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ABSTRACT
We investigate the properties and clustering of halos, galaxies and blackholes to
z = 0 in the high resolution hydrodynamical simulation MassiveBlack-II (MBII). MBII
evolves a ΛCDM cosmology in a cubical comoving volume of Vbox = (100Mpc/h)3 and
is able to resolve halos of mass Mhalo = 109M�/h. It is the highest resolution sim-
ulation of this size which includes a self-consistent model for star formation, black
hole accretion and associated feedback. We provide a simulation browser web ap-
plication which enables interactive search and tagging of halos, subhalos and their
properties and publicly release our galaxy catalogs to the scientific community. Our
analysis of the halo mass function in MBII reveals that baryons have strong effects,
with changes in the halo abundance of 20-35% below the knee of the mass function
(Mhalo > 1013.2M�/h at z = 0) when compared to fits based on dark matter only
simulations. We provide a fitting function for the halo mass function valid for the full
range of halo masses in MBII out to redshift z = 11 and discuss how the onset of non-
universal behavior in the mass function limits the accuracy of our fit. We examine the
halo occupation distribution of satellite galaxies and present results valid over 5 orders
of magnitude in host halo mass. We study the clustering of galaxies, and in particular
the evolution and scale dependence of stochasticity and bias. Comparison with ob-
servational data for these quantities for samples with different stellar mass thresholds
yields reasonable agreement. Using population synthesis, we find that the shape of
the cosmic spectral energy distribution predicted by MBII is consistent with observa-
tions, but lower in amplitude. The Galaxy Stellar Mass Function (GSMF) function is
broadly consistent with observations at z ≥ 2. At z < 2, observations probe deeper
into the faint end and the population of passive low mass (for M∗ < 109M�) galaxies
in the simulation makes the GSMF too steep. At the high mass end (M∗ > 1011M�)
galaxies hosting bright AGN make significant contributions to the GSMF. The quasar
bolometric luminosity function is also largely consistent with observations. We note
however that more efficient AGN feedback (beyond simple thermal coupling used here)
is likely necessary for the largest, rarest objects/clusters at low redshifts.

Key words: methods: numerical – cosmology: theory – cosmology: large-scale struc-
ture of Universe – galaxies: formation – galaxies: evolution – quasars: general

1 INTRODUCTION

The Cold Dark Matter model with a cosmological constant
(ΛCDM) is well established enough (see e.g., Planck Col-
laboration et al. 2013,Hinshaw et al. 2013, Lahav & Lid-
dle 2014,Crandall & Ratra 2013) that individual large-scale
simulation efforts can be carried out that focus on just this
one cosmology. We have also reached the point at which

supercomputers enable numerical modeling of cosmological
volumes with enough resolution to study the properties of
individual galaxies. In this paper we report on a P-GADGET

hydrodynamic simulation of 100h−1Mpc cubic volume, the
MassiveBlackII simulation. It has ∼ 106M� mass resolution,
cooling, star formation, black holes and feedback, and rep-
resents the evolution of a ΛCDM universe to redshift z = 0.
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Numerical simulations (see reviews by Dolag et al. 2008,
Springel 2012, Bertschinger 1998) are the tool of choice to
address many questions in cosmology, as galaxy formation
is a complex non-linear problem. Two criteria which must
be satisfied for accurate results are:

(1) A large enough simulation volume that Fourier den-
sity modes on the largest scales are evolving independently.
The volume simulated must be a representative region of
the Universe, otherwise inferences drawn from it regarding
such questions as clustering and the mass function of objects
will be incorrect (Bagla & Ray 2005, Bagla & Prasad 2006,
Orban 2013). When ΛCDM models are evolved to redshift
z = 0, then a volume of at least ∼ 100h−1Mpc on a side be-
comes necessary to predict the overall star formation rate,
for example (Springel & Hernquist 2003).

(2) High enough mass and spatial resolution that the
properties of the objects of interest have converged. This re-
quires many resolution elements (particles or grid cells). If
we focus on particle based simulations relevant to the cur-
rent work, at the very least for identification of objects there
must enough particles to overcome shot noise. If we require
detailed properties of the objects such as galaxy spectra, or
angular momenta then this can require many more ( e.g.,
Governato et al. 2007).

These criteria of large simulation volume and high reso-
lution are more straightforward to address in the context of
more restricted physical modeling. As a result, dark mat-
ter and gravity-only simulations have long been used to
make cosmological predictions that cover both large and
small scales in the same volume (e.g., Springel et al. 2005,
Boylan-Kolchin et al. 2009, Klypin, Trujillo-Gomez, & Pri-
mack 2011). Semi-analytic modeling has been used to pro-
cess dark matter simulations, resulting in many studies of
the galaxies and their properties in the ΛCDM model (see
e.g., Baugh 2006, Hirschmann et al. 2012 and references
therein).

Baryonic physics including hydrodynamics obviously
plays an important role in the formation of luminous ob-
jects and structure. This has lead to the inclusion of the rele-
vant equations in simulation codes in many forms, Smoothed
Particle Hydrodynamics (SPH, Monaghan 1992), Eulerian
grid solvers (e.g., Cen 1992, Bryan & Norman 1997) and
hybrid Lagrangian/Eulerian schemes (e.g., Springel 2010).
Although previous work has not simultaneously reached the
combination of large volume and high resolution that we
present here, research has progressed using many methods,
including making use of zoom simulations of smaller volumes
inside a representative one (Katz & White 1993, Scanna-
pieco et al. 2012), simulations that stop at high redshifts
before large-scale modes become non-linear (e.g., Di Mat-
teo et al. 2012), or by tackling problems which require lower
mass resolution (e.g., Battaglia et al. 2012).

The advent of large-scale computing facilities with
100,000 compute cores or more (such as the Cray XT5,
“Kraken” on which the current simulation was run) and the
development of highly efficient distributed memory simula-
tion codes (such as GADGET2, Springel 2005) means that
simulations which satisfy both criteria (1) and (2) are now
possible. We have run one such simulation as part of the
NSF Petascale Applications in Cosmology program, using
the code P-GADGET (see e.g., Di Matteo et al. 2012).

Our aim was to simulate and analyze a large, represen-

tative volume of the ΛCDM model with the most important
physical processes previously included in zoom runs or simu-
lations with smaller boxes. These are hydrodynamics (using
SPH), cooling, a subgrid multiphase model for star forma-
tion (Springel & Hernquist 2003) and subgrid black hole
modeling (Springel, Di Matteo, & Hernquist 2005,Di Mat-
teo, Springel, & Hernquist 2005), both with feedback. Our
use of the physical modeling and algorithms used in previ-
ous work such as Di Matteo et al. (2008), Croft et al. (2009),
Degraf, Di Matteo, & Springel (2010) and Di Matteo et al.
(2012) enables continuity and therefore comparison with this
previous work. Our aim is to see what this “fiducial” model
(ΛCDM + GADGET SPH + the particular subgrid algo-
rithms employed) predicts about the properties of galaxies,
their halos and their clustering at redshifts extending down
to the present day. We have not adjusted methods, algo-
rithms and parameters used in previous work (e.g., DeGraf
et al. 2012) to try to tune to observational results. Our goal is
to see how this model performs, now that there is a large vol-
ume at high resolution. We naturally expect both regions of
agreement and disagreement with observations and we aim
that our work will offer guidance to future work to address
the problems.

In this paper, we make the first use of the Massive-
BlackII simulation evolved to z = 0, and use it to explore
some topics in structure formation. Here we choose to fo-
cus on topics relevant to galaxy and AGN formation and
large-scale structure, including mass functions, galaxy and
halo properties and clustering. Our emphasis is on lower red-
shifts; the simulation at redshifts z > 5 has been explored
by Wilkins et al. (2013), Wilkins et al. (2013), and Wilkins
et al. (2013). Topics that we leave to future work include the
intergalactic medium, absorption lines, galaxy clusters and
X-ray emission.

Our plan for the paper is as follows. In Section 2 we
briefly describe the numerical methods and algorithms used
to run the simulation, select galaxies and carry out stellar
population synthesis. In Section 3, we describe visualiza-
tion of the simulation. In Sections 4 and 5 respectively we
present the mass function and halo occupation distribution
and in Section 6 we examine the clustering of dark matter
and galaxies. The properties of galaxies and supermassive
black holes are examined in Sections 7 and 8 and we derive
some conclusions from our work in Section 9.

2 METHODS:

2.1 Numerical Code

We have used P-GADGET, an upgraded version of GAD-

GET3 (see Springel (2005) for an earlier version) which we
are developing for use at upcoming Petascale supercomputer
facilities. This code was also used to run the MassiveBlack
(MB) simulation (Di Matteo et al. (2012). Both MB and
MBII are cosmological simulation of a ΛCDM cosmology.
The major differences between MB and MBII are resolution
and volume. However there are minor differences in cosmol-
ogy between the two.

The initial conditions for MBII were generated with the
CMBFAST transfer function at z = 159 and the simulation
was evolved to z = 0. The cosmological parameters used
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Lbox Npart mDM mgas ε(
h−1Mpc

) (
h−1M�

) (
h−1M�

) (
h−1kpc

)
100 2× 17923 1.1×107 2.2×106 1.85

Table 1. Basic simulation parameters for the simulation. The

columns list the size of the simulation box, Lbox, the number of

particles (dark matter + gas) used in the simulation, Npart, the
mass of a single dark matter particle, mDM , the initial mass of a

gas particle, mgas , and the gravitational softening length, ε. All
length scales are in comoving units.

were: amplitude of mass fluctuations, σ8 = 0.816, spectral
index, ns = 0.968, cosmological constant parameter ΩΛ =
0.725, mass density parameter Ωm = 0.275 , baryon density
parameter Ωb = 0.046 and h = 0.701 (Hubble’s constant
in units of 100km s−1Mpc−1). These are consistent with the
WMAP7 cosmology (Komatsu et al. 2011).

2.2 Halo And Subhalo Identification

We identify halos with the friends-of-friends (FOF) proce-
dure (Davis et al. 1985) applied to dark matter particles
with a linking length of b = 0.2 times the mean inter-particle
separation. Gas, stars and BHs are then associated to their
nearest dark matter particles. The subhalo finder SUBFIND
(Springel et al. 2001) was then used, working with parti-
cles in the FOF halo and computing a local density for
each particle. Starting from isolated density peaks within
the FOF halo, additional particles with decreasing density
are attached to it. Whenever a saddle point, which connects
two disjoint overdensities is reached, the smaller of the two
is treated as a substructure candidate followed by merging
of the two regions. Eventually all particles within a sub-
structure are checked for self-boundedness and only those
particles are retained which have a total negative energy.

2.3 Subgrid Model for Star Formation BH growth
and associated feedback

The subgrid models for star formation, BH growth and as-
sociated feedback processes are identical to that employed
in the MB simulation. We briefly describe them here and
refer the reader to the MB simulation (e.g., Di Matteo et al.
(2012)) for a more detailed description.

We adopt the multiphase model for star forming gas
developed by Springel & Hernquist (2003). This has two
principal ingredients: (1) a star formation prescription and
(2) an effective equation of state (EOS). (1) is motivated by
observations and given by the Schmidt-Kennicutt Law (Ken-
nicutt 1989), where the star formation rate is proportional
to the density of cold clouds (ρSFR ∝ ρNgas and N = 1.5. Star
particles are created from gas particles probabilistically ac-
cording to their star formation rates. (2) encapsulates the
self-regulated nature of star formation due to supernovae
feedback in a simple model for a multiphase ISM. In this
model, a thermal instability is assumed to operate above a
critical density threshold ρth, producing a two phase medium
consisting of cold clouds embedded in a tenuous gas at pres-
sure equilibrium. Stars form from the cold clouds, and short-
lived stars supply an energy of 1051 ergs to the surrounding

gas as supernovae. This energy heats the diffuse phase of
the ISM and evaporates cold clouds, thereby establishing
a self-regulation cycle for star formation. ρth is determined
self-consistently in the model by requiring that the EOS is
continuous at the onset of star formation. The cloud evap-
oration process and the cooling function of the gas then
determine the temperatures and the mass fractions of the
two ’hot and cold’ phases of the ISM, such that the EOS of
the model can be directly computed as a function of density.
In addition, a parametrization of stellar winds is also used
(see Springel & Hernquist 2003, for further details).

In MBII BHs are modeled as collisionless sink particles
within newly collapsing halos, which are identified by the
FOF halofinder called on the fly at regular time intervals.
A seed BH of mass Mseed = 5× 105h−1M� is inserted into
a halo with mass Mhalo ≥ 5 × 1010h−1M� if it does not
already contain a BH. Once seeded, BHs grow by accreting
gas in its surrounding region or by merging with other BHs.

Gas is accreted with an accretion rate ṀBH =
4πG2M2

BH
ρ

(c2s+v2BH)3/2
,

where vBH is the velocity of the black hole relative to the
surrounding gas, ρ and cs are the density and sound speed
of the hot and cold phase of the ISM gas (which when taken
into account appropriately as in Pelupessy, Di Matteo, &
Ciardi (2007) eliminates the need for a correction factor α
previously introduced). We allow the accretion rate to be
mildly super-Eddington but limit it to a maximum allowed
value equal to 2×Eddington rate (ṀEdd) to prevent arti-
ficially high values, consistent with Begelman, Volonteri, &
Rees (2006); Volonteri & Rees (2006). The BH radiates with
a bolometric luminosity which is proportional to the accre-
tion rate, Lbol = ηṀBHc

2 (Shakura & Sunyaev 1973), where
η is the radiative efficiency and its standard value of 0.1 is
kept throughout, and c is the speed of light. In the sim-
ulation 5% of the radiated energy couples thermally to the
surrounding gas and this energy is deposited isotropically on
gas particles that are within the BH kernel (64 nearest neigh-
bors) and acts as a form of feedback (Di Matteo, Springel, &
Hernquist 2005). The value of 5% is the only free parameter
in the model and was set using galaxy merger simulations
(Di Matteo, Springel, & Hernquist 2005) to match the nor-
malization in the observed MBH −σ relation. BHs also grow
by merging once one BH comes within the kernel of another
with a relative velocity below the local gas sound speed.

This model for the growth of BHs has been developed
by Di Matteo, Springel, & Hernquist (2005); Springel, Di
Matteo, & Hernquist (2005). It has been implemented and
studied extensively in cosmological simulations (Sijacki et
al. 2007; Li et al. 2007; Colberg & Di Matteo 2008; Di Mat-
teo et al. 2008; Croft et al. 2009; Booth & Schaye 2009;
Sijacki, Springel, & Haehnelt 2009; Degraf, Di Matteo, &
Springel 2010; Degraf et al. 2011c,b; Chatterjee et al. 2012),
successfully reproducing basic properties of BH growth, the
observed MBH − σ relation and the BH mass function (Di
Matteo et al. 2008), the quasar luminosity function (Degraf,
Di Matteo, & Springel 2010) and the clustering of quasars
(Degraf et al. 2011c).

2.4 Stellar Population Synthesis

The spectral energy distribution (SED) of a galaxy is gen-
erated by summing the SEDs of each star particle in the
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galaxy. The SED of the star particles is generated using
the Pegase.2 stellar population synthesis (SPS) code (Fioc
& Rocca-Volmerange 1997, 1999) by considering their ages,
mass and metallicities and assuming a Salpeter IMF. Neb-
ula (continuum and line) emission is also added to each star
particle SED. We also apply a correction for absorption in
the intergalactic medium (IGM) using the standard Madau
et al. (1996) prescription. We finally sum the SED of each
galaxy and convolve with given filters (see bottom panels
of figure 17) to finally obtain the broadband photometry,
hence the CSED.

2.5 Public Release of MBII Galaxy Catalogs

We release the MBII galaxy catalogs to the scientific com-
munity. Some of the properties included in these cata-
logs are position, velocity, mass, mass by particle type
(such as gas, dark matter, stars and BHs), circular velocity
and rest-frame luminosities. We encourage the community
to use these galaxy catalogs which can be accessed from
http://mbii.phys.cmu.edu/data/. A more detailed descrip-
tion and sample codes can also be found at the above URL.

3 VISUALIZATION

To enable easy visual exploration of the large dataset rep-
resented by the MassiveBlack 2 simulation, we have devel-
oped an interactive simulation browser web-application. The
browser allows real-time zooming, panning in the simulation,
and enables searching and locating of halos and subhalos in
the simulation. The application is built upon existing web
technology. Two main libraries used are Gigapan1, and the
Microsoft Seadragon library 2.

Figure 1 shows the interface for the interactive
browser. The browser can be accessed from the URL
http://mbii.phys.cmu.edu . It consists of a viewport and
three floating control panels: the MAIN panel, located at the
top-right corner of the interface; the INFOrmation panel, lo-
cated at the left side of the interface; and the NAVigation
panel, located at the bottom right corner of the interface.

The Gigapan image of the selected snapshot is displayed
in the viewport, where subhalos are also marked with green
crosses. In addition, central subhalos (Msubhalo > 0.1Mgroup)
are labeled with an additional circle. Interactive zooming
and panning in the viewport is implemented via mouse click-
ing and dragging.

The MAIN panel provides the following functionalities:

(i) selecting an epoch from the snapshot number;
(ii) switching between the gas and stellar image layer;
(iii) jumping among FOF groups;
(iv) querying subhalos in the current view.

The INFO panel displays the properties of the currently
selected subhalo or group. In Figure 1, for example, the
panels shows the property of the currently selected subhalo
(marked with a rectangle).

1 http://www.gigapan.org
2 http://gallery.expression.microsoft.com/SeadragonAjax

The NAV panel provides zoom-in and zoom-out con-
trols, and a switch to toggle the visibility of other control
panels.

Figure 2 shows a collage of images extracted from the
browser. In this example we have selected three halos in the
simulation at redshift z = 1.0: (I) at a major confluence
of filaments; (II) a moderately sized halo with three main
subhalos; (III) a relatively isolated halo. For each of the halo
we show the stellar component in their subhalos, embedded
in their surrounding gas environment.

The gigapan images used in the browser are high reso-
lution 2-D images of the full simulation rendered with the
visualization software Gaepsi (Feng et al. 2011). The gas
images (panels O, I, II, III) are rendered with the divergent
Cool-Warm color-map introduced by Moreland (2009). The
density information is encoded in the brightness of the pix-
els: brighter pixels have higher column density, and voids are
represented with black (zero-brightness). The temperature
of gas is encoded in the hue of the pixels, blue represents low
temperature (T < 103.5 K), and red represents high temper-
ature (T > 107.5 K). The stellar images (panels a, b, c, d,
e, and f) are composed from the simulated i, r, and g band
luminosity. This band definition follows the convention used
by the Sloan Digital Sky Survey (see the procedure described
in Lupton et al. 2004).

4 MASS FUNCTION OF HALOS

Given that dark matter halos represent the locations where
gas can cool and form stars and galaxies it is important
to predict their abundances - the halo mass function - ac-
curately. The halo or subhalo mass function, is one of the
fundamental quantities in structure formation. It is an im-
portant ingredient in a diverse set of tools used for making
theoretical predictions in cosmology. At low redshifts the tail
of the mass function which probes the abundance of clusters
is extremely sensitive to cosmological parameters. It is also a
key component in studying the clustering of galaxies as the
halo-halo term (see Cooray & Sheth 2002) depends on the
mass function. At higher redshifts the mass function is used
in modeling the sources of reionization which reside in dark
matter halos like PopIII stars, early galaxies and quasars.
Any significant deviation in the mass function as predicted
by the ΛCDM model would therefore create some tension in
our current understanding of structure formation.

Traditionally dark matter simulations have been used
to compute the abundance of halos for a given cosmology. A
key component of these analyses is the halo definition. The
FOF definition identifies regions bounded by an isodensity
contour whereas the Spherical Overdensity (SO) definition
identifies an artificial spherical region centered on a density
maximum such that the density within it is at a given den-
sity threshold. A dark matter halo is never perfectly spher-
ical making the SO definition artificial. The FOF definition
is prone to artificially bridging two (or more) nearby halos
connected by a filament.

In this section we will not look at how the halo definition
affects the mass function predicted by MBII since much work
has been done on this subject (Lacey & Cole 1994; Jenkins et
al. 2001; White 2002; Tinker et al. 2008; Watson et al. 2013).
We will rather choose a halo definition and see how baryonic
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Figure 1. Interface for the interactive simulation browser.

effects affect the mass function and compare our results with
fitting functions based on dark matter only simulations.

We generate two catalogues of halos based on the FOF
and SUBFIND halofinders. These catalogues contain the to-
tal number of particles by type (e.g. gas, dark matter, stars
and BHs), and the total mass by type amongst other im-
portant halo properties. For the analysis in this section we
consider the smallest halo to have a resolution limit of 40
particles by type. E.g. An object is considered to be a halo
if its mass satisfies Mhalo ≥ 40× (mdm +mgas), where mdm

and mgas are given in table 1. If we are interested only in the
dark matter component of the halo then the above condi-
tion is relaxed such that Mhalo ≥ 40×mdm. Note that these
criteria affect the statistics and counts of only the smallest
halos.

In the case of dark matter simulations it has been shown
(Warren et al. 2006) that halos with small particle counts
have a mass which is systematically overestimated. Correc-
tions have been proposed to alleviate this (Warren et al.
2006; Lukić et al. 2009; Bhattacharya et al. 2011; More et
al. 2011). We choose to ignore for this effect for two reasons.
(1) It is not clear how such corrections apply to each par-
ticle type in MBII. Providing a similar correction to halo
masses for hydrodynamical simulations is beyond the scope
of this paper. (2) In section 4.2 we will show that the bary-
onic effects already show up in the halo mass function at
lower masses at the 10-35% level when compared to dark
matter simulations. A correction to the mass of the halo
at smaller masses will only enhance the discrepancy in the
mass function.

The largest mode that any cosmological simulation can
sample is governed by the physical size of the simulation vol-
ume. Large scale modes k < 2π/Lbox are not sampled in the

simulation and lead to a suppression of structure formation
and hence the mass function. This is a well known effect
(Bagla & Ray 2005; Sirko 2005; Bagla & Prasad 2006) and
masses can be corrected by accounting for the missing power
(Reed et al. 2007; Watson et al. 2013). Bagla & Ray (2005)
point out that a boxsize Lbox = 100h−1Mpc is sufficient
to obtain reasonably reliable mass functions to halo masses
Mhalo > 1014M�/h for the ΛCDM model at z = 0; the re-
quirement for large boxes becomes less stringent at higher
redshift. Our focus will in any case be for smaller masses,
which are less affected by effects of finite volume. We there-
fore choose not to make any corrections to the mass function
due to missing large scale power.

4.1 The baryon fraction of halos

We start by looking at the baryon fraction of halos in figure 3
as a function of halo mass. We plot the ratio of the baryon
fraction of halos to the cosmic baryon fraction fhalob /fcosmicb

where fcosmicb = Ωb/Ωm and fhalob is the ratio of baryonic
to total mass of the halo. The solid line represents halos
identified with the FOF algorithm whereas the dot-dashed
line represents those identified by SUBFIND.

We find that the distinction between halos and subhalos
has little effect on the baryon fraction of halos below z = 6.
At z ≥ 6 the baryon fraction of subhalos identified with
SUBFIND is larger compared to objects identified with FOF
although the qualitative trend with mass is similar. We find
that the baryon fraction plateaus to around 80-90% around
Mhalo ≥ 1013M�/h at low redshifts and drops significantly
below that mass scale. At this point it is worthwhile to com-
pare our results with Crain et al. (2007) who looked at the
baryon fraction of halos in an adiabatic resimulation of the
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Figure 2. Visualization of MBII simulation. The central panel, O shows the full simulation box: the z = 1.0 snapshot is mapped into a
8 h−1Mpc thick slice. Panels I, II, and III show the gaseous environment of three FOF groups. Panel a to f show the stellar component

of the subhalos. The central subhalos are marked with dots, and 10 of the brightest subhalos are marked with stars. Please see text for

a description of the color scheme. The interactive simulation browser is available at http://mbii.phys.cmu.edu .
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Figure 3. The evolution of the baryon fraction of halos (fhalob )

in units of the cosmic baryon fraction fcosmicb as a function of

halo mass. The solid line is for FOF halos and the dot-dashed is
for halos identified with SUBFIND. The colors (black, red, green,

blue, pink and orange) represent the baryon fraction for different

redshifts (z = 0.0, 0.6, 1, 2, 6, 10)

Millennium simulation and another smaller volume (higher
resolution) simulation at z = 0. These authors also included
an additional simulation with a simple photoheating model,
where a gas temperature floor of Tfloor = 2× 104K was as-
sumed to mimic the IGM temperature at mean density in
the post-reionized Universe. Star and blackhole formation
and associated feedback processes were not included. These
authors found that the baryon fraction plateaued to around
90% for Mhalo ≥ 1010M�/h and dropped significantly be-
low that in their photoionisation model, whereas the baryon
fraction in the adiabatic simulation did not show any sig-
nificant behavior with halo mass. Our results largely agree
well the results of Crain et al. (2007), for larger masses how-
ever, we find that feedback can drastically prevent the col-
lapse of baryons in halos below Mhalo > 1013M�/h. Crain
et al. (2007) found that photoionisation regulates the for-
mation of smaller galaxies with Mhalo > 1010M�/h. In-
terestingly we find that at Mhalo ∼ 1010M�/h the baryon
fraction plateaus to around 20-40% of the cosmic mean. It
drops below that mass scale, which can be attributed to
photoheating. The suppression of the baryonic fraction in
Mhalo = 1010 − 1013M�/h can be attributed to feedback
from stars and blackholes.

Since we see that baryon effects play an important role
in the formation of halos we expect to see deviations in the
halo mass function which is the premise of the next section.

4.2 The mass function

We use the FOF and SUBFIND algorithms to compute the
halo and subhalo mass functions respectively. We look at
the total halo/subhalo mass and the mass of the dark mat-
ter component. In section 7 we will look at the galaxy stel-

lar mass function (GSMF) and compare them with observa-
tional constraints. In this analysis we choose the mass bin
to be ∆ logM = 0.2 which is well within the recommended
bin width (Lukić et al. 2007) to avoid any systematic error
that may arise in the estimate of the mass function due to
large bins. We assume Poisson errors for the counts of halos
in this mass bin.

It is convenient to rewrite the differential mass func-
tion, dn/d log10 M , in a rescaled form, f(σ), which is inde-
pendent of redshift, power spectrum and cosmology (Lacey
& Cole 1994). The computed differential mass function
dn/d log10 M can be rescaled to f(σ)

dn

d log10 M
=
M

ρ

d lnσ−1

d log10 M
f(σ) (1)

where M is the halo mass, ρ is the mean matter density and
the variance in mass, smoothed with a real-space spherical
top hat filter W (k,M) at a scale R(M) = (3M/4πρ)1/3, is
instead used as a mass variable and is given by

σ2(M, z) =
D+(z)2

2π2

∫ ∞
0

k3P (k)W 2(k,M)d log k (2)

The redshift dependence is encapsulated in the growth fac-
tor D+(z) which is normalized to D+(0) = 1. W (k,M).
When written in this form equation 1 is universal since the
dependence of redshift, power spectrum and cosmology are
absorbed into the variable σ(M, z). Therefore f(σ) at mul-
tiple redshifts should fall on a single curve. The commonly
and most used mass functions, namely the Press-Schecter
(Press & Schechter 1974) and Sheth-Tormen (Sheth & Tor-
men 1999) mass functions, can then be written in a compact
form:

fPS =

√
2

π

δc
σ

exp

[
− δ2

c

2σ2

]
(3)

fST = A

√
2a

π

[
1 +

(
σ2

aδ2
c

)p]
δc
σ

exp

[
− aδ

2
c

2σ2

]
(4)

where, δc = 1.686 is the linearly extrapolated overden-
sity of a spherical top-hat density perturbation at virial-
ization in an Einstein-de Sitter Universe. For the Sheth-
Tormen(Sheth & Tormen 1999) mass function (A, a, p) =
(0.3222, 0.707, 0.3) are additional parameters which better
describe the shape of the mass function when compared to
simulations.

In figure 4 we plot the rescaled mass function f(σ) for
redshifts z = 10 to z = 0 from the MBII simulation (open
squares, blue to red). For the FOF mass functions we also
add data from the MB simulation from redshifts z = 11 to
z = 5 (open circles purple to green). For any simulation the
mass function data points move from right to left along a
single curve in the f(σ) − σ plane. The top row and bot-
tom rows denote the SUBFIND and FOF mass functions.
The columns denote the full mass of the halo and the dark
matter mass of the halo respectively. The dashed (red), dot-
dashed (cyan), dot-dot-dot-dashed (orange) lines are for the
mass functions from Press & Schechter (1974); Sheth & Tor-
men (2002); Watson et al. (2013) The solid (black) line in
the bottom panels (FOF mass functions) denote the best fit
mass function to the MB and MBII data based on the Tin-
ker et al. (2008) parametrization of the Warren et al. (2006)
mass function.
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Figure 4. The SUBFIND (top) and FOF (bottom) mass functions are plotted from z = 0− 11. The columns denote the mass function
based on the total halo mass and the dark matter component of the halo mass respectively. The open squares denote data points from

the MBII simulation from z = 0− 10 (red-blue). The open circles in the FOF mass function (bottom panels) denote data from the MB
simulation from z = 5 − 11 (green-purple). The dashed (red), dot-dashed (cyan), dot-dot-dot-dashed (orange) lines are for the mass

functions from Press & Schechter (1974); Sheth & Tormen (2002); Watson et al. (2013). The solid (black) line in the bottom panels
(FOF mass functions) denote the best fit mass function to the MB and MBII data based on the Tinker et al. (2008) parametrization of

the Warren et al. (2006) mass function.

The PS mass function (Press & Schechter 1974) over-
predicts the abundance of low mass halos and underpredicts
the abundance of large mass halos. This has been seen in nu-
merous studies (Sheth & Tormen 1999; Jenkins et al. 2001;
Lukić et al. 2007; Reed et al. 2007; Watson et al. 2013). This
has led to a renewed effort in recent years to recalibrate the
mass function of halos based on simulations.

We find that the SUBFIND mass functions for halos and
dark matter do not fall on a single curve. There is significant
and systematic scatter across redshifts at small masses. This
is similar to the analyses of Jenkins et al. (2001); Tinker et

al. (2008); Watson et al. (2013) who found a for an object
definition different from FOF halos a less universal mass
function (having a redshift dependence). We therefore do
not provide a universal fit to the SUBFIND mass functions
which show a strong redshift dependence.

On the other hand the FOF mass function has been
shown to be more universal (Jenkins et al. 2001; Bhat-
tacharya et al. 2011; Watson et al. 2013) and this is also
seen in the lower panels of figure 4. We denote FOF and
FOFD to represent the FOF halo and dark matter compo-
nent of the FOF halo. We find that the FOF and FOFD
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mass functions agree well with the Sheth & Tormen (2002);
Watson et al. (2013) mass functions at the larger masses.
The FOFD shows a systematic shift with respect to the
FOF mass function due to a systematic shift in the halo
mass, since baryon contribution has been subtracted from
the halo mass. However the mass function at small masses
is systematically underestimated in MBII. This discrepancy
is larger for FOFD which is again due to a systematic shift
in the halo mass. Our results are consistent with Sawala et
al. (2013) who used the set of simulations described in Crain
et al. (2009) to look at the effect of baryons on the abun-
dance of halos. Sawala et al. (2013) compared the GIMIC
(which include gas, dark matter, star formation and feed-
back) and the DMO (dark matter only) simulations (Crain
et al. 2009) which were performed by resimulating at higher
resolution an 18h−1Mpc spherical region of the Millennium
simulation (Springel et al. 2005). Both the GIMIC and DMO
runs were done with the same initial conditions making it
possible to look at the effect of baryons on halo properties di-
rectly. They found that both simulations agree well on large
scales however objects below ∼ 1012M� have systematically
lower masses in the GIMIC simulation when compared to the
DMO counterpart. This result translated to an overestimate
of the abundance of structures in the DMO simulation, by
approximately ∼ 10% at 1011.5M� and ∼ 30% at 1010M�.
We do not have a DMO version of the MBII simulation to
make a direct comparison. We therefore make a comparison
of the mass function in MBII with published results based
on dark matter only simulations.

Given the binned FOF and FOFD mass functions
we perform separate fits with the Tinker et al. (2008)
parametrization of the Warren et al. (2006) mass function:

f(σ) = A

[(
β

σ

)α
+ 1

]
exp

[
− γ

σ2

]
(5)

The solid black line in the lower panels (FOF and
FOFD) of figure 4 represents our fits to the mass function.
For the FOF mass function we have also added data from
the ∼ ×150 larger volume MB simulation from z = 5 − 11
(open circles). This is done to obtain a larger range at the
tail of the mass function. The fitted mass function function
for FOF and FOFD are good to within ∼ 13% across the
full range of masses and redshifts. This means that the uni-
versality of the mass function holds for the FOF and FOFD
mass functions at the ∼ 13% level. The best fit parameters
are quoted in table 2. We have also added the latest fit from
dark matter simulations described in Watson et al. (2013).
Watson et al. (2013) also find that their fit is accurate to
∼ 10% across all redshifts and provide redshift dependent
fits to obtain greater accuracy. The tail of the mass func-
tion which is governed by γ is consistent with Watson et al.
(2013). We however find that the best fit mass function in
MBII systematically underpredicts the abundance of halos
in the tail of the mass function, which is dominated by high
redshift data points (with large error bars). Such a behavior
is also seen in Watson et al. (2013) and can only be improved
by assuming a redshift dependent fit, which we leave to a
forthcoming paper.

We end this section by comparing the best FOF mass
function (MBII +MB) to earlier earlier work in figure 5. We
plot the ratio of the FOF mass functions in Jenkins et al.
(2001); Sheth & Tormen (2002); Warren et al. (2006); Bhat-

A α β γ

FOF (MB+MBII) 0.1897 1.9607 1.7880 1.2067
FOFD (MB+MBII) 0.1738 1.6907 1.8812 1.2104

Watson et al. (2013) 0.282 2.163 1.406 1.210

Table 2. Best fit parameters for the FOF and FOFD mass func-

tions. The parameters are described in equation 5. The last row
is the best fit parameters from Watson et al. (2013).

Figure 5. Ratio of the best fit FOF mass function with fits based

on dark matter only simulations for FOF halos. The solid (black)
horizontal line is for MBII. The solid (red), dashed (cyan) , dot-

dashed (blue), dotted (green) and dot-dot-dot-dashed (orange)

lines are from Jenkins et al. (2001); Sheth & Tormen (2002); War-
ren et al. (2006); Bhattacharya et al. (2011); Watson et al. (2013).

The gray shaded box highlights the region below the knee of the
mass function where dark matter simulations systematically over-

predict the abundance of halos.

tacharya et al. (2011); Watson et al. (2013) (solid (red),
dashed (cyan), dot-dashed (blue), dotted (green) and dot-
dot-dot-dashed (orange) lines) to our fit (table 2) and focus
our attention at smaller masses, i.e. the gray shaded box
bounded by −1.4 ≤ ln(1/σ) ≤ −0.2 which highlights the
region below the knee of the mass function, where dark mat-
ter simulations systematically overpredict the abundance of
halos. We find that all the fits based on the dark matter
simulations overpredict the mass function at the 20 − 35%
level at around ln(1/σ) ' −0.9 when compared to our fit.
ln(1/σ) = −0.9 corresponds to Mhalo = 1011.2M�/h at
z = 0 and Mhalo = 109.3M�/h at z = 1. Even at the right
edge of the shaded region, i.e. ln(1/σ) = −0.2 which corre-
sponds to Mhalo = 1013.2M�/h at z = 0, dark matter sim-
ulations overpredict the FOF mass function at the 10-20%
level. To our knowledge the large effect baryonic processes
have in shaping the mass function has been neglected up to
this point.
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Figure 6. Occupation number and scatter of sub halos as a function of halo mass. The color corresponds to the log of the grid density

at each occupation number and halo mass. The green over plotted curves are the mean occupation number of central sub halos(dotted),

satellite sub halos (dashed), and all sub halos (solid). The blue dash-dotted curve is the best fit power law of the occupation number
through all data points. The top panel for each is the width of the probability distribution for all sub halos (solid circle) and satellite

sub halos (open circle). For a Poisson distribution, with width would be 1 which is the dotted line.
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5 THE HALO OCCUPATION DISTRIBUTION

The Halo Occupation Distribution (HOD) is a powerful the-
oretical formalism used for describing, predicting, and inter-
preting the clustering of galaxies in the large scale structure
of the universe. The HOD model describes the probabil-
ity distribution P (N |Mhalo) that a halo with virial mass
Mhalo contains N galaxies. In addition to this probability
distribution, the model also describes the relative spatial
distribution of galaxies within the halo. Recently several pa-
pers have shown the robustness of the HOD by constructing
and applying the model to large cosmological hydrodynamic
simulations (e.g., White et al. (2001); Berlind & Weinberg
(2002); Berlind et al. (2003); Zheng et al. (2005) and ref-
erences therein). Like the recent hydrodynamic simulations,
we will apply the HOD model to our own runs in this section.
In the HOD model, the distribution of matter within a halo
is described by two main components: first, the probability
distribution P (N |Mhalo) that a halo with mass Mhalo hosts
N number of galaxies, and second, the relationship between
the distribution of galaxies within the halos. In this section,
we will briefly analyze and discuss these two components
from our simulation.

The most important component of the HOD model is
the probability distribution P (N |Mhalo). Figure 6 shows the
occupation number N as a function of halo mass Mhalo for
nine snapshots. Each halo from the snapshots has one point
on the plot and the color corresponds the log of the number
of points per grid space. It is easy to see the power-law tail
for high halo mass greater than Mhalo ∼ 1013M�h

−1 at al-
most all snap shots. However for high redshift, i.e. z = 12,
there are few halos with Mhalo > 1013M�h

−1, so the power-
law tail isn’t observed. The color plot corresponds to the
total number of galaxies NAll as a function of halo mass,
but the literature has shown that is is perhaps more ro-
bust to explore the occupation number of the central galaxy
NCen and satellite galaxies NSat separately (Zheng et al.
2005). Previous studies have shown that a halo above a cer-
tain mass threshold will host one central galaxy, while halos
below this mass threshold will not. Therefore, NCen can be
modeled as a step function

NCen(Mhalo) =

{
0 Mhalo < Mmin

1 Mhalo ≥Mmin

(6)

where Mmin is the minimum mass of a halo which hosts
a central galaxy. The green dotted lines in figure 6 is the
average number of central galaxies 〈NCen〉. For all snap-
shots 〈NCen〉 plateaus at N = 1 quickly because nearly
all halos identified with the FOF algorithm host one cen-
tral galaxy. The halos that host a central galaxy can also
be populated by satellite galaxies. The dashed green lines in
figure 6 show the average number of satellite galaxies 〈NSat〉.
Like the occupation number of all galaxies, 〈NSat〉 follows a
power-law for halo masses greater than Mhalo ∼ M1, where
M1 is the mass of a halo that on average hosts one satel-
lite galaxy. In other words, the average occupation num-
ber of satellite galaxies follows a power law proportional to
〈NSat〉 ∝ (Mhalo/M1)α. The solid green line in figure 6 is
the average occupation number of both central and satel-
lite galaxies: 〈NAll〉 ≡ 〈NCen〉+ 〈NSat〉. For low halo masses,
〈NAll〉 is closely related to 〈NCen〉; however, for higher Mhalo,

Function A B C

α = A+B(z + 1− C)2 0.84(2) 0.003(1) 5.4(1.3)

M1 = A+Be−C(z+1) 0.2(1) 2.4(2) 0.34(3)

Table 3. Best fits for the evolution of the power law index α and
normalization mass M1 for increasing redshift.

Figure 7. Summary plot of the best fit parameters α and M1 as
a function of redshift. The green curves are the best fits through

each. Table 3 shows the fit functions used and the best fit param-

eters through these fits.

as the occupation number of satellite galaxies increases,
〈NAll〉 is dominated by 〈NSat〉.

In order to fit the halo occupation number, we consider
a function that is a combination of 〈NCen〉 and 〈NSat〉. Be-
cause the occupation number will be zero if NCen = 0, we
only fit halos that host a central galaxy; additionally, the fit
function must have a power-law tail for large Mhalo. There-
fore, we used a fit function of the form:

〈N(Mhalo)〉 = 1 + (Mhalo/M1)α (7)

where M1 is defined by NSat(M1) = 1, and α is the power-
law index of the distribution. These fits are shown as the
blue dot-dash curves on figure 6. The two fit parameters α
and M1 exhibit an evolution with redshift, which is shown in
figure 7. The bottom panel of figure 7 shows the evolution of
the normalization mass M1, which exhibits a clear exponen-
tial decay with increasing redshift. The green dashed line is
the best fit curve, and the fitting parameters and function
are given in Table 3. In the top panel of figure 7 is the evolu-
tion of the slope of the power-law tail α. There seems to be a
slight parabolic evolution with redshift for α, which is fitted
as the green dashed curve; however, this evolution is very
slight and may just be an artifact of the simulation. Never-
theless, the fit function along with the best fit parameters
for α are also shown in Table 3

With the best fit functions given in Table 3, one could
determine the normalization mass M1 and power law index
α at a given redshift, then use Eq. 7 to determine 〈N〉 in or-
der to populate a given halo of mass Mhalo for a simulation.
However, in order to fully populate said halos, one must also
understand the spread of the sub halo population at a cer-
tain value of 〈N〉. The best technique for this analysis is
to compare the probability distribution of sub halos N at a
given average occupation number 〈N〉, P (N |〈N〉), with that
of a well defined probability distribution, more specifically
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Figure 8. Probability distribution P (NSat|〈NSat〉) for a halo with virial mass Mhalo and an average occupation number of 〈NSat(Mhalo)〉
will host NSat galaxies. Each plot is the distribution about a different value for 〈NSat〉 which is given in the top right, while the three
panels correspond to the three redshifts given in the first plot. The error bars shown are Poisson error bars. For comparison the dotted
histogram is the corresponding Poisson distribution centered about NSat. Each of the distributions can be very accurately approximated

as a Poisson distribution.
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Figure 9. Plotted here is a simplistic schematic of the distribution of sub halos within three groups of mass Mhalo ∼ 1012M�h−1. The

left panel shows a group with the fewest number of subhalos from our simulation, the center panel shows a group with an occupation

number equal to 〈NSat〉 given by Eq. 7, and the right panel shows a group with the largest number of subhalos from our distribution.
The red dotted circles map out RV ir of the parent halo, while the black and blue circles show RV ir of the central and satellite subhalos,

respectively. Subhalos are believed to live upon filamentary structures within groups so the blue dotted line roughly shows the filaments

of each group.

Figure 10. The solid curves here are the probability distribution PR/RV ir
that a satellite subhalo will be located at a radial distance R

from the center of the parent halo in units of the parent halo’s RV ir. Each panel corresponds to a parent halo mass bin which is given
in the right hand corner of each panel. The colors of the curves correspond to a specific redshift which is given in the top left corner of

the first (top left) panel. The dotted curves correspond to the occupation number 〈NSat〉 at a certain radial distance from the center of
the parent halo. In the last two panels, the black curves show the SPH results from Berlind et al. (2003).

a Poisson distribution (e.g. Zheng et al. (2005); Berlind et
al. (2003)). If P (N |〈N〉) follows that of a Poisson distribu-
tion, then one could use Poisson statistics to quantize the
spread of occupation number from the mean. The top panels
of figure 6 show the width of the distribution; for a Poisson
distribution the width is 〈N(N−1)〉 = 〈N〉2 which is shown

as the dotted line at unity. The solid circles show the width
of the probability distribution as a function of Mhalo for all
galaxies (both central and satellite). At all redshifts, this
distribution is sub Poisson for low values of Mhalo, however,
it quickly approaches Poissonian at larger Mhalo. Because
the number of central galaxies follows a step function, there
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is very little spread in this value, i.e. it is either 0 or 1, so
instead of exploring the probability for all sub halos we fo-
cused on the probability distribution of satellite sub halos
P (NSat|〈NSat〉). The open circles in the top panels of figure 6
show the width of the probability distribution as a function
of Mhalo. Again for low halo masses, P (NSat) is sub Poisson,
but approaches a Poissonian width for higher masses. On the
other hand, for extremely high halo masses at low redshifts,
P (NSat) again is sub Poisson. From the width of the distri-
bution, it appears that P (NSat) is very close to a Poisson
distribution. In figure 8 we plotted P (NSat|〈NSat〉) for three
different snapshots. Each plot shows the probability that a
halo Mhalo will host NSat satellite galaxies if on average the
halo occupation number is 〈NSat(Mhalo)〉. In figure 8 the er-
ror bars are Poisson error bars and the dotted histogram is
the Poisson distribution centered at 〈NSat〉 which is given
in the top right of each set of plots. From figure 8 and the
top panels of figure 6, it is clear that P (NSat|〈NSat〉) can be
approximated as a Poisson distribution; therefore, one can
adequately use Poisson statistics to quantify the spread of
sub halos from the best fit mean of Eq. 7

Now that we understand the mean occupation number
for a halo at a certain redshift, we must also analyze the rel-
ative spatial distribution of the sub halos within their parent
halo. As we discussed above, all sub halos can be classified
as either central or satellite; furthermore, each halo will host
either one or none central sub halos, so studying the rela-
tive spatial distribution of a central sub halo is a bit trivial,
i.e. if the halo hosts a central sub halo it will be located in
the center of the halo. Therefore, we will focus on analyzing
the spatial distribution of only satellite sub halos. Figure 9
shows a simplified 2-D schematic of three different halos of
mass Mhalo ∼ 1012 M�h

−1 at z = 0 which is comparable
to the Milky Way. The middle panel shows a halo with an
occupation number equal to the mean at Mhalo (see Eq. 7),
while the left and right panels show, respectively, the ha-
los with the minimum and maximum occupation number at
Mhalo. The red dotted circle shows the virial radius of the
parent halo, the black solid circle shows the virial radius of
the central sub halo, and the blue circles show the satellite
sub halos. Because the virial radius of a galaxy is depended
on the mass of the galaxy, the size of the circle also repre-
sents the mass of each galaxy. This simplified representation
easily shows the distribution of mass within each halo: the
majority of the mass is located in one large sub halo located
at the center of the group with many less massive galax-
ies scattered around the central sub halo. Furthermore, this
simple schematic shows that the sub halos prefer to populate
their parents halos along filaments which is roughly shown
as the blue dotted line in figure 9.

In figure 10 we have plotted (solid curves) the probabil-
ity density PR/RV ir

that a satellite sub halo will be located a
radial distance R from the the center of the group in units of
the halo’s Rfir. We chose to only investigate satellite galax-
ies here because we have already shown that halos can only
host one central galaxy which would lead to a trivial anal-
ysis. We plotted halos from three different snapshots while
each panel corresponds to different parent halo mass bins.
In the last two panels (the high mass panels), there a no
halos with mass 1012 < Mhalo < 1014 at z = 4, so there is no
data from that snapshot plotted in these panels. For com-
pleteness, plotted on the right hand axes are the correspond-

ing dotted curves of 〈NSat〉 as a function of radial distance
scaled by R200 for each snapshot. Here, 〈NSat〉 is the aver-
age number of satellite sub halos per group per radial bin.
In other words this value corresponds to the average num-
ber of satellite sub halos within a group at a certain radial
distance R, which is not the average number of satellite sub
halos within R. Also plotted as the the black curve plotted in
the last two panels are SPH data from Berlind et al. (2003).
Our distribution follows the same general form as Berlind et
al. (2003). As can be seen in figure 10 the peak and width
of the radial distribution of satellite galaxies decreases with
decreasing redshift, irrespective of the mass of the parent
halo. This suggests that with time satellite galaxies cluster
strongly around the central galaxy and that mergers dom-
inate over the accretion of new satellites. Additionally we
see a mild variation for the peak of the distribution with
the mass of the host halo at a given redshift. The relative
location of the peak (with respect to Rvir) decreases with
increasing halo mass which suggests that the clustering of
satellite galaxies is stronger in more massive halos.

6 GALAXY CLUSTERING

The MBII simulation is of a large enough volume that galaxy
clustering can be studied meaningfully. The sheer number of
galaxies in the MBII (particularly for low mass selection
thresholds) means that clustering measures can be com-
puted with a high signal to noise level and consequently
subtle features be noticed and analyzed. In this section we
concentrate on two-point correlation functions of the galax-
ies and dark matter, including the cross-correlation of the
two.

6.1 Two point correlation functions

We analyze 15 snapshots of the simulation between red-
shifts z = 10 and z = 0.06. For each snapshot, we com-
pute the two point autocorrelation of dark matter parti-
cles and also the two point autocorrelation function of sub-
halos. For the latter, we measure this quantity for several
subsamples defined by a lower limit on the subhalo mass:
mtot > 109M�, 1010M�, 1011M�, 1012M�. We also do the
same for subsamples defined by lower limits on the stellar
mass of subhalos: m∗ > 108M�, 109M�, 1010M�, 1011M�.
We also compute the cross-correlation of dark matter and
subhalos for subsamples defined by the above mass bins.

We note that before computing the correlation functions
for any sample in the simulation, if the number of elements
(dark matter particles or subhalos) is greater than 2563,
for speed we randomly subsample down to this number, as
shot noise errors on the scales we are interested in will be
negligible at the sampling density.

In Figure 11, we show examples of the autocorrelations
and crosscorrelations for galaxies and dark matter in the
MBII at two redshifts, z = 0 and z = 2. In this example, the
galaxies used to compute the clustering were selected above
a total mass threshold of 109M�. There were 1.65 × 106

galaxies in the subsample at z = 0 and 1.89× 106 at z = 2.
In Figure 11 we can see that the dark matter autocorrela-
tion (referred to as ξρρ although it is not the autocorrelation
of the total density) at z = 0 has the pronounced dip at

c© 2014 RAS, MNRAS 000, 1–26



The MassiveBlack-II Simulation 15

Figure 11. The two-point auto-correlation function of dark mat-

ter (black), galaxies (red) and the two-point cross-correlation

function of dark matter and galaxies (blue) in the MBII simu-
lation. We show results at two redshifts z = 0 and z = 2. The

galaxies were selected to be those above a (total) mass threshold
of 109M�.

r ∼ 1h1Mpc indicating the transition between one-halo and
two-halo terms (Cooray & Sheth 2002). At redshift z = 2,
the autocorrelation of galaxies and of dark matter particles
have similar shapes and ampitudes on scales r > 20kpc/h,
but at z = 0 the galaxies (which have low mass) are sig-
nificantly anti-biased with respect to the dark matter on all
scales (see e.g., Abbas & Sheth 2007). The cross-correlation,
ξgρ has a second dip in it at r ∼ 20kpc/h. The galaxies at
the two redshifts have pretty similar ξgρ (dark matter pro-
files) interior to this, as expected, because they were selected
above the same threshold mass.

6.2 Bias and stochasticity in MBII

6.2.1 Bias

That the ratio of dark matter and galaxy correlation func-
tions can vary as a function of scale is obvious from Fig-
ure 11. In Figure 12 we plot b(r) =

√
ξgg(r)/ξρρ for the same

lower total mass threshold 109M� as was used in Figure 11,
but for redshifts between z ∼ 0 and z ∼ 10. The b(r) func-
tion is approximately flat for separations r > 2− 5h1Mpc ,
depending on the redshift, reaching the limit on large scales
usually referred to as linear bias (see e.g., Scherrer & Wein-
berg 1998). On smaller scales, the bias is scale-dependent,
with bias decreasing as r becomes smaller for redshifts z < 4
and increasing for redshifts z > 4. For the mass threshold
plotted, bias is approximately scale independent at z = 4
down to r ∼ 0.1h1Mpc . The scale dependence at late times
is presumably due at least partly to non-linear effects such
as merging of galaxies reducing the number of pairs on small
scales, as well as halo exclusion. In the halo model frame-
work, bias is scale dependent with a change of slope at the
transition scale between the one and the two halo terms. At

Figure 12. (a)Top panel : Bias vs scale for galaxies in the MBII
simulation, at 15 different redshifts. The lower threshold mass of

the MBII galaxy sample was chosen to be 109M�. The simulation
results are shown as solid black lines, and a simple parametric
fit (Equation 8) to the results for each redshift is plotted as a

solid red line. (b)Bottom panel : Stochasticity of galaxy clustering

(Equation 10) as a function of scale for MBII galaxies. The same
threshold mass (109M�) was used as in the top panel and the

same redshift snapshots. In order to make the redshift progression
clearer, we plot results at redshifts above z = 5 with blue lines
and the low redshift results in black.

earlier times, because we are using a fixed threshold mass,
the galaxies become rarer and so are likely to lie in primary
halos (i.e. they are not in subhalos of larger halos).

In order to further see how this trend evolves, we have
plotted in Figure 13 a simple fitting function for b(r):

bfit(r) = (blarge − bsmall)e
−(rb/r) + bsmall (8)

where blarge and bsmall are fitting parameters corre-
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Figure 13. (a)Top panel: The non-linear scale in the bias (param-

eter rb in Equation 8) of MBII galaxies as a function of redshift.
We show results for four different lower mass thresholds as differ-
ent colored lines. (b) Bottom panel: The non-linear scale in the

stochasticity (parameter rs in Equation 10) of MBII galaxies as

a function of redshift. We show results for the same four different
lower mass thresholds as the top panel.

sponding to the large-scale asymptote of the bias parameter
and a value of bias on small scales, respectively. The pa-
rameter rb corresponds to the exponential length scale over
which the bias changes from its large to small scale value.
This parameter rb can therefore be considered to represent
a type of non-linear scale parameter for the bias. We fit this
function to the b(r) curves for points with r > 0.25h1Mpc ,
so that we avoid the downturn of b(r) on small scales. The
corresponding fits are shown as red lines in Figure 12(a).

We note that in Figure 12(a) that for the subhalo mass
sample we are plotting the values of blarge and bsmall in the
fits will change relative to one another as we change redshift.
As a result there will be a redshift (for this mass subsample

Figure 14. Top panel: Linear bias versus threshold galaxy stel-

lar mass. Results for galaxies in the VIPERS survey (Marulli et
al. 2013), are shown as points with error bars, at two different

redshifts, z = 0.6 and z = 1. We show results from the MBII
simulation at the same redshifts as solid lines.

it is around redshift z = 3−4) where the bias will be almost
linear (blarge ' bsmall). There is also likely to be a transition
in the non-linear scale parameter rb at around this redshift.

In Figure 13(a) we plot the behavior of rb vs redshift,
with results for several different mass bins on the same plot.
At low redshifts z < 2 we can see a gradual increase in
rb with scale for all mass subsamples. This non-linear scale
reaches a maximum of 1h−1Mpc at z = 0. This can be com-
pared to the scale at which matter clustering becomes non-
linear (the matter clustering deviates from the linear extrap-
olation), which is ∼ 5h−1Mpc at this redshift (Gaztañaga
& Juszkiewicz 2001). Galaxies therefore trace the mass to
scales significantly smaller than the non-linear mass cluster-
ing scale in this simulation.

The minimum value for rb is reached at redshift z = 2
and is between rb = 0.01 − 0.05h−1Mpc with the smaller
halos being at the lower end of this range. At earlier redshifts
there is then a switch to a much larger value for rb.

6.2.2 Stochasticity

Another quantity of interest is the stochasticity of clustering
for which we use the correlation coefficient (see e.g., Sato &
Matsubara 2013, we use the symbol s(r) in order to avoid
confusion with length scale r.)

s(r) = ξgρ/
√
ξggξρρ (9)

We show the s(r) curves for the same redshifts and lower
mass threshold (109M�) as used for Figure 13(a) in Figure
13(b). On large scales, r > 1− 15h1Mpc , depending on the
redshift, the s(r) reaches unity, indicating that the galaxy
and dark matter fluctuations trace each other deterministi-
cally. For clarity, we have not plotted the smallest scales (
r < 0.1h1Mpc ) on this plot, but all curves eventually rise
again and go above s = 1 (this can be seen in Figure 16 be-
low). The s(r) increases for the smallest r because galaxies
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Figure 15. The scale dependence of bias in the MBII simulation

(blue lines) compared to the observational data of Jullo et al.

(2012) (points with error bars) for various samples with different
mean stellar mass and redshift (given in the panels). The dashed

line in panel (a) shows the results for an MBII sample with a

mean stellar mass of 1.5× 109M�.

cannot be closer together than the sum of their radii. This
causes ξgg in the denominator of Equation 9 to be very small
(see e.g. Figure 11) and so s(r) to increase.

Again in order to explore a wide range of masses and
redshifts in one plot, we have fit a simple curve to the s(r)
results.

sfit(r) = e−(rs/r) (10)

where rs is a parameter which determines the scale at
which the stochasticity s(r) deviates from s = 1. The results
for different mass bins are shown as a function of redshift in
Figure 13(b). We can see that halos with larger masses have
systematically higher values of rs at almost all redshifts.
Curves for all masses also have a trend of rs with redshift
which is somewhat similar to the rb parameter in Figure 12.
As the density field evolves below redshifts z = 3 − 4, the
scale at which stochasticity becomes important increases.
Unlike the bias parameter rb it does appear to level off at
the lowest redshifts, however.

6.3 Comparison with observations

We compare first to the galaxy autocorrelation function pub-
lished by the VIMOS Public Extragalactic Redshift Survey
(VIPERS) team (Marulli et al. 2013). The VIPERS survey
is an ongoing deep and well sampled spectroscopic survey
of 100,000 galaxies in the redshift range z = 0.5 − 1.2 (see
Guzzo et al. 2013 for details). We use two of the three red-
shift bin measurements published by Marulli et al. (2013),
centered at z = 0.6 and z = 1.0. Marulli et al. (2013) give
the linear bias parameter for each redshift in a series of bins

Figure 16. Stochasticity versus radius. Results for different red-

shifts and mass thresholds in the MBII simulation are shown as
colored lines. The points with error bars denote observational de-

terminations for galaxy stochasticity by Jullo et al. (2012). The

simulation redshifts and mass bins shown bracket those of the
observational data.

in stellar mass threshold (their table 3). We plot these lin-
ear bias vs stellar mass points in Figure 14. Results from the
simulation are shown as lines (b in this case is the parameter
blarge fit using equation 8). From Figure 14 we can see that
the simulation and observations show the expected trend of
increasing bias with increasing galaxy stellar mass, and that
the simulations are consistent with the observational results.

Observationally analyses such as Jullo et al. (2012) have
been able to probe scale dependence of bias by comparing
weak-lensing measurements of the matter distribution with
galaxy clustering. In Figure 15 we show a quantitative com-
parison between the MBII simulation and the data from
figure 11 of Jullo et al. (2012) The Jullo et al. (2012) mea-
surements were for 5 different subsamples of observed galax-
ies with different mean stellar masses and mean redshifts. In
order to match the mean stellar masses and redshifts of the
Jullo et al. (2012) data samples we carried out a quadrilinear
interpolation in log mass and in redshift between the corre-
lation function results measured from the MBII simulation
for different redshift snapshots and mass bins. The relevant
redshifts and mean stellar masses for the different samples
are given in the panels of Figure 15.

Looking at Figure 15 we can see that observed data does
show a pronounced antibiasing (b < 1) of galaxies with re-
spect to dark matter on small scales for many of the galaxy
subsamples. For the lowest redshift subsample (top panel)
this is particularly significant, given the small error bars.
The MBII simulation data exhibits this trend also, for the
bins with low mass and low redshift. The bias for the low-
est redshift bin is systematically higher at all scales in the
simulations compared to the observations, however. In order
to show quantitatively how this relates to the mean stellar
mass of the subsample, for this panel, (a), we have also plot-
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Figure 17. The Evolution of the Cosmic Spectral Energy Distribution in MBII (left and center panels. Comparison is made at z = 0.0625
with the GAMA survey at z = 0.05 Driver et al. (2012).

ted the results for a subsample with approximately half the
mean stellar mass (1.5× 109M�).

Jullo et al. (2012) have also searched for for stochastic-
ity in clustering by comparing weak-lensing measurements
of the matter distribution with galaxy clustering. Jullo et al.
(2012) find no significant amount of stochasticity on scales
between r = 0.2h1Mpc and r = 15h1Mpc at redshifts be-
tween z = 0.2 and z = 1.

A comparison between the MBII simulation results and
those of Jullo et al. (2012) is shown in Figure 16. The obser-
vational points are for a range of redshifts, with each red-
shift’s measurement being reliably inferred over a particular
range of scales (shown by the horizontal error bars). The
different observational points also came from different flux
limited samples, which have a mean stellar mass varying be-
tween 6 × 109M�/h and 1.8 × 1010M�/h. We can see that
the observational results are all consistent with no stochas-
ticity (s = 1) at at least the 1.5σ level. The simulation re-
sults are shown for redshifts and stellar mass ranges which
bracket the observational results. We can see that the obser-
vational and MBII results are consistent, but at the scales
r > 0.4h1Mpc that are probed by Jullo et al. (2012) we ex-
pect no significant deviation from s = 1. On smaller scales
for the MBII, we see differences between the two samples
of different masses. The galaxy-exclusion effect mentioned
above means that s(r) goes above 1 at smaller scales for
smaller galaxies.

7 PROPERTIES OF GALAXIES

The MB and MBII simulations have been very successful
in reproducing the observed properties of galaxies in the

high redshift Universe. Wilkins et al. (2013) showed that
the galaxy stellar mass function (GSMF) predicted by MB
and MBII at z ≥ 5 could be reconciled with observations
if one assumed that the mass-to-light ratio (as predicted in
MB and MBII) of these galaxies was evolving with redshift.
Khandai et al. (2012) showed that the MB simulation repro-
duced the observed properties of galaxies hosting the highest
redshift quasars (Carilli et al. 2007; Wang et al. 2010, 2011).
In this section we focus our attention on the properties of
galaxies in the MBII simulation at z < 4. We will compare
general properties of galaxies with observations and leave a
detailed analysis to future publications.

We start by looking at the Cosmic Spectral Energy Dis-
tribution (CSED) in MBII. We select subhalos using SUB-

FIND and consider only those which have more than 100
dark matter particles. We refer to these subhalos as galaxies
for the rest of this section. The spectral energy distribution
(SED) of a galaxy is generated by summing the SEDs of
each star particle in the galaxy. The left and right panels of
figure 17 show the evolution of the CSED in the MBII sim-
ulation from z = 10 to z = 0. We find that the amplitude of
CSED in all bands increases rapidly with decreasing redshift
to z = 4 with little change in shape. This is expected and
is in line with the behavior of the observed cosmic star for-
mation rate (CSFR) (see figure 23). Observations find that
the CSFR plateaus around z ∼ 3−4 and declines rapidly at
lower redshifts.

The shape of CSED evolves dramatically below z > 3.
We find that the bluer part of the CSED, which strongly
correlates with the CSFR starts to decline below z > 3 con-
sistent with the observational trend, whereas the redder part
of the CSED increases very slowly with decreasing redshift
to z ∼ 1 and declines thereafter. This is because at these
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Figure 18. The GSMF from z = 0− 3 in MBII. Comparison is made with observational estimates of Pérez-González et al. (2008) (gray
data points with error bars), Baldry et al. (2012) (z=0, orange data points with error bars). For z = 2 and z = 3 (orange data points

with error bars) the observational estimates are taken the CANDELS survey (Tomczak et al. 2013). The black line represents the GSMF
in MBII when we consider all galaxies. The red, green, blue and cyan lines denote the population of galaxies which have a SFR greater

than 0, 0.01, 0.1. and 1 respectively (in units of M�/yr.)

redshifts galaxies are forming new stars at much reduced
rates and are passively evolving into a redder population.

In the right-hand panel of figure 17 we compare the in-
trinsic CSED at z = 0.0625 with dust-corrected observations
from the GAMA survey at 0.013 < z < 0.1 (Driver et al.
2012). We find that the shape of the CSED compares well
with the observational results. However, the amplitude of
the CSED predicted by MBII does not match that of obser-
vations, falling systematically below it. This will be in part
caused by incompleteness as MBII does not resolve all galax-
ies (particularly those at low stellar masses). This discrep-
ancy is also sensitive to the initial mass function (IMF) as-
sumed in the processing of MBII. Assuming an IMF in which

a larger fraction of the mass is converted into high-mass stars
(such as those proposed by Kroupa 2001; Chabrier 2003)
would increase the luminosity density bringing MBII more
closely inline with the observations

We now look at the galaxy stellar mass function
(GSMF) predicted in MBII in figures 18 and 19. In figure 18
the GSMF is compared with observational estimates. The
black line represents the GSMF in MBII when we consider
all galaxies. The red, green, blue and cyan lines denote the
population of galaxies which have a SFR greater than 0,
0.01, 0.1. and 1 respectively (in units of M�/yr.) Compari-
son is made with observations of Pérez-González et al. (2008)
(gray data points), Baldry et al. (2012) (orange data points
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(z=0)). For z = 2 and z = 3 (orange data points) the obser-
vational estimates are taken the CANDELS survey (Tom-
czak et al. 2013). At z = 0 MBII overpredicts the GSMF
both at the high and low mass ends. However the GSMF
agrees well with the observations for M∗ ≥ 1010M�/h for
z = 1 and z = 2 At z = 3 MBII underpredicts the abun-
dance of larger mass galaxies. This is most likely due to the
finite volume of MBII.

We find that the amplitude of the GSMF of
(Hirschmann et al. 2013) is larger compared to MBII al-
though the shape seems to be in reasonable agreement. The
boxsize, star formation and feedback model in MBII and
Hirschmann et al. (2013) are similar. Therefore given that
the mass resolution of (Hirschmann et al. 2013) is ∼ ×60
lower than MBII and based on the resolution tests carried
out in Torrey et al. (2014) the amplitude of the GSMF in
(Hirschmann et al. 2013) should be lower compared to MBII.

One of the striking feature at all redshifts is the steep
slope in the GSMF in MBII at M∗ ≤ 1010M�/h. These
galaxies are less affected by AGN feedback and are there-
fore more sensitive to the star formation and stellar feedback
model. This feature is seen across all redshifts in figure 18.
For example in MBII we find that there are many more lower
mass galaxies which have zero star formation (i.e. the differ-
ence between the black and red lines) at z = 0 as compared
to higher redshifts, the difference between the two decreasing
with increasing redshift. We therefore need to understand
why do small galaxies form rapidly so early and why do
they stop forming stars later. A better treatment of the star
formation and stellar feedback model is therefore required
in order to suppress the overproduction of lower mass galax-
ies. For example our model does not include the treatment of
molecular gas (Krumholz & Gnedin 2011) which would tend
to suppress star formation rates in lower mass galaxies. Al-
ternately one may need to assume a feedback model which is
dependent on the mass of the galaxy (Oppenheimer & Davé
2006; Davé et al. 2011; Vogelsberger et al 2013; Torrey et al.
2014). The variable wind model which is dependent on the
galaxy velocity dispersion is described in Oppenheimer &
Davé (2006) and indeed flattens the GSMF at z = 0 better
reproducing observations. However Torrey et al. (2014) find
that the GSMF is still steep at higher redshifts and addi-
tional modeling may be required to suppress the production
of stars in low mass galaxies. Interestingly we find that if we
account for those galaxies which have non-zero star forma-
tion at z = 0 the lower mass end of the GSMF is in better
agreement with observations.

In figure 19 we look how the AGN population affects the
GSMF at z = 0. We consider the the population of galaxies
which may host an AGN with bolometric luminosity in units
of erg/sec, log10(Lbol) < 45 (red), log10(Lbol) < 43 (green)
and log10(Lbol) < 41 (blue) We focus our attention on larger
mass galaxies at z = 0 since they are most affected by AGN
feedback. We find that the tail of the GSMF is in reason-
ably good agreement with observations down to z ≥ 1 (see
figure 18) and one does not need to consider a subsample
of galaxies without bright AGNs (green and blue curves) to
match observations. We find that the stellar mass in galax-
ies that host AGNs brighter than log10(Lbol) = 43 is over-
predicted in MBII suggesting insufficient quenching / AGN
feedback. This is also seen in the results of Hirschmann et
al. (2013). Torrey et al. (2014) on the other hand reproduce

Figure 19. Same as in figure 18 but we now consider the the

population of galaxies at z = 0 which may host an AGN with
bolometric luminosity, log10(Lbol) < 45 (red), log10(Lbol) < 43

(green) and log10(Lbol) < 41 (blue).

the tail of the GSMF reasonably well although it maybe a
result of missing cluster sized halos in their simulation vol-
ume of Lbox = 25Mpc/h. Torrey et al. (2014) also define the
galaxy stellar mass to be the sum of the stellar mass within
twice the half mass radius. Such a definition affects only
larger objects as it gets rid of the stellar mass in the diffuse
intracluster medium and is not traditionally counted as con-
tributing to the central galaxy’s mass. Such a definition may
help in better bringing in line our results with observations
but as we will discuss in the next section the bright end
of the QLF is still overestimated due to insufficient AGN
feedback.

8 BLACKHOLES

In this section we present some basic properties of our simu-
lated black hole population and their relation to the galaxies
in MBII. In particular we show overall history of the black
hole mass assembly and look at the relation between black
hole and stellar mass in galaxies. We look at the predic-
tions for the bolometric luminosity function and clustering
strength as a function of luminosity for the AGN population
in MBII. More detailed analysis of the blackhole-galaxy re-
lations and comparisons with observational constraints will
be presented in a separate paper.

Every single black hole in our simulations accretes and
grows according to local gas properties so as an outcome
of our black hole model, each single black hole that has a
lightcurve and an associated mass history over the cosmic
time since it is seeded. MBII contains tens of thousands of
blackholes and Figure 20, we show the mean (and associ-
ated dispersion, in the corresponding colored areas) black-
hole mass assembly history for blackholes that, at z = 0,
end up in different mass bins, from the the lowest masses
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Figure 20. The mean black hole accretion rate (left panel) and the mean black hole mass assembly history for the main progenitor

(right panel) black holes ending up in different mass ranges (as labeled) at z = 0. N indicates the number of black holes in each of the

mass bins. The dashed and dotted lines show a sample of single main progenitor histories.

(106M�/h < MBH < 107M�/h) to the highest mass bin
(109M�/h < MBH , 1010M�/h). In addition to the mean his-
tories for the population we also specifically show a sample
of single, main progenitor mass assembly histories. This is to
illustrate how the most massive, and earliest growing black
holes, within the different mass bins, depart from the mean
(dominated by the more numerous lower mass blackholes).
In general we see that the largest black holes z = 0 are
largely assembled at high redshifts. The dispersion in mass
assembly histories is also typically larger for the high mass
black holes. This is because there is a much larger variety of
assembly histories than for the lower masses. For example,
some black holes form early and grow to large masses quickly
at high-z, but their mass assembly history remains flat sub-
sequently. We also note an upturn in the growth histories
of massive black hole at z < 0.2. This is likely the result
of insufficient AGN feedback (in the form that is modeled
in MBII) in massive galaxy hosts at low redshift. Similar
results were also found by recent work of Hirschmann et al.
(2013).

To illustrate the range of black hole masses and lumi-
nosities in MBII we show these two quantities as a function
of total halo mass in our galaxies in Figure 21. Although
there is an overall correlation between both quasar lumi-
nosity and black hole mass with halo mass the scatter in
both these relations is rather large indicating the halo mass
is an extremely rough proxy to black hole properties. Com-
plex hydrodynamic and associated feedback effects play an
important role in the central region of galaxies.

In Figure 22 we show the prediction for the relation-
ship between black hole mass and stellar mass in galaxies in
our simulation. In the right panel, the relation is shown for
the z = 0 blackhole population. For simplicity here we use
the total stellar mass and not only the bulge mass which is
what is normally used in the local universe (and hence show
only groups with M∗ > 1010M�; in future work we will look
at the associated black hole- stellar velocity dispersion rela-
tion). In the left panel of Figure 22 we show the evolution
of the mean relation derived from a number of snapshots
from MBII. As in previous work (Di Matteo et al. 2008;
Booth & Schaye 2011; Hirschmann et al. 2013) we find good
agreement between simulations and observations. Although

we do not find strong evolution in the relation with redshift
the relation appears to steepen slightly toward higher red-
shift. This is overall consistent with previous findings and
observation constraints (Bennert et al. 2010; Merloni et al.
2010) and we defer detailed comparison with different ob-
servational constraints as a function of redshift to a future
paper (Degraf et al. 2014).

The global star formation rate and black hole accretion
rate density (multiplied by a factor of 3 × 103) is shown
in Figure 23 together with the observational compilation
of Hopkins & Beacom (2006) for the star formation rate
density derived from different wavebands. Overall the star
formation rate and black hole accretion rate density have
similar shapes and track each, with the peak of star forma-
tion proceeding that of BHAR density by roughly a unit
redshift. Both the star formation rate density (and also the
BHAR density) show a flattening below z ∼ 1. This is likely
a result of too inefficient feedback to quench both SFR and
BHAR in low redshift high mass halos.

In figure 24 we show the bolometric quasar lumi-
nosity function (QLF) compared to the compilation of
data from Hopkins, Richards, & Hernquist (2007), at z =
0.1, 0.5, 1, 1.5, 2 and 4. We note that z > 5 predictions from
MBII (and MB) are presented in DeGraf et al. (2012); Mc-
Greer et al. (2013) and predictions for z = 2.0, 2.4, 3.2 com-
pared to the most up-to-date BOSS QLF in Ross et al.
(2013). In general, we find overall good agreement between
the simulations and observations at z > 2 (here and in De-
Graf et al. (2012); McGreer et al. (2013); Ross et al. (2013)
and 0.5 < z < 1. At the lowest redshifts (z = 0.1), however,
the bright end of the QLF is overestimated by the simula-
tions. As we discussed earlier in the Section, this indicates
insufficient quenching / AGN feedback at these redshifts.
Conversely, in the redshift range between z = 1.5 − 2 the
bright end of the QLF is underestimated (see also Ross et
al. 2013). This would indicate that our peak of the BHAR
density occurs somewhat too early (see Fig. 23). Again this
may have to do with the details AGN feedback. Given the
simple model adopted here, these results suggest that a con-
stant f (our feedback energy parameter) may be too simplis-
tic a model for AGN feedback. A redshift evolution of f as
also implemented by Hirschmann et al. (2013) may alleviate
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Figure 21. The relation between blackhole luminosity and host halo mass (top) and blackhole mass and host halo mass (bottom).

Figure 22. Left panel: present day blackhole mass stellar mass relation in MBII. Right panel: the evolution of the relation from z = 0

to z = 6.

some of these issues (however, even in those simulations the
bright end (at low-z) is overestimated indicating that some
more complicated modeling may be necessary).

Finally we briefly present the MBII prediction for the
correlation length, r0 of AGN as a function of redshift and
luminosity in Figure 25. In general the correlation lengths
are in agreement with observational constraints (Shen et
al. 2009). The correlation length, at constant luminosity,
increases as a function of redshift. This is expected if same
luminosity AGN are hosted in similar mass halos at different
redshifts. In addition, there is a luminosity dependence in
the clustering and r0 increases by a factor of 2 − 3 at the
highest luminosities.

9 CONCLUSIONS

In this paper we have examined a variety of standard pre-
dictions using the recently completed MBII simulation. In
particular, the results presented here range from the cluster-
ing of halos and galaxies, HOD, the mass function of halos
to basic properties of galaxies and AGNs.

Our main conclusions are:

• We find that halos with masses Mhalo ≥ 1013M�/h
have a baryon fraction close to 80%-90% of the cosmic mean.
The baryon fraction decreases steadily with decreasing halo
mass. Our results are broadly consistent with Crain et al.
(2007) for cluster sized halos but differ significantly for lower
mass halos. The discrepancy can be attributed to feedback
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Figure 24. MBII Predictions for the quasar luminosity function (QLF) compared to the Hopkins, Richards, & Hernquist (2007) data
compilation at different redshifts.

Figure 23. The star formation rate (SFR, in red) and black
hole accretion rate (BHAR, in orange, multiplied by 3 × 103 for
comparison) density prediction from MBII. The observation con-

straints for the SFR density from Hopkins & Beacom (2006) are
shown in gray squares (without error bars for clarity).

both from AGN and supernovae which were not been mod-
eled in Crain et al. (2007).
• We find that the FOF halo mass function (where halo

mass includes both dark matter and baryonic components)
in MBII can be fit with a universal form (valid for all red-
shifts) at the ∼ 13% level.
• One of the most striking results predicted by MBII is

Figure 25. The correlation length, r0 measured for the quasar

population as a function of quasar luminosity plotted for different
redshifts (as labeled).

the behavior of the halo mass function which shows a strong
suppression in the abundance of halos below the knee of
the mass function (ln(1/σ) > −0.2 which corresponds to
Mhalo ∼ 1013.2M�/h at z = 0 and Mhalo ∼ 109.5M�/h at
z = 3) when compared to dark matter only predictions of
the halo mass function. This is due to the significant impact
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of baryonic processes which tend to suppress the mass of the
halo by up to 30% Sawala et al. (2013).
• Fits to the mass function from dark matter only sim-

ulations overpredict the mass function at the 20-35% level
below the knee of the mass function at ln(1/σ) > 0.2.
• We have quantified the scale dependence of bias and

stochasticity in the simulation. We find that scale of the
deviation from a linear fit for both bias and stochasticity
reaches a minimum at z ∼ 3 − 4. The galaxy and mass
density field can in this sense be said to trace each other
most closely at this redshift.
• The MBII overall matches most observed measurements

of galaxy clustering with stellar mass. There are however
some discrepancies in the bias at the lowest masses and red-
shifts probed. The simulation is consistent with observed
measurements of stochasticity from combinations of galaxy
clustering and weak lensing.
• We find that the HOD is well described by a power

law behavior (see equation 7). We find a modest evolution
for the power law slope however the normalization mass for
the distribution exhibits an exponentially decaying behavior
with redshift.
• The location of the peak and the width for the radial

distribution of satellite galaxies decrease with decreasing
redshift irrespective of the host mass of the halo, showing
that satellite galaxies cluster more strongly around the cen-
tral galaxy with time.
• We find that the shape of the CSED in MBII is con-

sistent with observed data. The amplitude is however much
lower and can be attributed to incompleteness at low galaxy
masses in MBII.
• The GSMF predicted by MBII is consistent with obser-

vations out to z = 2. At lower redshifts however the MBII
GSMF is much steeper at lower masses whereas MBII over
produces stars at larger masses at z = 0.
• We find black hole mass and AGN luminosity to be

broadly correlated to host Mhalo but with very large scatter,
indicating a wide range of black hole properties for a given
halo mass. However, the local MBH −M∗ relation is tighter
and consistent the observed one. Our results also imply very
moderate evolution for the MBH − M∗ from z ∼ 2. The
global star formation rate density and black hole accretion
rate density are also similar, but with a peak for the latter
shifted to later times.
• The bolometric luminosity function of the simulated

AGN population is broadly consistent with observational
constraints (Ross et al. 2013, see also). We note however
that simple thermal coupling for AGN feedback appears to
quench the bright end of the AGN LF too fast around z ∼ 2
whilst not being sufficient to fully quench the brightest AGN
at z = 0. The best agreement with observations is at z > 2
and z ∼ 1. Our results show a weak dependence of AGN
clustering with luminosity. (Note that we defer to future
work we to carry out detailed analysis of AGN population).

The MBII simulation is the largest simulation of its kind
run to date with sufficient resolution to resolve 109M�/h ha-
los. We have found that the properties, such as HOD and
clustering are consistent with previous work and observa-
tions. However we find that feedback from AGNs is still not
sufficient at lower redshifts to properly account for the prop-
erties of large galaxies and AGNs since it is unable to quench

star formation in massive galaxies and the abundance of lu-
minous quasars. However it describes the current state of
standard SPH simulations of galaxy formation and should
be used as a testbed for improving models of galaxy for-
mation. The parameters used in MBII were based on much
smaller SPH simulations which missed these large halos in
their volumes and thus could not find discrepancies with
observations at the large mass end.

At smaller masses the GSMF in MBII is very steep com-
pared to observational constraints. A variable wind model
based on the galaxy velocity dispersion (Oppenheimer &
Davé 2006; Davé et al. 2011; Vogelsberger et al 2013; Tor-
rey et al. 2014) has been shown to flatten the GSMF at
smaller masses to better reproduce observational constraints
at z = 0. However at higher redshifts these models still pre-
dict a steep slope. On the other hand we find that AGN
feedback is still insufficient to quench star formation in the
most massive galaxies. The effect of AGNs is important in
regulating the growth of massive galaxies; e.g. the results
of Davé et al. (2011) (which do not include AGN feedback)
and those of Vogelsberger et al (2013); Torrey et al. (2014)
(which include AGN feedback) clearly illustrate how AGNs
affect the stellar content of massive galaxies. However these
simulations are still small in volume and miss out on massive
halos. It would be interesting to see their predictions when
run on boxes similar in size to MBII. In subsequent work we
will look at improving on the feedback models employed in
MBII.

One of the important effects we have quantified here is
the effect of baryonic processes on the halo mass function.
Although we find that the universality of the mass function
in MBII holds at the 13% level consistent with previous
work, we find considerable differences in the abundance of
halos below the knee of the mass function when compared to
dark matter simulations. One of the natural questions which
arise are: how do different models for star formation, black
hole growth and feedback affect the mass function? How
strong is the redshift dependence? What can be said of halo
abundance matching techniques and their predictions when
done with mass functions such as MBII? These questions can
only be addressed with simulations with different galaxy for-
mation models and corresponding dark matter simulations
which we will address in future work.
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