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Abstract 

Understanding the spatial and temporal characteristics of solar resource variability is important because it 

helps inform the discussion surrounding the merits of geographic dispersion and subsequent electrical 

interconnection of photovoltaics as part of a portfolio of future solutions for coping with this variability.  

Unpredictable resource variability arising from the stochastic nature of meteorological phenomena (from the 

passage of clouds to the movement of weather systems) is of most concern for achieving high PV penetration 

because unlike the passage of seasons or the shift from day to night, the uncertainty makes planning a 

challenge.  A suitable proxy for unpredictable solar resource variability at any given location is the series of 

variations in the clearness index from one time period to the next because the clearness index is largely 

independent of the predictable influence of solar geometry.  At timescales shorter than one day, the 

correlation between these variations in clearness index at pairs of distinct geographic locations decreases with 

spatial extent and with timescale.  As the aggregate variability across N decorrelated locations decreases as 
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1/√ N, identifying the distance required to achieve this decorrelation is critical to quantifying the expected 

reduction in variability from geographic dispersion. 

Using 10 years of satellite-derived daily-interval solar resource data across the world, we demonstrate that 

the spatiotemporal behavior of unpredictable solar resource variability is mirrored at longer timescales.  We 

do so by examining over 1.4 million unique pairs of sites across the Eastern hemisphere and quantifying the 

influence each pair’s geographic separation and bearing has on the correlation between the variability of each 

pair’s clearness indices at timescales of one, two, four, seven, fifteen and thirty days.  Expected pair-

decorrelation distances are estimated by fitting exponential trends to the data using nonlinear least-squares 

regression and are presented as a function of timescale and pair orientation.  

Reflecting the predominant direction in which meteorological phenomena propagate at each of these 

timescales, we find that pairs of sites require considerably shorter distances to decorrelate when they are 

oriented north to south versus when they are oriented east to west.  As at shorter timescales, these 

decorrelation distances are shown to increase with both timescale and with geographic extent.   

 

Keywords: correlation, variability, solar energy, photovoltaics 

1. Introduction 

With the rapid recent growth of the solar photovoltaic (PV) industry, it is of utmost importance to address 

the principal barrier to achieving its high-penetration across global electrical grids: the inherent variability of 

the solar resource.  Variability of the solar resource is a result of largely unpredictable or stochastic 

meteorological phenomena and from the predictable rotation of the earth around the sun and about its own 

axis.  To achieve very high PV penetration, the imbalance between the variable supply of sunlight and demand 

must be alleviated.   
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Overcoming the effects of unpredictable resource variability poses the greatest challenge as the uncertainty 

in PV output it drives makes it a challenge to plan for.  This unpredictable variability occurs on every 

temporal scale: from second-to-second variations driven by individual passing clouds to year-to-year 

variations driven by periodic large-scale phenomena such as El-niño and variations in volcanic activity.  If 

high penetration PV is to be achieved, a balanced portfolio of solutions for coping with these imbalances are 

required on both the supply and demand side. 

The widespread geographically distributed deployment and electrical interconnection (geographic 

dispersion) of PV is one of three primary supply-side solutions to solar variability—which do not rely on 

support from other generation sources—that can minimize the cost of electricity generated therefrom.  The 

other two primary supply-side solutions are storage (where excess solar generation is stored when it exceeds 

demand and is released when it does not meet demand), and smart curtailment (where solar capacity is 

oversized and excess generation is curtailed at key times to minimize the need for storage.)  

While conventional electricity market structures and regulatory frameworks remain suboptimal for the 

optimized development of these aforementioned solutions, an understanding of the nature of solar resource 

variability is critical for an informed discussion about the relative merits of each.  In these conventional 

electricity markets, variations in PV output introduced by fluctuations in the solar resource on the minute-to-

minute and second-to-second timescales drive increased unit governor response and load frequency control 

requirements while influencing economic dispatch.  Solar resource variability on the timescale of minutes to 

hours impacts load following requirements, while day-to-day variability and longer variations in the solar 

resource influences day-ahead requirements and long-term regional infrastructure planning, especially at 

higher penetrations. [1]  

The object of this research is to understand the way in which unpredictable solar resource variability is 

affected by geographic distance, bearing and timescale for timescales greater than one day.  In so doing, we 



4 M.J.R. Perez, V.M. Fthenakis/ Solar Energy Manuscript copy 

help frame and inform the discussion surrounding the relative effectiveness of geographic dispersion as a 

solution for achieving high penetration PV. 

The series of variations in the clearness index from one time period to the next constitute a suitable proxy 

for unpredictable variations in the solar resource at any given location because the clearness index is largely 

independent of the predictable influence of latitude.  At timescales shorter than one day, the correlation 

between these variations in clearness index at pairs of distinct geographic locations decreases with spatial 

extent and with timescale. [2-4] As the aggregate variability across N decorrelated locations decreases as 1/√N 

according to the central limit theorem, identifying the distance required to achieve this decorrelation is critical 

to quantifying the expected reduction in variability from geographic dispersion. 

Herein, we examine 1.4 million unique pairs of sites across the Western hemisphere and quantify the 

influence of each pair’s geographic separation and bearing on the correlation between the variability of each 

pair’s clearness indices at timescales of one, two, four, seven, fifteen and thirty days. We then estimate the 

pair-decorrelation distances for each combination of timescale and pair orientation (pairs separated north-to-

south or east-to-west) by fitting exponential trends to the data using locally weighted polynomial regression. 

Much research has been performed over the past several decades surrounding the nature of solar resource 

variability, including its spatial and temporal characteristics [5-14], the effect of distance on its pair correlation 

[2-4], its spatially anisotropic nature and relation to cloud-speed [15-18], the nature and implications of spatial 

smoothing [1, 19-23] and the types of solutions it engenders [24, 25].  For the most part, these studies have 

focused on the nature and impacts of variability at short timescales (intra-day) and of those that have 

examined variability on timescales greater than day-to-day, none have explored the effect of timescale, 

distance and orientation on purely stochastic solar resource variability, hence the novelty of this present study.  

 The results we report further our understanding of the spatiotemporal nature of solar resource 

variability at longer timescales.  Thereby, we inform discussion surrounding the relative merits of continental-

scale electrical transmission grids such as that proposed by the Desertec foundation [26] and similar initiatives 
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as a viable solution to solar resource intermittency.  We also highlight the fact that variability exhibits the 

same characteristics with respect to distance at timescales greater than one day, matching the effects observed 

at shorter timescales which are reported in [1-6]. 

2. Methodology 

The object of this research is to quantify the effects of spatial extent, spatial orientation and timescale on 

stochastic solar resource variability at timescales greater than one day.  We define stochastic variability of the 

solar resource as the series of variations (step-changes from one time interval to the next) which do not result 

from some deterministic process.  At the time intervals of greater than one day that we investigate herein, the 

deterministic process whose influence we attempt to remove is the seasonal trend resulting from the Earth’s 

rotation around the sun.  We therefore use variations in the clearness index (Kt) as a proxy for variability, as 

the majority of latitudinal influence (which is responsible for the amplitude of this seasonal trend) is 

eliminated.  This is because Kt is the ratio of surface radiation to radiation at the top of the atmosphere, which 

co-vary on a seasonal basis.   

One way to test the way in which spatial extent and orientation influence solar resource variability is to 

calculate the correlation between the Kt variations at pairs of unique geographic locations and determine the 

way in which their correlation changes as a function of the geographic distance and bearing separating these 

locations.  We use this approach to compute ~83 million correlations across ~1.4 million unique pairs of 

spatially discrete locations spanning the Western hemisphere and investigate trends between each pairs’ 

geodesic separation, Cartesian bearing and the corresponding correlation coefficients.   

By quantifying the decorrelation distances at which the bulk of coordinate pairs exhibit zero correlation 

between their respective Kt variations, we define a spatial extent across which the aggregate unpredictable 

variability of electrically interconnected solar PV will begin to decrease significantly.  More precisely, if we 

have N locations within a region where each corresponding series of Kt variations (�Kti) is independent (Eq. 
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1) and identically distributed (meaning they each share the same standard deviation, σ�Kt, Eq. 2), the standard 

deviation of the aggregate Kt variations across these N locations ( , Eqs. 3,4) is 1/√N times the standard 

deviation of Kt variations at a single one of these sites.   

 

If all Kt variations in region are independent, the correlation between any two 
pairs of locations within the region is equal to zero. Eq.  1 

If all Kt variations in region are identically distributed, the series of Kt 
variations at each location share the same standard deviation. Eq.  2 

The mean series of Kt variations across a region of N locations. Eq.  3 

The aggregate variability (standard deviation of the variations in clearness 
index) across N locations as a function of variability at single site if the 
conditions in Eqs. 1 and 2 are met. 

Eq.  4 

Therefore, by understanding the expected distances and spatial orientations required to achieve 

decorrelation between the changes in clearness index between pairs of locations, we can begin to estimate the 

size and shape of the region across which solar PV must be spread in order to reduce this unpredictable 

variability.. As unpredictable solar resource variability occurs across many different timescales, from day-to-

day variations to month-to-month variations we quantify the expected decorrelation distances for Kt variations 

at 6 distinct time averaging intervals (LIST).  By observing the individual decorrelation distances for each 

time-averaging intervals, we identify the interconnection distances required to begin reducing unpredictable 

variability resulting from regional-scale meteorological phenomena and seasonal climatic patterns.   

2.1. Description and provenance of solar resource data 

Daily-averages of horizontal-incidence irradiance at the top of the atmosphere (TOA) *  and global 

horizontal-incidence irradiance at the earth’s surface (Gh)† corresponding to every latitudinal and longitudinal 

 

 
* Top-of-Atmosphere irradiance (TOA) refers to the amount of solar radiation received by a fixed plate tangent to the earth’s surface at an 
altitude above the bulk of the atmosphere (approximately 90km or the top of the bottom of the thermosphere and top of the mesosphere) 
†Global horizontal irradiance (Gh) refers to the amount of solar radiation received by a fixed plate tangent to the earth’s surface and is the 
sum of two components: beam (collimated radiation that hits this surface directly from the sun) and diffuse (radiation hitting this surface 
which has been scattered across the sky hemisphere). 

if : ρ ΔKti ,ΔKt j( ) = 0 ∀i, j

if :σ
ΔKt ,i =σ ΔKt , j ≡σ ΔKt ∀i, j

ΔKt = 1
N

ΔKti
i
∑

σ
ΔKt

=
1
N
σ

ΔKt
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quadrangle on the planet‡ at a 1°x1° spatial resolution from July 1983 through the end of 2007 were obtained 

from NASA-Langley’s Surface Meteorology and Solar Energy group (SSE)[27].  As we seek to examine the 

correlations between pairs of coordinates, and there exist over 100 million unique coordinate pairs within this 

dataset of 14,400 coordinates, it is computationally necessary to extract a representative subsample, which is 

highlighted in figure 1.  

Our representative subsample spans the North and South American continents and approximately 22% of 

the globe over the 10-year time horizon of 1997 – 2007.  Geographically, this subsample is bounded by the 

140th meridian West (140°E), the 20th meridian East (20°E), the 60th parallel north (60°N) and the 60th parallel 

south (60°S).  Within this bounded region, we sample ~10% of the available coordinates (~1440), in a 

geometric grid spaced in 3° latitude/longitude increments.  This region is displayed in figure 1 where we show 

the linearly interpolated mean Kt across the 10-year time-horizon and the sampled locations in light grey.  We 

chose this region due to its large geographic and climatological range, which reflects a diversity of clearness 

index variation profiles.  As the directionality and strength of mean wind patterns driving weather systems 

and therefore the fluctuations in Kt differ regionally, investigating their behavior across a large geographic 

and climatological range as we do in this study lets us identify common trends.   We derive the series of 

clearness indices at each of the sampled locations throughout this region via the relation in Eq. 5 below:
 

Kt = Gh
TOA

 
Clearness index (Kt) is the ratio of surface global horizontal radiation (Gh) to top-of-atmosphere 
radiation (TOA) and is an indication of the degree of atmospheric attenuation as radiation travels 
towards the surface. 

Eq.  5 

 

2.2. Time-averaging and variations of the clearness index 

Fluctuations in the clearness index are apparent at every timescale, and are driven by meteorological 

phenomena of varying spatial scales: from passing clouds to frontal systems to the seasonally-shifting cloud 

band known as the inter-tropical convergence zone (ITCZ).  As the timescale of induced fluctuations is linked 

 

 
‡ Reflecting a 1°x 1° spatial resolution. 
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to the spatial scale of meteorological phenomena, we want to study the effect of timescale on decorrelation 

distance.  To do so, we compute time-averages ( ) of our regionally-sampled clearness index data across 6 

different timescales (Δt): 1 day, 2 days, 4 days, 7 days, 15 days and 30 days as is demonstrated in Eqs. 6-7. 

Kt
Δt

j =
1
Δt

Kti
i= j

j+Δt−1

∑ =
1
Δt

Kt j + Kt j+1 +Kt j+Δt−1{ }

where :  Kt
Δt$

%
&
&

'

(
)
)= Δt−1 ⋅  Kt( )+

,
-
.

 

The average Kt across a period, j, of Δt days in length as a 
function of the mean Kt on each individual day, i, within 
that period. 

Eq.  6 

The length (in number of periods) of the time-averaged 
series as a function of the time-averaging interval and the 
length of the original daily-averaged series. 

Eq.  7 

Equations 6 and 7 demonstrate the simplest case where one time-averaged series is generated per time-

averaging interval with the averaging at index i = 1.  Performing the analyses with a single series representing 

each time-averaging interval risks introducing sampling error because there exist as many indices, β, at which 

to start the averaging as the length of the time averaging interval (Δt).  To account for this, we compile a set, 

  (Eq. 9), containing each unique time-averaged series,   (Eq. 8), that is possible when cycling through 

the potential starting indices for the corresponding time-averaging interval.  For instance, if Δt = 30 days, the 

starting index β can range from 0 to 29 and the set, , therefore contains 30 unique individual series. 

Kt
Δt

β , j =
1
Δt

Kti+β
i= j

j+Δt−1

∑ =
1
Δt

Kt j+β + Kt j+1+β +Kt j+Δt−1+β{ }

Kt
Δt

= Kt
Δt

β

!
"
#

$#

%
&
#

'#
,where : β ∈ 0,1(Δt −1){ }

 

The average Kt across a period, j, of Δt days in 
length when the averaging period is shifted by β 
days.   

Eq.  8 

The set of time-averaged Kt series reflecting every 
possible interval shift, �, for a given time-
averaging interval, Δt. 

Eq.  9 

Through this process, we generate 59 distinct series of Kt for each unique geographic location sampled 

from our region: 30 series of 30-day time averages (�t = 30), 15 series of 15-day time averages (�t = 15), 7 

series of 7-day time averages (�t = 7), 4 series of 4-day time averages (�t = 4), 2 series of 2-day time 

averages (�t = 2) and 1 series of 1-day time averages (�t = 1). 

Each of these distinct time-averaged series of Kt are differenced (Eqs. 10-11) in order to generate the series 

of step-changes or variations (ΔKt) between sequential periods of length Δt.  These sets of clearness index 

variations reflect the stochastic variations in the solar resource for each corresponding timescale.  For 
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instance, the series of variations in mean clearness index at a given location between sequential periods of 30 

days reflects the variations in atmospheric attenuation or mean cloud cover between these same periods. 

These variations in cloud cover drive corresponding variations in the solar resource at the 30-day timescale: 

variations that are unpredictable in nature (unlike those variations driven by the solar system’s geometry.) 

ΔKt
Δt

j = Kt
Δt

j− Kt
Δt

j−1

 ΔKt
Δt#

$
%
%

&

'
(
(=  Kt

Δt#

$
%
%

&

'
(
(−1

 

The variation in Kt between two subsequent periods of length Δt.  Eq.  10 

The length (in number of periods) of the series of Kt variations expressed as a function of 
the length of the series of time-averaged Kt for a given time-averaging interval, Δt. Eq.  11 

2.3. Calculation of correlation coefficients 

ρA,B =
cov ΔKtA,ΔKtB( )

σ
ΔKtA

σ
ΔKtB

=
ΔKtA,i −ΔKtA( ) ΔKtB,i −ΔKtB( )

i
∑

ΔKtA,i −ΔKtA( )
2

i
∑ ΔKtB,i −ΔKtB( )

2

i
∑

 
The Pearson product-moment 
correlation coefficient between 
the variations in Kt at location A 
and location B. 

Eq.  12 

 
 
Slightly over 1.4 million unique pair combinations are possible within our geographic subsample of 1,440 

distinct coordinates arrayed across the Americas.  As 59 distinct series of Kt variations, , across 6 time-

averaging intervals (Δt) and corresponding interval shifts (β)  are generated at each geographic coordinate, 

slightly over 83 million unique correlations are performed. 

For each pair of locations (A,B), we calculate the sample correlation coefficient, ρA,B, between each of the 

59 representative series of clearness index variations corresponding to each location (ΔkTA, ΔkTB) as 

demonstrated in Eq. 12.  

2.4. Bearings and distance calculations 

For each pair of sites (A,B) for which we calculate a correlation coefficient, we also calculate the geodesic 

or shortest path distance (dA→B) separating them along the surface of the earth using Lambert’s 1942 

approximation [28], offering an accuracy of +- 12.5 meters across very long distances.  In the algorithm 
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outlined in Eqs. 13-16 below, the equatorial radius of the ellipsoid representing the earth is represented by rE, 

while f represents its flattening coefficient; both of which are part of the international cartography standard 

that comprises the latest revision of the World Geodetic System (WGS-84).[29] To simplify the geodesic 

calculation, reduced or parametric latitudes,� —projections of the geodetic latitudes, φ, onto the surface of 

the surrounding sphere—are calculated for each unique coordinate via the relation in  Eq. 13.  This permits 

the spherical law of cosines to be applied in Eq. 14 in order to determine the central angle between each pair 

of coordinates, �A<B, as a function of their reduced latitudes, �A,B, and the difference between their geodetic 

longitudes, ��. Lambert’s approximation to correct the central angle calculated in spherical space to 

account for the earth’s ellipticity is outlined in Eq. 15.  The final geodesic distance between the pair of 

coordinates, dA!B, shown in Eq. 16, is the arc length between them along the surface of the earth as modified 

by Lambert’s correction. 

β = arctan 1− f( )tan ϕ( )"
#

$
%  Reduced latitude, �, as a fn. of earth 

flatness, f, and geodetic latitude, ϕ. Eq.  13 

θA∠B = arccos sin βA( ) sin βB( )+ cos βA( )cos βB( )cos Δλ( )#
$

%
&

 

Central angle, �A<B, between locations A, B 
as fn. of their reduced latitudes, βA,B and the 
difference in their geodetic longitudes, Δ� 

Eq.  14 

X = sec 1
2θA∠B( ) θA∠B − sin θA∠B( )#

$
%
&sin

2 β( )cos2 1
2 Δβ( )

Y = csc 1
2θA∠B( ) θA∠B + sin θA∠B( )#

$
%
&cos

2 β( ) sin2 1
2 Δβ( )

 

Intermediate parameters derived by Lambert 
to correct the central angle for the Earth’s 
ellipticity as a function of the central angle, 
θA<B, mean latitude, , and the difference in 
latitude between locations A and B, ��. 

Eq.  15 

dA→B = rE θA∠B −
f
2 X +Y( )

 

Geodesic distance between locations A & B, 
dA!B, as a function of earth’s equatorial 
radius, rE, flatness,  f, central angle, θA<B, and 
intermediate parameters, X & Y 

Eq.  16 

Along with pair distances, we also calculate in Eq. 17 the Cartesian bearing, ω, of the line separating each 

pair of coordinates in order to investigate the way in which decorrelation distances change with pair 

orientation.  Correlation coefficients for a given timescale are sorted into three piles, correlations which 

represent underlying pair orientations which are generally North-South (-10° ≤ ωA,B ≤ 10°), those which 

represent pair orientations that are generally East-West (90° ≤ �A,B ≤ 100°) and those which represent all 

possible pair orientations ( ωA,B).  

β
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ωA,B = arctan
Δλ
Δϕ

 The Cartesian bearing between locations A and B as a function of the difference between their 
longitudes, ��, and the difference between their latitudes, �ϕ. Eq.  17 

2.5. Decorrelation distances 

In order to infer the geographic extent at which Kt variations at pairs of sites are generally decorrelated at a 

given timescale, we fit a trend between the correlation coefficients (�A,B) and their corresponding geographic 

separations (dA!B).  A priori, we compute a moving average of correlation coefficients with respect to their 

corresponding distances in Eq. 18 in order to filter and more easily observe the central tendency across the 

millions of correlation coefficients. 

ρd =
1
30 ρi
d−302

d+302

∑ for : d ∈ 1
2 30,60,90D{ }  

The moving average in 30 km increments of correlation 
coefficients, �d, with respect to their corresponding 
separation distances, d, in km.  D is the maximum observed 
pair separation distance. 

Eq.  18 

This clarification allowed us to see that for nearly timescale, correlation coefficients between pairs of 

locations appeared to decrease exponentially with respect to their corresponding geodesic separation 

distances.  An exponential decay function of the form outlined in Eq. 19 was thus fit to the data using 

nonlinear least-squares regression (nls).      

ρ d( ) ~ e−βd +γ  
The general exponential-decay relationship between the Kt correlation coefficients, ρ, 
and their corresponding separation distances, d where the parameters β and γ are 
determined through non-linear least squares regression.  

Eq.  19 

When examining the influence of bearing on decorrelation distances, we found post-hoc that correlation 

coefficients which represent pairs of locations separated North to South (-10° ≤ ωA,B ≤ 10°) appear to decrease 

not as a pure exponential but as an exponentially-modulated sinusoid.  This is due to the fact that at shorter 

timescales (<15 days), Kt variations at pairs of sites on who are on opposite sides of the equator from each 

other exhibit strong anti-correlation due to the Coriolis effect driving weather systems in opposite directions 

at each location.  This strong anti-correlation occurs at a very precise distance of separation and at longer 

distances, the anti-correlation disappears thereby introducing a sinusoid into the trend.  Therefore, a function 
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of the form outlined in Eq. 20 is fit to the trend relating N/S pair correlations to their corresponding separation 

distances, also using nls. 

ρ d( ) ~ cos αd( )e−βd +γ  

The sinusoid-modulated exponential-decay relationship between the Kt correlation 
coefficients, ρ, and their corresponding separation distances, d when examining pairs of 
sites with North-South separations. The parameters �, β and γ are determined through 
non-linear least squares regression. 

Eq.  20 

We define the decorrelation distance for each time-interval under investigation as the pair separation 

distance when the exponential trend (or cosine-modulated exponential trend, in the case of N/S pairs) first 

crosses a threshold of ρ = 0.1.  A threshold value is required, as via the a priori rolling mean analysis, none of 

the exponential trends truly reach zero, although they do approach it. 

3. Results 

3.1. Distance, timescale and their effect on spatial smoothing 

After performing ~83 million unique pair correlations across the Americas covering a comprehensive 

range of climatic zones, we are able to paint a clearer picture of the way in which stochastic solar resource 

variability at timescales greater than one day is mediated by both spatial extent and spatial orientation.  

We demonstrate the results of sorting all of the correlations performed by timescale and distance in the 

scatterplots comprising figure 2 and summarized in Table 1.  Each of the 6 subplots represents a particular 

time-averaging interval and each point represents the correlation between the clearness index variations at that 

timescale at two distinct locations versus their geographic separation.  Fitted exponential trends establishing 

the relationship between correlation coefficients and separation distance are highlighted in light blue on each 

subplot.  The equations of these relationships are printed the upper left-hand corner of each plot while the 

pertinent parameters underlying each are listed in table 1.    Decorrelation distances for each timescale are 

demarcated by a dotted red line and in red text on each plot. 

Several important points can be made from observing these results: 

• Pair correlation decreases exponentially with increasing distance at every timescale.  
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• Pair correlation decreases more slowly with respect to pair separation as timescale is increased.   

• Decorrelation distances increase with the length of the time-averaging interval. 

Also of note is the fact that the number of points (representing distinct correlations performed) increases 

with each timescale.  This is due to the necessity of phase-shifting the starting point when taking time-

averages as discussed in more detail in section 2.2.   

Expected decorrelation distances between two locations vary from 1123 km for day-to-day variations in 

the clearness index to 3117 km for month-to-month variations.  The increase in expected decorrelation 

distance with increased timescale along with the exponential decrease in expected pair correlation with 

increased pair separation mirrors the patterns identified at shorter timescales.  This similarity highlights the 

temporally and spatially fractal nature of meteorological phenomena.  [4, 30]  

3.2. The effect of geographic orientation on spatial smoothing 

We now make use of the pair orientations calculated for each pair of coordinates and group the correlation 

coefficients into two distinct orientation categories: pairs that are oriented east-to-west and pairs that are 

oriented north-to-south (as described in section 2.4).  The six subplots comprising figure 3 represent east-west 

orientations and show pair correlations as a function of their separation distance for the six individual time-

averaging intervals under investigation.  The six subplots comprising figure 4 show the same for north-south 

orientations.  In each series of plots, vertical dotted red lines identify the expected decorrelation distances 

while solid lines demonstrate the fitted exponential or sinusoid-modified exponential trends between 

correlation coefficient and separation distance. 

Expected decorrelation distances for east-west pairs range from 1224 km for day-to-day variations in the 

clearness index to over 10,000 km for month-to-month variations.  These are much longer than the identified 

decorrelation distances than for north-south pairs at the same timescales; 900 km for day-to-day variations 

and 1643 km for month-to-month variations, respectively.   
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This dependence of the stochastic component of solar resource variability on spatial orientation as well as 

spatial extent is better observed by the series of polar plots comprising figure 5 where each of the six subplots 

represents a particular variability timescale.  In each of these plots, each of the correlations performed for a 

given timescale are plotted according to the underlying pair separation (distance from the center) and pair 

orientation (rotation about the center).  The degree of correlation between the Kt variations for each pair is 

linearly interpolated from the millions of individual values to display a smooth surface and indicated by the 

color scale to the left side of the plot.   A dotted red line indicates the decorrelation isoline (where ρpair= 0.1).  

With these polar plots, one can clearly see how quickly pair correlation decreases with spatial extent, how the 

decorrelation distance increases with timescale, and how east/west oriented pairs are much more likely to be 

correlated than north-south pairs. 

The reason why variations in the clearness index between two locations are much more strongly correlated 

if these locations are separated east to west than if they were separated by the same distance north to south is 

because the meteorological phenomena that drive these variations propagate predominantly from east to west.  

A summary if important insights related to these plots: 

• Pair correlation drops more rapidly with increasing pair separation if the pair orientation is 

North/South versus if the pair orientation is East/West.  

• Expected decorrelation distances are correspondingly longer for east/west orientations than for 

north/south orientations. 

4. Discussion 

The results highlighted above demonstrate that even at longer timescales representing daily, weekly and 

monthly stochastic variations in the solar resource, the trends relating spatial extent to aggregate variability 

mirror the trends observed at shorter timescales.  These trends include an exponential decrease in expected 

ΔKt pair correlation with increasing pair separation distance, and a corresponding longer expected 
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decorrelation distance with an increased variability timescale.  In practical terms this means that spatial 

dispersion of solar generating facilities is an effective strategy for reducing the magnitude of unpredictable 

variations in their aggregate output even if these variations are of a very long temporal period.  What these 

results also demonstrate is that the larger the spatial extent across which PV is spread and interconnected, the 

wider the temporal breadth of variations which can be reduced.  For example: if N PV generation sites are 

spread across a region where the average separation between sites is 1100 km, the magnitude of aggregate 

variations in output from day to day across the region are reduced by 1/√N.  To achieve a 1/√N reduction in 

the magnitude of month-to-month variations in aggregate output, the average separation between individual 

sites would need to be ~3100km: a much larger region.  

As ΔKt pair correlation is shown to decrease exponentially with pair separation, once decorrelation is 

achieved (ρ = 0.1), we can expect little benefit from further increasing this distance.  If the aim is to reduce 

unpredictable day-to-day variations in aggregate solar output through geographic dispersion, limited benefit 

can be expected from increasing the average site separation across a given region past the decorrelation 

distance of 1100 km.  Deterministic resource variability, particularly of the diurnal and seasonal kinds, can be 

further reduced through longer interconnections than those necessary to cope with the variability of the 

stochastic kind studied in this paper.  It is important to note that the wider the geographic region across which 

these strategies are employed, the higher the required costs of interconnection become.  A balance between 

the costs linked to this increased interconnection + geographic dispersion, energy storage, supply curtailment 

and demand-side management is what will be required to truly minimize integration costs of PV at high 

penetrations. [31,32] 

What is also interesting is that the spread of points around the calculated trends showing expected pair 

correlation vs. pair separation (figures 2-4) increases with timescale.  This is partially due to the fact that more 

correlations were performed for these longer timescales due to the increased number of ways to perform the 

time-averages (Eqs. 9-10).  For North/South Pairs, (figure 4) this spread about the expected trend, particular at 
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longer time-averaging intervals, is likely reflective of the relative latitudes of each site. Future work could 

investigate the effect of mean pair latitude (in much the same way as we categorized pairs by Cartesian 

orientation) and in so doing, shed light on any potential effects.  

Visible upon examination of figure 5 and when comparing figures 3 and 4, this directional dependence in 

the relationship between variability and spatial extent can be best explained by an example.  Imagine a pair of 

sites separated by 1500 km and both lying at 15° N latitude. These sites will be affected simultaneously by the 

weather systems blown along by the Northeasterly trade winds (which blow primarily east to west) affecting 

the pattern of variations in their respective clearness indices in a similar fashion.  By contrast, a pair of sites 

separated North to South by about 1500 km (where one site lies at 15° N latitude and the other site lies at 28° 

N latitude, for example will likely see a negligible or even negative correlation between the pattern of 

variations in their respective clearness indices.  This is because while the site at 15° N experiences 

fluctuations induced by the east-to-west Northeasterly trade winds, the site at 28° N experiences fluctuations 

induced by primarily west-to-east anti-trade winds (a.k.a. westerlies).  A pair of sites separated North to South 

by the same distance as a pair of sites separated East to West is more likely, therefore, to experience 

uncorrelated changes in cloudcover. 

5. Conclusions 

This study sheds light on the nature of unpredictable solar resource variability at timescales longer than 

one day over a geographical region covering the Americas and spanning a third of the Earth’s non-polar 

zones.  What these analyses show is that reducing unpredictable day-to-day or longer variations in the solar 

resource is possible through geographic dispersion, that the degree of geographic dispersion required to 

reduce aggregate variability by a targeted amount across a region is dependent on that region’s orientation and 

these variations’ time period.   



 M.J.R. Perez, V.M. Fthenakis/ Solar Energy Manuscript Copy 17 

In particular, we show that such variability decreases quasi-exponentially with increasing spatial area at 

every timescale investigated.  We do this by showing that expected correlation between the variations in 

clearness indices (ΔKt) at pairs of sites decreases as the separation between them increases.  This decrease in 

expected correlation with increased pair separation was shown to be less pronounced as the timescale was 

increased, leading the decorrelation distance (where pairs of sites are expected to show little to no correlation 

between the variations in their clearness indices) to correspondingly lengthen.  Expected pair correlation for a 

given pair separation was also shown to be significantly lower if the geographic separation was oriented North 

to South as opposed to East to West.  Correspondingly, expected decorrelation distances of North-South pairs 

were shown to be much shorter than the expected decorrelation distances of East-West pairs for all timescales 

longer than 1 day.   

We can infer from these results that the propagation velocity of stochastic meteorological phenomena is 

more rapid in east-west directions than in north-south directions and that this propagation speed is inversely 

proportional to timescale, a relationship empirically demonstrated for timescales ranging from seconds to 

hours and now shown to be valid for timescales ranging from days to months. 

These results better frame the nature of solar variability, and they highlight the way in which it behaves 

relative to distance and the way in which it depends on geographic orientation and timescale. While it is 

beyond the scope of this paper to estimate the interconnection costs necessary to take advantage of such 

effects, what it does provide is further understanding of the nature of unpredictable solar resource variability 

at longer timescales and a template for the direction future R&D into the spatial aspect of solar PV integration 

should take.  For example, the geographic dispersion of 100 solar generating facilities of equal size along a 

generally north-south bearing and an average site separation of 900 km and electrical interconnection thereof 

can be expected to experience 1/10th the unpredictable variations in aggregate output than if this distributed 

capacity were concentrated at a single location within this region.. By reducing this unpredictable 

intermittency component from the collective output of PV generation, we significantly reduce the amount of 
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unit governor response, load frequency control, economic dispatch, and load following otherwise necessary to 

deal with it.  If the costs of building out distributed transmission capacity can be minimized, leveraging this 

geographic smoothing effect is a potential means by which to reduce the costs of economically achieving high 

penetration PV targets. 
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Nomenclature 
Kt : Also known as the clearness index. The ratio of Global Horizontal solar radiation (downward shortwave 

radiative flux) to Top-of-Atmosphere solar radiation (downward shortwave radiative flux) 
Cartesian Bearing: The bearing in degrees based on an equirectangular projection of the earth.  Important 

because true geodesic bearing can change significantly along a given straight-line path, especially over 
long distances.   

TOA: TOA irradiance stands for downward shortwave radiative flux at the Top of the Atmosphere. 
Gh: Gh irradiance stands for Global horizontal radiation or the downward shortwave radiative flux at the 

surface of the earth. 
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• Fig. 5. Linearly interpolated polar plot of ΔKt pair correlations (color scale) as a function of pair 
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Figure 5. 

 
 
Table 1. 
 

Δt 
days 

All pairs E/W pairs N/S pairs 
Decorrelation 
distance (km) 

Trend 
parameters 

Decorrelation 
distance (km) Trend parameters Decorrelation 

distance (km) Trend parameters 

ρ = 0.1 @  β  
x 10-3 

γ 
x 10-2 ρ = 0.1 @  β 

x 10-3 
γ 

x 10-2 ρ = 0.1 @  α 
x 10-3 

β 
x 10-3 

γ 
x 10-2 

1 1123 2.11  0.62  1224 2.09  2.26  900 1.12 1.97  0.91 

2 1380 1.76  1.15  1683 1.65  3.81  1002 1.09 1.70  1.59 

4 1678 1.51  2.07  2409 1.37  6.35  1116 1.03 1.52  2.55 

7 1975 1.35  3.07   3983 1.23  9.26  1230 0.98 1.41  3.59 

15 2509 1.17  4.71  >5000 1.12  14.5  1429 0.89 1.28  5.22 

30 3177 1.03  6.20  >5000 1.07  19.9  1643 0.83 1.16  6.93 
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