the irradiance level may become flat) 
and (2) how soon it recovers to the original value. The trip of a 
solar plant can also modeled similarly by changing the 

 



irradiance level for all arrays in the plant to zero, i.e., the 
power injected into the grid decreases to zero within the time 
frame of a generator trip. 

 

 
Fig. 2.  An example irradiance variation during a fast cloud transient. 

Obviously, the solar power generation is proportional to 
the irradiance level and therefore, this model for solar 
transients may be applicable to a relatively small solar plant. 
Since a large solar plant typically spreads over a wide area, a 
cloud pass-over should only affect the irradiance at the portion 
of the plant being covered by the cloud. To partially address 
this issue1, a solar plant is modeled in a more detailed manner, 
i.e., a number of arrays, as will be discussed in Section III.B.  

C. Probabilistic Failure and Transient Models of Other 
Components 

One important failure is the common cause failure (CCF), 
i.e., simultaneous failures of multiple components due to, e.g., 
the same environmental operating condition of two 
components. This is different from a so-called “dependent 
failure”, which means that a component failure is caused by 
another one, e.g., the trip of an overloaded transmission line 
due to the outage of the other parallel transmission line. In this 
study, the CCFs of two generators or two solar plants are 
explicitly considered. Dependent failures for generators are 
very unlikely, and therefore, are not included. 

Some other component outages such as transmission lines 
may also affect the frequency responses. Since the focus of 
this study is on the inertial response, the probabilistic model 
for transmission line outages is not considered but a model 
similar to the one in [11] can be used as needed. 

III. COLLECTION AND ANALYSIS OF DISTURBANCE DATA  
The sample generation for a Monte Carlo simulation 

1 If the high-resolution solar power variation data is available, the similar 
probabilistic model is directly applicable. Alternatively, a higher-dimensional 
model can be developed to also capture the locational irradiance variations. 

consists of two steps. The first step is to select a single 
disturbance or a combinational disturbance from a pre-
identified disturbance list. A combinational disturbance means 
the simultaneous occurrence of multiple independent 
disturbances. In the second step, the probabilistic model of the 
selected disturbance is used to generate a sample or event. 
This sample or event, when read into the simulation tool, will 
be interpreted as, e.g., a generator failure, and the generator 
power output will decrease to zero following a curve similar to 
the one shown in Fig. 1. 

A. Probability/Frequency Calculation of High Order 
Disturbances 

Implementation of the first step requires the development 
of a list containing all credible single disturbances and their 
combinations, and the associated frequencies or probabilities. 
This disturbance list includes the generator (a conventional 
generator or a solar generator) trips, the fast solar transients, 
and the combinations of these disturbances. Since the transient 
responses are of interest, the repair of these outages does not 
need to be considered and the mitigation comes only from the 
droop control of healthy generators and ESSs, if deployed. 

The number of combinations increases exponentially with 
the number of single disturbances. The disturbance list has to 
be manageable by either discarding the high order 
combinations and/or truncating the combinations based on 
probabilities of disturbances using a threshold value. In this 
study, only second order disturbances, i.e., combinations of 
two disturbances, are considered because of mandated 
satisfaction of the (N-1)-criterion in planning. Higher order 
disturbances can be modeled similarly if needed. 

Typically, a component may have multiple failure modes 
with different effects or fail from one mode to another. For 
example, a generator may experience a de-rated generation 
over an extended time period before a complete loss of 
generation. To facilitate discussions, an assumption made here 
is that a component will fail only once. This assumption is 
believed to hold for this study because the transients will be 
completed within seconds. It would not add much value to this 
study to assume that a component fails more than once. 

 Modeling independent component failures is considered 
first. Based on the above assumption, a Markov model shown 
in Fig. 3 is used to calculate failure probabilities for each 
component [14]. For a system consisting of M components 
and each component has ],1[, MiNi ∈ , failure modes 

(states), which can be represented as ,),( jiC  ],,1[ Mi∈∀  

],0[ iNj∈ . ),( jiλ  indicates the transition rate from the 

normal state of Component i  to its thj failure mode. We note 

that ],1[,)0,( MiC i ∈ indicates the component’s normal state, 

i.e., there is no failure with Component i . 

 

                                                           



 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3. Individual Markov models for M  independent components. 
The probability of any state of a component can be 

calculated as: 
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A CCF may involve a number of different components and 
also have different failure modes. It can be modeled separately 
from the individual components by treating the CCF of a 
particular number of components as a new component, as 
shown in [11]. Similar to individual components, a Markov 
model is used to describe the CCF for this new component 
with the failure rates obtained from the CCF data, e.g., a β -
factor CCF model [12] using the individual component failure 
rate. Therefore, equations (1) and (2) are still applicable to all 
of the meaningful states, i.e., a system state should not contain 
both the individual failure of a component and the CCF of the 
same component. A dependent failure, although not 
considered in this study, can be modeled similarly. 

Theoretically, all of possible combinations of component 

failure modes need to be considered in the evaluation, i.e., a 
state enumeration approach [11]. In practice, it is difficult to 
considered high order failures for a relatively large system and 
unnecessary because the higher order failures are generally 
less likely to occur. 

B. Data Collection and Analyses for Generator Failures and 
Fast Solar Transients 

In general, there is a lack of the study of component failure 
parameters from different sources regardless of the existence 
of some databases (e.g., see [15, 16]). For this proof-of the-
concept study, the values from these example sources are 
simply adopted without detailed analysis. The mean value of 
the frequency of a single generator trip is estimated to be 4 
times per year in [15], i.e., a failure rate of 4.6E-4/hour. Due 
to a lack of data, a uniform distribution is assumed for the 
generator trip time between 0 and 2 seconds. 

A solar plant may have two failure modes, i.e., a loss of 
generation and a fast solar transient. The solar plant trip may 
be due to many different causes and the failure rate can be 
estimated by investigating the frequencies of these causes. 
Because of the distributed nature of the inverters and arrays, 
the likelihood of simultaneous losses of all generation is 
anticipated to be very low. It is postulated that the failures of 
step-up transformers and the associated cables are dominant 
causes and the failure rate of a solar plant is estimated to be 
less than 6.0E-6 per hour using the data in [17]. 

The solar transient frequency was obtained in this study 
using the high-resolution (1-sec) solar resource data from a 
solar farm collected in a one-year period of 2011. A fast 
transient is defined as a transient that starts with the solar 
irradiance above 500 W/m2 and the percentage of deviation 
from the initial value is above 50% within 15 seconds. The 
values selected in this definition are relatively arbitrary and 
can be refined. By applying this criterion, a total number of 
2,283 transients were identified from the actual measurement 
data within one year. Note, this just means a portion of the 
plant experiences the fast transients.  

To check the correlation of the random variables 
representing irradiance values, percentage of deviations, and 
transient times, scatter plots of these parameters in pairs are 
shown in Fig. 4. Fig. 4 indicates that three parameters appear 
to be weakly correlated since the circles spread over the plot. 
The transient time is not continuous because of resolution, i.e., 
1-second time interval of the solar resource data. 

Correlation coefficient is commonly used to quantify the 
relationship between random variables in statistics [18]. 
Correlation coefficient is between -1 (negatively correlated 
perfectly) and +1 (positively correlated perfectly) and the 
smaller its absolute value is, the weaker the correlation 
between two random variables becomes. The correlation 
coefficients between three sets of data are calculated [18] and 
shown in Table 1. 
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Fig. 4.  Scatter-plots for solar transient parameters. 
 

Table 1: Correlation Coefficients between Random Variables for 
Solar Transients 

 Initial 
Irradiance 

Percentage of 
Irradiance 
Variation 

Transient 
Times  

Initial Irradiance 1.0 -0.049 -0.067 
Percentage of Irradiance 
Variation 

-0.049 1.0 0.037 

Transient Times -0.067 0.037 1.0 
 
The results in Table 1 show that the initial irradiance 

values and the deviation percentage are only very weakly 
correlated while both initial irradiance and percentage of 
irradiance deviation are almost completely decoupled from the 
transient times. Based on this observation and also, for 
simplicity, three independent random variables r.v1, r.v2, and 
r.v4 in Section II.A are used to describe the solar transients. 

The initial irradiance values, the percentage of irradiance 
changes during the transients, and the transient times were 
sorted separately and are also plotted in Fig. 5. The histograms 
are further binned using intervals of 10 W/m2 for initial 
irradiances, 1% for percentage of irradiance variations, and 1 
second for the transient time, as shown in Fig. 6, which can be 
used to develop the discrete distributions for these random 
variables. Since the purpose of this study is to demonstrate the 
approach, we choose to describe the random variables all with 
uniform distributions2, i.e., of ranges [500, 1000] for initial 
irradiances (W/m2), [0.5, 0.9] for percentage of irradiance 
variations (i.e., 50% to 90%), and [3.5, 14.5] for solar 
transient times (seconds), respectively. 

Next step is to capture the power variations of the entire 
plant using a modeling approach. It is assumed that (a) the 
solar plant consists of a number of arrays (e.g., eight arrays in 
this study) and all of them are connected to the selected bus; 

2 Data plotted in Fig. 6 can be approximated by some types of analytical 
distributions. For example, the frequencies versus cloud transient times may 
fit a normal distribution may fit, e.g., with 2.10=µ (the sample mean) 

and 7.2=σ (the sample standard deviation). If a normal distribution is 
adopted, the random variates or samples for the Monte Carlo simulation can 
be generated using, e.g., an inverse transform method [9]. Note that the 
normal distribution has to be truncated. 

(b) each array is equipped with a power conversion system 
(PCS) interfacing with the grid; and (c) the irradiance level at 
all panels of a particular array is the same at a given time 
instant [12]. To avoid considering high order sequences for the 
solar arrays, the occurrence rate of the fast transients for the 
entire solar plant is roughly estimated below. 

 
Fig. 5.  Histograms of sorted initial irradiance, percentage of irradiance 

deviation, and transient times from collected data. 
 
The occurrence rate of a fast solar transient is about 

2,283/(8,760/2)=0.52 per hour. Using equation (1), the hourly 
probability of a fast solar transient STP is approximately 

                                                           



=−= ×− 152.01)( etPST 0.41 and the probability of 
simultaneous occurrence of fast transients at all eight arrays 

)(tPSST is given by )(tPSST =0.418=7.4E-4 per hour.  The 
corresponding frequency, i.e. the expected number in a time 
period (0,T) can be evaluated as  

T
TPF SST

SST
))(1ln( −

−=   (3) 

assuming that the solar transient occurrence follows a Poisson 
process with a constant rate [14]. The fast transient frequency 
of 7.4E-4 per hour or 3.2 times per year is the frequency of the 
fast transients experienced by the entire solar plant and when 
this occurs, there will be a transient at each array with the 
initial irradiance, percentage of irradiance deviation, and the 
transient time following the uniform distributions discussed 
above.  

 

 
Fig. 6.  Number of solar transients versus irradiance deviation from collected data. 

 
Note, the transient at a solar plant is considered a single or 

first order disturbance3. A summary of failure parameters used 
in this study for different failure modes of conventional 
generators and solar plants is shown in Table 1. 

 
Table 1: Failure parameters of generators and solar plants 

Components Generator Solar Plant Generator Solar 
Plant 

Failure 
modes 

Trip Transient Trip CCF β -factor 

Failure 
parameters 

4.6E-
4/hour 

7.4E-
4/hour 

6.0E-
6/hour 

0.1 

Data sources [15] Collected 
data 

[17] [11] 

Since the second-order disturbances are not mutually 
exclusive or independent, their total probability can only be 
calculated exactly using the inclusion-exclusion principle [14], 
which may be difficult because the large amount 
computational efforts are required when the number of 
disturbances is large. If the failure probabilities of 
disturbances are small, the minimum cutset upper bound or 
even the rare event approximation can be applied to estimate 
the union probability of all disturbances [19]. Using the 
minimum cutset upper bound approximation, the total 
probability of second-order disturbances is around 7.8E-5 per 
hour, which indicates the likelihood of having a second order 

3 Such an aggregated model accounting for the irradiance variations at 
individual arrays is fairly crude. If the high-resolution data for the solar power 
output is available at each array, the statistics of the plant output can be easily 
obtained by convoluting the distributions at individual arrays. 

disturbance is high and more attention should be paid to them.  

IV. SAMPLE GENERATION AND PROCEDURES FOR BESS 
CAPACITY DETERMINATION 

A. Sample Generation of High Order Disturbances for a 
Monte Carlo Simulation 

Using equations (1) and (2) the probabilities of all 
disturbances can be calculated and their frequencies can be 
obtained using equation (3). Once the total sample number for 
the Monte Carlo simulation is determined, the number will be 
distributed to individual disturbances proportionally to their 
occurrence frequencies.  

A solar transient occurring at a plant means that all solar 
arrays experience transients of a same initial irradiance but 
different percentages of irradiance deviation and transient 
times, and uniform distributions discussed in previous section 
will be used to reconstruct the irradiance profiles. The 
irradiance profile during a cloud transient is generated using a 
three-segment high-order polynomial, i.e., a 4-3-4 polynomial 
that is often used for a trajectory planning in a joint space of a 
robot [20]. The random numbers for initial irradiance levels, 
percentages of irradiance decrease, and transient times to the 
lowest irradiance level are used to derive parameters for the 
polynomial to fit the irradiance profile. For a generator trip, a 
random time between 0 and 2 seconds, i.e., )2,0(unif , will 
be selected to determine the incremental internal impedance of 
the generator. In summary, the samples for the Monte Carlo 

 

                                                           



simulation are generated offline as follows: 
1) Develop a list of all second-order disturbances; Calculate 

the probability of each disturbance’s occurrence using 
equations (1) and (2); Disturbances with a probability 
larger than the selected truncation threshold are included 
( 1110− in this study); 

2) Convert the probability to frequency iF using equation (3) 

and calculate normalized frequencies iF  such that ∑
Ω∈ Si

iF  

=1.0, where SΩ is the set of all second-order disturbances;  
3) Determine the total number of samples; 
4) Generate a random number of uniform distribution 

)1,0(unifR = , select the second order disturbance, i.e., 

if 1+≤< ii FRF , then the thi )1( +  disturbance is 
selected; 

5) If the selected second-order disturbance contains 
a. a generator failure (or a CCF of two generators), the time 

it takes the generator (or the two generators) to trip is of a 
uniform distribution )2,0(unif ; 

b. a solar transient, generate a single initial irradiance of 
)1000,500(unif for all arrays of the plant but different 

percentages of irradiance variations of )9.0,5.0(unif , 

and transient times of )5.14,5.3(unif ; 
c. a solar plant failure (or a CCF of solar plants), generate an 

initial irradiance of )1000,500(unif , a 100% of 
irradiance decrease (i.e., a zero solar power output) with a 
transient time of )2,0(unif  for all arrays of the plant(s). 

6) For each selected disturbance or sample, generate the 
generation ramp-down curve and/or irradiance profile 
using the probabilistic models in Section II; until all 
samples are generated. 

Note that Step 4) guarantees that the sample numbers for 
individual disturbances are proportional to normalized 
frequencies. A non-sequential Monte Carlo simulation is used 
to ensure that each generated sample is a second-order 
disturbance since this study focuses on the CCF and 
simultaneous occurrences of two independent disturbances and 
repairs are irrelevant in the transient responses. 

An online sample generation simulation may also be 
implemented using a convergence criterion or stopping rule 
[13], e.g., the coefficient of variance. In this study, an offline 
scheme is adopted to facilitate the implementation and the 
sample number is considered relatively large because the 
random variables are not correlated and there is no issue of the 
state-of-knowledge-correlation (SOKC) [21]. Confidence 
intervals are analyzed for simulation outcome assurance below 
for a given sample size. 

B. A Monte Carlo Simulation for BESS Capacity 
Determination  

Since, in many utilities’ practices, under-frequency load 
shedding relays are initiated when the frequency is less than a 
certain value, e.g., a frequency nadir of 59.5 Hz or frequency 
deviation Hzf 5.0=∆ , this value can be selected as the 
threshold at which the BESSs are needed. The procedures for 
performing the simulation are the follows:  
1) Starting with zero BESS capacity and all samples are 

marked for evaluation; 
2) For the given BESS capacity, simulate the frequency 

responses of the system using the generation ramp-down 
curves and/or solar irradiance profiles generated in Section 
IV.A for each sample scenario that needs evaluation; 

3) For a sample scenario, if the largest frequency deviation is 
smaller than f∆ , then it does not need to be evaluated and 
move to next sample scenario; otherwise, the scenario is 
marked for re-evaluation; Do this for all scenarios and 
record the BESS capacity and number of scenarios that 
need re-evaluation;. 

4) For scenarios that need re-evaluation, increase the ESSs 
capacity in a step-wise manner; 

5) Repeat from Step 2) until no sample causes frequency nadir 
lower than the selected threshold or the desired number of 
samples with frequency deviation less than f∆ is achieved. 

C. Analyses of Monte Carlo Simulation Outcomes 
For each total capacity of the BESSs, a point estimate of 

the probability of sufficient BESS capacity (denoted by SBCP ) 
can be easily calculated from the number of scenarios of 
frequency deviation smaller than 0.5 Hz (denoted by sfdn ) and 

the total number of samples n , i.e., 
n

n
P sfd

SBC = . This point 

estimate will not be exactly the same as the true probability. 
Instead, a confidence interval is often used with a probabilistic 
statement about the assurance that the parameter being 
estimated lies in the interval, i.e., confidence level (denoted 
by c ) [22]. If a typical confidence level value of 95% is used, 
then we are 95% confident that the true value of SBCP  is, 
approximately within the interval of 

n
PPP SBCSBC

SBC
)1(96.1 −

±   (4) 

for 5≥sfdn  and 5)( ≥− sfdnn . If 5<sfdn  or )( sfdnn −  

5< , the upper and lower bounds are approximated by 
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respectively, where qFINV is the thq -quartile of the F-

distribution [18]. For nnsfd = , a upper bound of 1.0 cannot 

be ruled out and the lower confidence bound n
c

e
)1ln( −

with a 
confidence level c  [18]. 

V. RESULTS OF A CASE STUDY 
To simulate the frequency responses, dynamic models for 

solar plants, BESSs, and interfaces and their controls were 
developed. The details including a solar and lead-acid battery 
cells model being used to represent the solar plant and BESS 
can be found in [12] and are not discussed here. All of the 
models including the procedures for BESS capacity 
determination have been implemented and integrated into a 
Matlab-based power system simulation software EPTOOL that 
was developed based on the Power System Toolbox [23]. 

A 16-machine 68-bus power system [24] with a total 
generation about 18,000 MW is used as the example system 
(see Fig. 7) in this study. All of the 16 generators (connected 
to buses 53 – 68) are equipped with turbine governor controls.  

 

 
Fig. 7.  The diagram of a 16-machine 68-bus example system. 

 
Three identical solar PV plants contribute to about 35% 

solar penetration level of the system at three buses that are the 
receiving ends of three transmission lines with the highest 
losses [12]. The penetration level is defined here as the ratio of 
solar generation under the standard condition (i.e., 1,000 
W/m2 and 25 C°) to the total system generation. Three 
identical BESSs with droop frequency control can be deployed 
and connected to three different buses in the system, if needed. 
This may not necessarily lead to an optimal placement of the 
BESSs. However, the benefit associated with this deployment 
is also obvious because, in addition to provision of a 
frequency regulation capability, the BESSs are also able to 

cope with the intermittency of the solar plants. Also, since the 
three PV plants are identical, we assume the same capacity for 
each BESS. Each of three solar plants is divided into 8 arrays 
(i.e., arrays 1 – 8, 9 – 16, and 17 - 24 for solar plants 1, 2, and 
3, respectively). To achieve a 35% penetration level, each of 
the 24 arrays is assumed to consist of 20 by 60,000 BP 3225 
modules in serial and parallel connections. 

When integrating the solar plants into the grid, the total 
generation is maintained by removing generators 1 and 2 
(connected to buses 53 and 54) from the original system and 
cutting the generation, as needed, at the rest of the 
conventional generators proportionally. Therefore, the grid 
inertia decreases as solar penetration level increases.  

A total number of 1,000 samples containing second-order 
disturbances only were generated for the Monte Carlo 
simulation. Among them, 156 samples contain a solar transient 
of one or more solar plants while the rest of the samples 
consist of either common cause failures or simultaneous 
(independent) failures of two generators, which indicates that 
the major contribution to the disturbances is from the 
generator outages in this example study. 

A fast solar transient example is shown using one of the 
samples to illustrate the impact a generator outage under 
different scenarios. In the example, the generator outage is the 
loss of generator at bus 58. The scenarios are: (1) without 
solar generation, i.e., the original system inertia is maintained 
and solar generation is zero; (2) with solar generation, i.e., the 
reduced inertia due to the removal of machines at buses 53 and 
54 and a solar transient at solar plant 3 with the irradiance 
profiles of 8 arrays of this plant shown in Fig. 8; and (3) the 
same as scenario (2) but with three ESSs connected to the 
three PV plants. Note, the effects of the transients will be 
reflected in the variation of the plant output that is the sum of 
generation at eight arrays. The other two solar plants do not 
experience any transient and continue to generate constant 
power outputs. 

 

 
Fig. 8.  Example irradiance profiles at the solar plants. 

The frequency deviations of generator at bus 55 are shown 
in Fig. 9 for the above three scenarios (dashed line, dashed and 

 



dotted line, and the solid line, respectively, in Fig. 9). The loss 
of generator at bus 58 occurs at about 12.1 seconds in all 
scenarios. Scenario 1 (dashed line in Fig. 9) actually 
represents a single failure and the frequency deviation is 
slightly larger than 0.1 Hz, which is of no concern to the 
operation. This can also be used to justify that all single 
disturbances are not included in the study. In scenarios 2 and 
3, the solar generation is included and the solar transient starts 
from time zero. Fig. 9 shows that, with the reduced inertia the 

solar transient impact alone (i.e., before the generator trip in 
Fig. 9) on the frequency is very small. This is because of the 
small changes in the irradiance profile shown in Fig. 8. 
However, the reduced inertia is the major concern in this case 
since the frequency deviation (the dashed dotted line) is larger 
than 0.7 Hz. With the ESSs, the deviation can be brought back 
to around 0.3 Hz (the solid line). Larger solar transients are 
probably still possible, and, if coupled with generator 
disturbances, will pose much greater threat to the grid stability. 

 
Fig. 9.  Frequency deviations for various scenarios under a loss of generator. 

 
The simulation of the generated samples was performed 

using the procedures defined in Section IV.B. The summary 
analyses of simulation outcomes are shown in Table 2. Note, 
an increase of BESS capacities is achieved by increasing the 
number of BESS cells, and the energy capacities are calculated 
simply as the summation of capacities of all battery cells. Also, 
the confidence intervals of the probabilities satisfying the 
frequency deviation threshold SBCP with a 95% confidence 
level are calculated and shown in Table 2. The probabilities of 
meeting the threshold requirement can be calculated easily and 
shown in Fig. 10 together with the confidence intervals.  

 
Table 2: Summary of Simulation Results (Total 1,000 Samples). 

Number of Scenarios 946 977 980 981 983 
ESS Energy Capacities 
(GWh) 

0 0.053 0.11 0.53 3.2 

Confidence Interval of 
95% Confidence Level 

[0.932,
0.960] 

[0.968,
0.986] 

[0.971,
0.989] 

[0.973,
0.990] 

[0.975,
0.991] 

Number of Scenarios 984 995 996 999 1,000 
ESS Energy Capacities 
(GWh) 

4.3 6.4 8.54 10.67 16.0 

Confidence Interval of 
95% Confidence Level 

[0.976,
0.992] 

[0.990,
0.999] 

[0.990,
0.999] 

[0.994,
1.0] 

[0.997,
1.0] 

 
It is noted that the probability satisfying the requirement 

and the ESS capacity are proportional to each other but in a 
nonlinear manner. For example, a deployment of 0.053 GWh 
ESSs will significantly increase the probability of satisfying 
the desired response, i.e., from 0.946 to 0.977. In some other 

cases, the increase in the ESS capacity is not that effective, as 
can be seen from the required capacity increase from number 
of scenarios 999 to 1,000 in Table 2. While no general 
conclusion can or should be drawn from this result, it is clear 
that having extremely good performance requires a large 
amount of capacity and is very costly. One has to select an 
acceptable level of confidence on the satisfactory 
performance, which may be determined by considering both 
the cost of the ESSs (as well as power electronics) and the cost 
due to the potential losses associated with the unacceptable 
performance based on the studies using the results here.  

These probabilities are conditional, i.e., conditioning on 
the occurrence of the second order disturbances. The 
implication of Fig. 10 is that, e.g., the probability of satisfying 
the frequency deviation requirement for the second order 
outages is about 0.984 for a total ESS capacity of 4.0 GWh. 
Since the type of batteries is already selected, only energy 
capacity is specified here. The power capacity is mainly 
determined by the capability of the power electronic devices, 
and in this study, it is assumed that the capacity of the power 
electronics is sufficiently large. It should also be pointed out 
that the required capacity is related to the performance of the 
controllers for the ESSs. The results here are therefore valid 
for the selected batteries and existing control designs in the 
example system. 

The same set of samples was simulated using the original 
system (i.e., the same inertia of the 16-machines) and the same 
solar installation. The number of samples that cause 

 



unacceptable frequency deviation is reduced to 31 from 54, 
i.e., a probability of 96.9% satisfying the desired frequency 
response. If the solar installation is zero, which is equivalent to 
considering the second order disturbances of conventional 
generators only, only 10 of the 1,000 sample scenarios causes 
frequency issue. This indicates that the issue of degraded 
inertial response is mainly due to the inertia replacement with 
some contributions from the solar transients using the 
assumptions and data in this study. 

The probabilistic results here can be used as the input to a 
risk-informed decision-making process, e.g., to decide and 
justify the need of BESSs, the desired capacity of BESSs and 
the associated cost, and alternative options (and cost) to 
enhance the inertial responses. 

 

 
Fig. 10.  Cumulative probabilities of satisfying frequency nadir 

requirement versus BESS capacities. 
 

In the simulation, the initial state-of-charge (SOC) for 
ESSs is assumed to be the same, i.e., 0.7, considering that, in 
the transients, the BESSs may need to both deliver to and 
absorb energy from the grid. Once the SOC is less than 0.3, 
the BESSs will be disabled, as assumed in the simulation. 
Note, since automatic generation control (AGC) is not 
modeled, the frequency deviation as well as the demand signal 
for the BESSs will not become zero. In this study, the BESSs 
are not needed soon after the frequency starts to become 
stabilized. 

Also, the initial operating conditions are the same in this 
study while, in practice, they always vary but may be 
described by distributions developed from the historic data. 
All these effects may be accounted for by including more 
randomness in the study. The energy capacities of three ESSs 
are the same and collocated with the three solar plants for the 
purpose of both smoothing out the solar plant and supporting 
the inertial responses as needed. More samples could be 
generated and evaluated easily since the entire procedure has 
been automated. 

VI. CONCLUSIONS AND FUTURE WORK 
In this study, a probabilistic approach is proposed to 

determine the ESS capacities from a perspective of the system 
response, i.e., the inertial response. The unique features of this 
study are that the study (1) attempts to address the degrading 
inertial responses that are difficult to correct using means other 
than the responsive energy storage systems, which justifies the 
particular need for costly energy storage systems; (2) 
determines the needed capacity from the perspective of the 
overall system operation, i.e., the impacts of the increasing 
penetration level and the variability of solar generation other 
than just smoothing out the intermittent generation of 
individual solar plants; and (3) considers not only high order 
outages but also the associated likelihood of their occurrences, 
which serves as the basis to sizing the ESSs in this study.  

Results from this study show that this approach can be used 
to size the ESSs that mitigate frequency impacts on the grid in 
cases of reduced grid inertia and large power mismatches 
introduced by undispatchable renewable sources. Such 
remedies cannot be done by the conventional generators, as 
shown in this study. The proposed approach (1) is ready to be 
generalized to capture the randomness of any disturbances 
relevant to studies of different purposes and can be easily 
extended to different applications, e.g., the acceptable level of 
solar penetration in a given system or the desired battery 
capacity (and near-minimum cost) to achieve an acceptable 
grid inertial response.; (2) permits a straightforward 
implementation of the proposed approach using the existing 
commercial software packages; (3) enables a risk-informed 
decision making process if a risk measure is defined 
appropriately.  

Note that the approach does not guide the search in the 
optimal direction. Due to the iterative nature of the approach, 
if multiple options are available, for example, deploying 
BESSs and/or building new generators, many more scenarios 
consisting of combinations of different BESS capacities and 
different number of generators may have to be evaluated to 
find a satisfactory solution. 

For the proposed approach, evaluation of transient 
simulation using a large number of samples is unavoidable, 
which entails an extensive computational effort. Using fast 
computers is an option; but more importantly, it should be 
noted that the major feature of the Monte Carlo simulation is 
that the samples, after being generated offline, can be 
evaluated independently on a number of computers. This 
actually indicates an almost linear scalability of the 
computation as long as a tool for automating such a process is 
developed. The number of samples is, therefore, not of a 
severe concern, if the samples are evaluated in a distributed 
manner. In this study, the 1,000 samples were actually 
distributed to three computers to evaluate the inertial 
responses using the same incremental ESS capacity. This, 

 



although a manual process, has significantly reduced the total 
computational time needed for completion of the entire study. 

It should be stressed that numerical values in this study are 
only used for demonstration purposes. Additional work to 
refine this approach includes a systematic statistical analysis of 
solar cloud transients using more real data and the variations 
of the initial conditions including load levels. Distributions of 
irradiance variation accounting for both location and timing 
will be investigated to better represent the fast transients 
experienced by solar plants. An improved control scheme for 
the BESSs to provide virtual inertia is being investigated and 
expected to improve the control performance and reduce the 
need for the ESS capacity. Different probabilistic measures for 
the inertia response and cost-benefit studies will also be 
investigated. 

The models and the approach are being implemented in a 
commercial software package to speed up the calculations. In 
addition, a meaningful comparison between the approach 
proposed in this study and other methods, for examples, the 
deterministic methods described in [3] can be performed to 
better validate the approach. 
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