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Abstract. Recent advances in second generation (YBCO) high temperature superconducting wire could
potentially enable the design of super high performance energy storage devices that combine the high energy
density of chemical storage with the high power of superconducting magnetic storage. However, the high
aspect ratio and considerable filament size of these wires requires the concomitant development of dedicated
optimization methods that account for the critical current density in type II superconductors. Here, we
report on the novel application and results of a CPU-efficient semi-analytical computer code based on the
Radia 3D magnetostatics software package. Our algorithm is used to simulate and optimize the energy
density of a superconducting magnetic energy storage device model, based on design constraints, such as
overall size and number of coils. The rapid performance of the code is pivoted on analytical calculations of
the magnetic field based on an efficient implementation of the Biot-Savart law for a large variety of 3D "base"
geometries in the Radia package. The significantly-reduced CPU time and simple data input in conjunction
with the consideration of realistic input variables, such as material-specific, temperature and magnetic field-
dependent critical current densities have enabled the Radia-based algorithm to outperform finite element
approaches in CPU time at the same accuracy levels. Comparative simulations of MgB2 and YBCO-based
devices are performed at 4.2 K, in order to ascertain the realistic efficiency of the design configurations.

1. Introduction

Superconducting magnetic energy storage (SMES) has been traditionally considered for power conditioning
applications, where instantaneous high power can be delivered in a matter of milliseconds. Among the
advantages exclusively offered by superconductors we could mention: i) higher energy storage efficiency
(∼95%) than other existing energy storage systems [1], and ii) almost-immediate charge/discharge
characteristics [2, 3]. Currently, SMES is one of a few applications that is adaptable to the needs of
the electric utilities markets [4].

Recently, a renewed interest in SMES technologies has been motivated by the search for means
of improving the stability of the future power grid system, that would incorporate a large number of
intermittent energy sources, such as wind and solar [5, 6, 7]. Low-temperature superconductors, such as
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Nb-Ti, have been successfully used for SMES, however, issues with reliability of 4.2 K cryogenics, efficiency
of power electronics, and the relatively low energy density of Nb-based SMES have limited the applicability
of the technology to a few cases, where electric power quality is at premium [8, 9, 10].

So far, second generation (2G) high temperature superconductor (HTS) YBa2Cu3O7 (YBCO) has
offered the greatest hope for implementation, since it exhibits all-around superior properties to all other
classes of superconductors [11], especially in light of the fact that it offers a possibility of operation at
a temperature much higher than that of liquid helium [12]. However, other promising candidates have
emerged throughout the years as well, such as magnesium diboride, MgB2 [13] and the recently-discovered
iron-based superconductors [14].

Magnet design has become a process of paramount importance to SMES performance, necessitating
better and faster analytical tools, since magnetic field calculations in and around a SMES demand sizeable
CPU time and memory. The Finite Element Method (FEM) has been the most common tool currently
utilized for computations of magnetic fields in superconducting magnetic energy storage devices.

In this report, we present an alternative approach towards building an algorithmic solution for
simulating and optimizing a SMES device based on a selection of superconducting materials, such as
second-generation YBCO tape or MgB2. This method is based on the Radia software package, which is
written in object-oriented C++, and interfaced to Mathematica via MathLink. A substantial portion of
algorithmic processing in the scope of this work is implemented in the Mathematica language. Here, Radia
is used to assess the fields created by 3D volumes with constant current density, based on the Biot-Savart
law.

2. Methodology

2.1. Geometrical Considerations

Generally, there exist several types of geometrical arrangements for building a SMES [1, 15, 16], but the
toroidal design offers the advantage of a reduced stray (perpendicular) magnetic field on the tape or wire,
mostly confining the field inside the coil. Such an arrangement is especially critical for second generation
(2G) YBCO tape, since YBCO is marked by a high critical current density anisotropy, γm. In the case
of YBCO, the in-plane Jc

‖ab(B = 17 T) = 10.8 MA/cm2, for example, can exceed the out of plane one
Jc

⊥ab(B = 17 T) = 1.8 MA/cm2 by roughly an order of magnitude at 4.2 K.

2.2. The Radia Software and Its Applications

The SMES simulation reported here has been built on top of the Radia software package using Mathematica
by Wolfram Research [17]. The Radia software package was designed by scientists at the European
Synchrotron Radiation Facility (ESRF), for solving physical and technical problems one encounters during
the development of insertion devices for synchrotron light sources. However, it can also be used in different
branches of physics, where efficient solutions of 3D boundary problems of magnetostatics are needed [17, 18].

Creating and linking the objects properly is the first step in describing the magnetostatics problem.
Contrary to the FEM approach, Radia does not mesh the vacuum (an example of a FEM geometrical
segmentation and field generation is shown in Fig. 1) [18], but rather, solves boundary magnetostatic
problems with magnetized and current-carrying volumes, using the boundary integral approach. The
current-carrying elements can be straight or curved blocks [19], and the planar boundary conditions are
simulated via sets of space transformations, such as translations, rotations, or plane symmetry inversions
[19]. Applying transformations with a multiplicity can be understood as an efficient use of the symmetries
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in the model being solved. This results in a minimum number of degrees of freedom, and therefore,
dramatically reduces the memory requirements and CPU time needed to obtain a solution [17].

Figure 1: A typical Finite Element Methods simulation of a SMES via COMSOL. A simulation of the
geometric dimensions and arrangement of the coils is shown on the left, whereas the resulting magnetic
field distributions derived from a particular electrical current density are shown, juxtaposed onto the coil
geometry, is shown on the right.

The reduction of the necessary elements for precisions comparable to FEM approaches (see Fig. 2)
[20, 21] leads to a drastic reduction of the required CPU time. This time efficiency is crucial when it comes
to creating SMES optimization algorithms.

In the current work, we employed Radia to simulate and optimize a realistic SMES device, which
takes into account the temperature and magnetic field dependent critical current density, Jc (T, B), of the
superconducting wire of choice used in the simulation (second generation YBCO tape or MgB2).

Figure 2: Typical distribution of the magnetic field inside a superconducting coil calculated by i) FEM (in
blue), and ii) Radia (in red). One of the issues with Radia is the emergence of singularities at boundaries,
as seen in the figure. The two field profiles overlap everywhere except at the coil boundary, where Radia
unphysically diverges (due to the analytical approximation used).
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2.3. Computational Procedure

Our algorithm starts by specifying the actual geometry of the device, which is built according to given
specifications, such as i) coil radius, ii) coil thickness, iii) coil width, iv) coil thickness, v) toroidal radius,
and vi) number of coils. The coil radius is defined as the mean of the inner and outer radii (with respect
to the coil’s axis of symmetry) of each coil, while the coil thickness is the difference between these two
(see Fig. 3). The large (toroidal) radius is the distance from the geometric center of the SMES to the
geometric center of each individual coil, and the typical toroidal radii that we employed were on the order
of 1 – 2 meters.

Figure 3: (a) Structural concept of a 16-module toroidal system generated by Radia, with b) design
variables. LR, CR and W stand for the toroidal ("long") radius, coil radius and width, respectively.

Radia gives the freedom of choosing the degree of segmentation of each coil; the more segments are
chosen, the closer the geometry is to an ideal cylindrical shape, but it will also result in longer computation
time. We "built" coils with 50 segments for the actual simulations.

In order to test the validity of Radia-based simulations, we compared the outputs of our Radia-
generated SMES design with that of a FEM simulation by Lee et al. [22]. We computed the maximum
magnetic fields parallel and perpendicular to the test coil, as well as the total energy stored in the device
using the same geometry and operating current density as used by Lee et al., and observed a discrepancy
of less than 1% between the two methods. The comparison between the two approaches is shown in Table
1.

Table 1: Comparison of Radia and FEM-generated 2.5 MJ toroidal SMES configuration.

Specification In this work From Lee et al. [22]

Operating Current Density (A/mm2) 194.5 194.5
Max parallel magnetic field (T) 8.8 8.1
Max perpendicular magnetic field (T) 1.12 1.16
Stored Energy (MJ) 2.6 2.6
Total length of HTS conductor (km) 19.58 19.55

2.4. Magnetic Field Distribution Computation

The highest field limits the maximum critical current density Jc.
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We present magnetic field analysis results of a toroidal-type SMES magnet calculated via Radia (see
Fig. 4). A characteristic magnetic flux density pattern of the center plane of the toroid is exhibited in
Fig. 4a, while typical perpendicular, BN (x), and tangential, BT (x), flux density profiles along the radial
direction of a single pancake coil are shown in Fig. 4b. For this particular simulation the operating current
of the magnet is taken to be 960 A, while the maximum perpendicular magnetic flux density, tangential
magnetic flux density and stored energy of the simulated device obtained from the simulation are shown to
be 1.01 T, 9.00 T and 2.68 MJ, respectively. The discrepancies between the maxima of the i) perpendicular
magnetic flux density, and ii) tangential magnetic flux density, obtained via FEM and Radia were shown
to be on the order of 2%.

Figure 4: (a) Magnetic flux density pattern of the center plane of toroidal-type SMES magnet; (b) Shown
are the i) perpendicular and ii) tangential flux density analyses on a typical single pancake coil, in open
gray and filled red circles, respectively.

One of the conclusions one can immediately draw from the analysis of the field distribution, as
evidenced in Fig. 4a, is that the field is mostly confined inside the coil. Being able to confine the magnetic
field inside the coil is important for a number of reasons: i) large field gradients could be avoided from the
coil edges (thus affecting the Jc (B) of the wire), and ii) stray fields are generally detrimental to electronic
devices located in the vicinity of the magnet. Thus, SMES designs with large numbers of coils may be
preferred for as long as geometrical and critical current limitations are considered and met [23].

Not surprisingly, the highest BT ’s are found at the inner rim of an individual coil, nearest the center of
the torus along the z = 0 plane, as evidenced in Fig. 4, i.e., BT does not exhibit a y-axis mirror symmetry
through the center of the coil, which is clearly due to the higher density of current-carrying elements closer
to the torus center. On the other hand, BN is shown to be several times smaller than BT . BN is supposed
to vanish in the case of a perfect toroidal SMES with a continuum of coils. However, there is always a
finite BN for a SMES magnet built up with a discrete number of coils. It should be noted that although
BN is several times smaller than BT , YBCO tapes are marked by a large anisotropy in the critical current
density (Jc (BN) � Jc (BT )), and therefore the maximum BN determines the current density cutoff that
ought to be compared against the Jc (B) used in SMES design.

3. SMES Design

3.1. Optimization Algorithm Overall Flow

Once the SMES geometry is specified, we feed the critical current density curves for i) MgB2 and ii) 2G
YBCO tape for different temperatures and field ranges into the code. Subsequently, the magnetic field is
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scanned inside the coil and the maximal B, Bmax, is utilized in the calculation of the minimal Jc
min, which

would serve as the SMES design bottleneck. The ratio of a trial value of the current density, J (B), to
Jc

min (b) [24], is an indicator of the stability of the system, and is known as the "load factor". Depending
on the value of the load factor, our algorithm chooses whether the thickness ought to increase or decrease
in order for the requirement to be met. Our load factor is set at 70% of Jc

min, so if J > 0.7 · Jc
min, the

algorithm increases the coil thickness and reduces J by a proportionate amount since the total energy is
proportional to the square of the current. Analogously, if J < 0.7 · Jc

min, the code "removes" turns (and
proportionately increases I), until J = 0.7 · Jc

min. The design flow of the entire optimization process is
shown in Fig. 5

Initialization: 

Design constraints: number of coils, coil size, 

SMES geometry 

Design parameters: wire type and 

composition, temperature, critical current 

  

Radia: 

Generation of SMES geometry 

Computation of Total Energy 

Determination of J from the Total Energy  

Magnetic field scanning inside a coil to find Bmax  

Calculation of lowest Jc from Bmax 

Comparison of J with Jc 

J < 0.7 Jc J > 0.7 Jc

Add turns & 

reduce J 

Remove turns 

& increase J 

J = 0.7 Jc

Calculation: 

Device Specific Energy 

Wire length and mass 

Figure 5: Design process flow of SMES simulation and optimization routine. The consecutive iteration
generates the device specific energy (total stored energy / total wire mass) in CR −W space.

Once the SMES configuration is optimized, the algorithm performs the same operation as a function
of i) Coil Radius (CR) and ii) Coil Width (W ). CR is a continuous variable for the purposes of the
simulation, and therefore it could be varied in steps of arbitrary size. On the other hand, W is a multiple
of either the diameter of the wire (in the case of MgB2, or the width of the tape (in the case of 2G wire).
Then, i) the total energy, ET , of the optimized configuration is computed, and ii) ET is divided by the
total wire mass of the SMES, resulting in the device specific energy, ρE.

3.2. Assessing Bmax

There are a number of prospective SMES applications which require stored energies ∼ 107 – 109 J, and
most of our efforts have been focused predominantly on that energy range, particularly when considering
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overall dimensions on the 1 – 2 meter scale. The dimensional considerations of such a device are very
important, especially if it is to be transportable and/or integrated with other technological instruments.

In order to devise the algorithm that assesses the maximal internal magnetic field, we consider two
107 Joule SMES design cases at 4.2 K: i) a SMES built of MgB2 wire, and ii) a SMES built of 2G tape,
both of which contain 20 turns, Long Radius, LR, = 1000 mm, coil radius, CR, = 200 mm, coil width,
W, = 96 mm, coil thickness, T, = 100 mm. Then, we scan the magnetic field of the MgB2 SMES coil
transversely, going through the middle of the coil and assessing the absolute value of B in the MgB2 case,
where the field is expected to be the highest (see Inset of Fig. 6a). In the case of 2G wire, we scan along
the edge of the coil, as shown in the Inset of Fig. 6b, and assess only the perpendicular B component,
since this is the application bottleneck, as discussed in Section 2.5.

Figure 6: Transverse magnetic field scans through a) MgB2 and b) YBCO SMES coils. The directions of
scanning are shown in the insets of each figure. The highest total B fields are expected in the middle of
a coil, and thus we scan across the middle of the coil for MgB2. However, in the case of YBCO, only BN

is assessed (see Section 2.5), along the edge, where the field "leaks out" between the coils and thus, the
highest BN is expected. Note the singular points at 50 mm and 350 mm from the inner edge of the coil –
a Radia artifact, which need to be removed from the analysis.

As one can see from Fig. 6a, Radia tends to produce an unphysical singularity in the vicinity of Bmax,
as evidenced in the points at 50 mm and 350 mm from the inner edge of the coil at the stored energy
used in the simulation. Choosing any of these two points ("artifacts" on the conductor boundary) could
lead to erroneous Jc (B) results. The excessively high field at the conductor boundary does not disappear
as we change the level of segmentation of each coil. Radia assumes a constant Jc over the entire coil
and does not perform any "relaxation" with respect to the current density/field in different areas of the
conductor, suggesting this could lead to an excessively high field at the edge, and pointing to an area of
future improvement. Thus, instead of picking the maximal point from the scan, we identify its location,
and fit the data points on either side of the singularity with a tenth order polynomial and get the mean
of the two functions at the intersection (maximal point) location. We get Bmax = 10.68 T using this
algorithm, which is consistent with the cusp at 50 mm from the inner edge of the coil. This procedure has
led to smooth analytic energy density surfaces.

Analogously, in order to avoid any Radia-generated artifacts, we have imposed a 90% cutoff from the
scanned Bmax in the YBCO case, i.e., only field values ≤ 90% of Bmax are considered. The truncated data
is subsequently fitted with a tenth order polynomial and the maximal value is extracted from this fit.

The resulting Bmax were used to calculate the (lowest) critical current densities found in a single SMES
coil for a given geometry and energy storage requirement, as outlined in the previous subsection. Every
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time an input parameter changes, the code would scan for Bmax de novo.

3.3. Wires, Tapes and their Jc’s

Upon designing the SMES geometry based on a given toroidal radius and coil dimensions [25], we specify
the wire characteristics of two different conductors: i) a MgB2 wire which we assume in our calculation is a
monofilamentary strand of MgB2, as discussed by Li et al. [26, 27] and ii) standard second generation (2G)
[28, 29, 30, 31]. The rapid advances in applied superconductivity, such as the successful implementation
of pulsed-laser deposition techniques to grow iron-chalcogenide superconducting film on metal substrates
[11, 32, 33, 34, 35, 36, 37] will hopefully lead to the development of commercial Fe-based superconducting
wire in the near future, as well.

The Jc (B) data utilized in the simulation can be found in References [26], [38], and [39].
Analytical fits of double-bending functions were used to obtain functional forms for Jc’s at different

temperatures for both 2G YBCO and MgB2 wires. In principle, double-bending functions have been
shown to be very effective in fitting the front and tail ends of Jc (B), as if the two data curvatures are
distinguishable [40]. However, being able to discern between two functional forms needed for a fit would
require a much greater density of Jc (B) data points, which would be a necessary requirement for a realistic
SMES engineering.

4. Results and Discussion

Simulations were run for both 2G tape and MgB2 wire at 4.2 K. In the case of the (2G) YBCO device the
simulation was run for a SMES comprising 20 coils, initial coil radius, CR0, = 400 mm, initial coil width,
W0, = 96 mm, initial coil thickness, T0, = 100 mm, and constant LR = 1500 mm. In the case of the MgB2

wire-based SMES 32 coils were considered, along with CR0 = 400, W0, = 96 mm, T0, = 100 mm and LR
= 2000 mm. For both simulations the number of segments was chosen to be 50, and the number of points
considered in the configuration space of the project (the CR −W plane) was fixed at 1,500 [41].

Both sets of devices were simulated under the initial provision that they would store 108 Joules of
energy [42]. The optimization was performed at every point in the specified segment of CR − W space,
and the i) energy, ii) device specific energy, iii) T, iv) CR, v)W, vi) total SMES mass, M, and vii) total
wire length needed, L, were assessed at each of the 1,500 points (see Fig. 7).

For higher values of CR and W , the value of the total energy is actually closer to 109 J, most likely
due to non-linear effects as one can expect a geometric change to bring about. Larger coils, in radius and
width, would have coils in a closer proximity to one another (we never change the values of the LR’s once
fixed in the beginning), suggesting that fewer field lines will "leak" in the spaces between them, improving
on the overall efficiency of the device. The reason why we could not extend the simulation for arbitrarily
large CR’s and W ’s had to do with the unphysical overlap of coils that our optimization would bring
about.

The values of several SMES parameters were obtained at the highest device specific energies from our
CR − W configuration space (see Table 2), and from the comparison between the simulations of the 2G
YBCO and MgB2 based SMES devices, we notice that while the overall dimensions and stored energies are
very comparable, a YBCO-based SMES weighs less than half of its MgB2 counterpart. Also, the YBCO
device has more than double the device specific energy compared to the one made of MgB2 wire at the
present energy-storage capacity.

After optimizing every point in configuration space, we were able to get an estimate of the overall
length of wire needed (see Fig. 8). One thing to notice is that the MgB2-based device would require 2–3
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Figure 7: Shown are the outputs of the simulation: a) total energy stored, b) total wire mass, and c)
device specific energy in the YBCO 2G SMES. The corresponding d) total energy stored, e) total wire
mass, and f) device specific energy for MgB2 are shown in juxtaposition. The "ripples" observed in the
various quantities are artifacts of the simulation (see text).

Table 2: Comparison of design parameters for 20-coil YBCO and 32-coil MgB2-based SMES devices at
maximum device specific energy.

SMES Type ρE
max(MJ/kg) Mmax(kg) ET otal

max(MJ) CRmax(mm) Wmax(mm) Tmax(mm)

YBCO 0.327 3,416 1,117.07 662 204 68.7
MgB2 0.155 7,537 1,168.26 698 196.8 50.3

fold more wire, in absolute length, for comparable amount of stored energy when compared to its YBCO
counterpart (see Table 3).
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Table 3: Comparison of wire length requirements (in kilometers) for 20-coil YBCO and 32-coil MgB2-based
SMES devices at i) CR = 400 mm, W = 100 mm and ii) L(CR = 700 mm, W = 200 mm.

SMES Type L(CR = 400 mm, W = 100 mm)(km) L(CR = 700 mm, W = 200 mm) (km)

YBCO 130 341
MgB2 332 1,018

5. Conclusions

In this paper we demonstrated the viability of Radia as a CPU-efficient semi-analytical method for
optimizing prospective SMES devices. By altering various device parameters, such as coil radii and
thicknesses, we were able to calculate the optimal coil dimensions and simulate total stored energies
in YBCO and MgB2-based devices. The second generation device exhibits at least a two-fold higher
device specific energy compared to the MgB2 one in the 107–109 J range at 4.2 K. Subsequently, whenever
dimensional considerations are critical, YBCO wire will likely be the material of choice. However, if
dimensional or weight considerations could be subordinated for the benefit of cost, then the unit price of
the wire will be the determining factor.

The value of developing speedy optimization algorithms for SMES stretches beyond the quest for

Figure 8: Shown are the final configuration outputs at maximum energy density for a) YBCO and b)
MgB2 devices. All the dimensions in a) and c) are given in millimeters. The total wire length requirements
for each optimized configuration in CR −W are shown for YBCO and MgB2-based devices in b) and d),
respectively.
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efficient and reliable energy storage and rapid release. Moreover, in addition to power storage, there exist
certain niche applications which necessitate the integration of a SMES into a propulsion mechanism. An
example of such a hybrid would be a superconducting self-supplied electromagnetic launcher (S3EL) [2],
where the optimum geometry needed to ensure that the magnetic flux from the SMES goes between the
launcher rails may be potentially dipole-like, rather than being solenoidal or toroidal [2]. However, the
low inductance values needed for typical applications may disfavor the former in favor of the latter two
[2]. Thus, the rapid assessment of optimal geometry for a S3EL [43] is another prospective employment of
Radia-based modeling that possesses the potential of becoming industry-enabling.
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