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Ground state diffusion Monte Carlo is used to investigate the binding energies and carrier probability dis-
tributions of excitons, trions, and biexcitons in a variety of two-dimensional transition metal dichalcogenide
materials. We compare these results to approximate variational calculations, as well as to analogous Monte
Carlo calculations performed with simplified carrier interaction potentials. Our results highlight the successes
and failures of approximate approaches as well as the physical features that determine the stability of small car-
rier complexes in monolayer transition metal dichalcogenide materials. Lastly, we discuss points of agreement
and disagreement with recent experiments.

Atomically thin layers of crystalline transition metal
dichalcogenides (TMDCs) have been the subject of intense in-
vestigation in recent years [1, 2]. As with graphene, TMDCs
exhibit remarkable properties that originate from their quasi
two-dimensional nature [3, 4]. However unlike graphene,
TMDCs are direct gap semiconductors, opening up a wealth
of potential practical applications ranging from field-effect
transistors to photovoltaics [5, 6]. Furthermore, due to the
lack of inversion symmetry in these single layer crystals, the
so-called K-points on opposite corners of the two-dimensional
hexagonal Brillouin zone are inequivalent [7–9]. As a result,
a distinct valley degree of freedom associated to states near
these points emerges which may be manipulated and con-
trolled, leading to the possibility of novel “valleytronic” ap-
plications [10–13]. Lastly, carrier confinement and reduced
dielectric screening in these materials leads to large many-
body effects, resulting in bound state complexes of electrons
and holes with very large binding energies [14–20]. In this
work we focus on this latter property, providing a deeper un-
derstanding of the factors that control the binding energies of
electron-hole complexes in two-dimensional TMDCs.

From the computational perspective, the most accurate
means of describing excitonic properties in periodic solids
currently available is the GW+BSE approach [21–25]. Un-
fortunately, analogous fully ab initio approaches have not
been developed for the treatment of larger electron-hole com-
plexes such as trions and biexcitons [17–20]. However, sim-
plified approaches have proved to be effective, building on
well-established coarse-grained methodologies developed for
semiconductor quantum wells and other nanostructures. An
effective real-space electron-hole potential is combined with
an approximate treatment of the band structure, such as an
effective mass model or a few-band tight-binding model, to
build the model Hamiltonian. This also has roots in the
early discussion of the Bethe-Salpeter approach by Hanke and
Sham, demonstrating the relationship to the phenomenologi-
cal approach of Wannier [26].

The pioneering work of Keldysh highlighted the fact that
screening effects in quasi two-dimensional systems are intrin-
sically non-local [27]. Using a generalized Keldysh approach,
Cudazzo et al. formulated a simple and successful theory
for excitons in graphane [28, 29]. This approach has since

been applied by various authors to study optical spectra as
well as the properties of excitons, trions, and biexcitons in
TMDCs [30–35]. These studies have produced exciton bind-
ing energies and real-space structures that are in reasonable
quantitative agreement with first principles GW+BSE calcula-
tions and experiments in a variety of two-dimensional TMDC
systems [36]. This fact is not entirely surprising for three rea-
sons. First, recent ab initio calculations show that the effective
quasiparticle interactions that emerge at the RPA level nearly
perfectly match those used to describe the effective electron-
hole interaction in the models mentioned above [37]. Second,
the ab initio band structure near the K-point is well described
by elementary two- and three-band models [12, 38]. Third, the
spatial extent of the exciton that emerges from fully ab initio
calculations is sufficiently large relative to the atomic scale to
suggest that a coarse-grained Hamiltonian is justified [16].

Even within the simplified framework of an effective
Hamiltonian, the exact solution of the multi-body Schrödinger
equation for larger electron-hole complexes is challenging.
Initial work on exciton and trion binding energies in TMDCs
employed variational wave functions [30]. This approach has
been used more recently and with more intricate trial wave
functions to study biexcitons [17]. In both cases the results
found from variational solutions of the effective few-body
Schrödinger equation are in reasonable agreement with ex-
perimental results. However, since binding energies for tri-
ons and biexcitons are extracted with reference to the exciton
binding energy, the use of variational wave functions for all
excitonic complexes leads to binding energies that need not
provide a lower bound to the “exact” value, and it is unclear
how much error cancellation occurs as a result. For the trion
binding energy, Ganchev et al. have discovered a remarkable
exact solution, but only for the case where the full Keldysh
effective potential is replaced with a completely logarithmic
form that is accurate only at short range [39]. It is the pur-
pose of this work to investigate the nature and accuracy of
these approximate solutions by comparing with numerically
exact results, and thereby to provide insights into the proper-
ties of higher-order excitonic complexes in two-dimensional
TMDCs.

Diffusion Monte Carlo (DMC) provides a useful approach
for studying the energetics of excitonic complexes. Briefly,
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DMC X (eV) variational X DMC X− (meV) experimental X− DMC XX (meV) experimental XX
MoS2 0.5514 0.54 33.8 43 [40], 18 [18] 22.7 70 [41]
MoSe2 0.4778 0.47 28.4 30 [42] 17.7
WS2 0.5191 0.50 34.0 30 [43], 45 [44] 23.3 65 [43]
WSe2 0.4667 0.45 29.5 30 [45] 20.0 52 [17]

TABLE I. Estimated exciton (X), trion (X−), and biexciton (XX) binding energies for different members of the 2D TMDC class of materials.
Where two numbers are reported, the number on the left is the most current estimate. The statistical uncertainty in the DMC data is on the
order of 0.1–0.3 meV. The column labeled ‘variational’ refers to results based on the Keldysh form, taken from Ref. [30].

the DMC algorithm propagates an initial wavefunction in
imaginary time using a Jastrow-based guiding wavefunc-
tion until the exact ground state wavefunction and energy
is obtained. Technical details of our DMC calculations can
be found in the Supplemental Material. At convergence,
DMC yields numerically exact exciton, trion and biexciton
ground-state energies within the confines of an effective few-
body Schrödinger equation. Specifically, our calculations
employ an effective mass treatment of the band structure
and a screened Coulomb interaction appropriate for the two-
dimensional TMDC family of materials, i.e.

H = −
∑

i

∇2
i

2mi
+

∑
i< j

qiq jV(ri j). (1)

Hamiltonians of this form have been successfully used to
describe excitons, trions, and biexcitons in semiconductor
quantum wells [46–48], as well as scenarios such as exci-
tons in doped quantum wells and electron-hole plasmas [49].
Note that Eq. (1) neglects possible three-body (and higher-
order) effective screened Coulomb interactions between carri-
ers; we will evaluate the success of this approach for mono-
layer TMDCs and return to this point before concluding.

The two-body potential employed in this study is

V(r) =
π

(ε1 + ε2)r0
[H0(r/r0) − Y0(r/r0)] , (2)

where H0 is the Struve function, Y0 is the Bessel function of
the second kind, and ε1 and ε2 are the dielectric constants for
the material above and below the TMDC layer; in all results
presented, we use ε1 = ε2 = 1, relevant for ‘ideal’ or sus-
pended TMDC monolayers.

In addition, DMC allows a full sampling of the square of
the wavefunction, which can be used to extract insight into the
structure of small bound carrier assemblies. Although DMC
has previously been used to calculate ground-state properties
for trions interacting with a purely logarithmic potential [39],
to the best of our knowledge it has not been used to calculate
trion properties with the more realistic electron-hole interac-
tion above, nor has it been used to calculate the properties of
biexcitons. It should be noted that while the present work was
underway, a numerically exact finite temperature path integral
Monte Carlo (PIMC) study of excitons, trions, and biexcitons
using the full Keldysh effective potential appeared [50]. While
we believe that DMC is a more direct method than PIMC for
the study of what are essentially ground state properties, we

note that the results presented here are in quantitative agree-
ment with those presented earlier in Ref. [50], yielding ground
state energies that lie below those of Ref. [50] by fractions of
a percent. On the other hand, the goals of this work are some-
what distinct from those of Ref. [50]. In particular, we focus
on the specific physical factors that influence the delicate bal-
ance of relative trion and biexciton binding energies, as well
as the accuracy of variational approaches in light of the “ex-
act” DMC results.

In Tab. I, we report exciton, trion, and biexciton bind-
ing energies calculated via DMC and compare to those ex-
tracted in recent experiments. The DMC exciton binding en-
ergies, defined as EX

b = −EX, are only 2–4% larger than those
obtained in previous variational calculations that employed
a trial wavefunction of the form ΨT,var(reh) ∼ exp (−reh/a).
The radial probability distribution for the distance reh, which
completely determines the exciton wavefunction, is plotted in
Fig. 1(a); we compare the variational wavefunction to results
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FIG. 1. (a) Radial probability distributions for the distance reh of
an exciton in MoS2. (b) Radial probability distributions for the dis-
tances reh and ree of a negative trion in MoS2. (c) Radial probability
distributions for the distances reh, ree, and rhh of a biexciton in WSe2.
For the DMC calculation, the curves for ree and rhh coincide because
the electron and hole effective masses are taken to be equal.
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Trion Biexciton
Keldysh pure ln pure 1/r variational 1 variational 2 Keldysh pure ln pure 1/r variational 1 variational 2

MoS2 33.8 48.9 1630 26 14 22.7 26.2 2610
MoSe2 28.4 39.3 1780 21 12 17.7 21.2 2820
WS2 34.0 53.6 1050 26 14 23.3 28.7 1680
WSe2 29.5 44.9 1120 22 12 20.0 23.9 1780 37 16

TABLE II. Comparison of trion and biexciton binding energies for several potential forms in units of meV obtained from DMC, except for the
column labeled ‘variational’; the latter results are based on the Keldysh form and taken from Ref. [30] for trions and Ref. [17] for the WSe2

biexciton. Binding energies in the ‘variational 1’ column are with respect to the variational exciton binding energies, whereas those in the
‘variational 2’ column are with respect to the exact DMC exciton binding energies. For the DMC Keldysh and pure logarithmic potentials, the
uncertainty is of the order of 0.1–0.3 meV. For the pure Coulombic potential, the uncertainty is of the order of 10 meV.

obtained via DMC as well as a grid-based exact diagonaliza-
tion of the one-dimensional Schödinger equation. The sim-
ple 1s-like variational wavefunction matches the true ground-
state wavefunction well, but does not decay rapidly enough
for large r. As we will show, achieving a similar level of
agreement between exact DMC and variational estimates for
the binding energies of larger excitonic complexes is, in prin-
ciple, a much more difficult task because trion and biexci-
ton wave functions are more elaborate and their approxima-
tion may in principle require many variational parameters to
achieve a high level of accuracy.

The DMC trion binding energies given in Tab. I are all in
the range of 28–34 meV, which is in excellent agreement with
current experimental estimates; however it should be noted
that realistic substrate effects have been ignored in the present
calculations. In Tab. II, we compare trion binding energies for
two additional potentials: a purely logarithmic form and an
unscreened 1/r Coulombic form. These two potentials repre-
sent the asymptotic small and large r behavior, respectively,
of (2). The purely logarithmic potential approximation has
been employed by Ganchev et al. in their analytical treatment
of trions in TMDCs [39] while the Coulomb potential is the
standard form for three-dimensional semiconductors. We find
that a purely logarithmic potential overbinds the trion and re-
sults in binding energies about 50% larger than those reported
by experiments. Unsurprisingly, the pure Coulombic potential
vastly overbinds the complex, resulting in binding energies
that are 30–50 times too large and with a different ordering
than is the case for the full potential (2), which is material
dependent. Coulombic binding energies would of course be
reduced with the inclusion of a static dielectric constant sig-
nificantly larger than unity.

Our trion binding energies are about 30% larger than those
calculated variationally. The two-parameter variational trial
wavefunction used in the trion calculations was [30]

ΨT,var(re1h, re2h) ∼ exp
(−re1h/a − re2h/b

)
+ {a↔ b}, (3)

a form inspired by Chandrasekhar’s treatment of the hydro-
gen anion [51]. Although Fig. 1(b) shows that this optimized
variational wavefunction reproduces p(reh) almost exactly, the
variational form does not capture the electron-electron repul-
sion properly because it lacks any explicit re1 − re2 correlation
terms. The peak of the electron-electron distribution is at too
small a radius, which results in over-estimating the electron-

electron repulsion and underestimating the trion binding en-
ergy, as seen in Tab. II. Nonetheless, the level of agreement is
surprisingly good given the simplicity of the variational wave
function employed in Ref. [30]. Furthermore, by treating the
exciton and trion on equal footing with physically similar vari-
ational wavefunctions, a fortuitous cancellation of total energy
errors leads to binding energies which are quite close to the
exact results (‘variational 1’ column in Tab. II); referencing
the variational trion energy to the exact DMC exciton energy
(‘variational 2’ column in Tab. II) leads to a significant under-
estimation of the binding energy, albeit one that is a genuine
lower bound.

Finally, in Tabs. I and II we report biexciton binding ener-
gies EXX

b = 2EX − EXX , and in Fig. 1(c) we compare car-
rier probability distributions obtained from DMC and from a
recent six-parameter variational calculation [17]. Other than
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FIG. 2. (a) Radial probability distributions for the distances reh and
ree in the trion (X−) and biexciton (XX) using a Keldysh form for
the inter-carrier potential. (c) The same ree distributions as in panel
(a), but the relocated repulsive weight is shaded. (b),(d) The same
as in panels (a),(c) but using a Coulombic form for the inter-carrier
potential.
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the rhh distance, which is accurately predicted, the variational
wavefunction is a bit too compact, leading to a total variational
energy which is slightly too high. When referenced to the ex-
act DMC exciton energy, we note that the variational biexci-
ton binding energy is actually quite accurate – only 3.5 meV
(about 15%) too small. When referenced to the less accu-
rate variational exciton energy, the mis-matched cancellation
of errors is such that the biexciton binding energy is slightly
overestimated.

In our DMC calculations, we find that the full potential
with dielectric screening (2) yields binding energies that are
smaller than either of the other potentials considered, and that
are smaller than experimental estimates by 60–70%. Most
significantly, exact DMC calculations show that the binding
energies for biexcitons are significantly smaller than that of
trions. This fact, which has been noted in recent PIMC cal-
culations as well [50], disagrees with recent experimental es-
timates and is at odds with expectations that emerge from the
standard case of pure Coulombic interactions. Whereas in the
latter 1/r case biexcitons are more strongly bound than trions
by a factor of about 1.6, in the purely logarithmic case the
situation is reversed and trions are more strongly bound than
biexcitons. Interestingly, we find that for realistically parame-
terized Keldysh potentials, the biexciton binding energies are
slightly smaller than those found with the purely logarithmic
potential, despite the latter being a presumably “weaker” po-
tential; this highlights the subtle balance of energies involved
in the formation of the biexciton. We note in passing that
the binding energies for biexcitons obtained with the logarith-
mic potential are significantly closer to the full Keldysh re-
sults than they are for trions, suggesting that the short-range
approximation of Ganchev et al. may be even better for biex-
citons. This result is consistent with the smaller real-space
structure of the biexciton seen by comparing Figs. 1(b) and
(c).

To gain deeper insight into this balance of energies, we con-
sider the electron-hole and electron-electron distributions for
trions and biexcitons obtained with the Keldysh and Coulom-
bic potentials, plotted in Fig. 2(a),(b). Suppose that for a given
potential, the attractive electron-hole probability profiles were
identical for the trion and the biexciton, and the repulsive
electron-electron (hole-hole) profiles were also identical for
the trion and the biexciton. Then elementary arguments us-
ing the definition of the trion and biexciton binding energies,
along with the pairwise additive potential, show that the biex-
citon binding energy would be exactly twice the trion binding
energy, EXX

b /EX−
b = 2. Any deviations from this ideal ratio are

due to relative differences in the attractive and repulsive prob-
ability distributions as the second hole is added to the negative
trion.

Instead, biexciton-to-trion binding energy ratios of less than
2 are observed for both the screened interaction (2) and the
Coulomb interaction. In both cases, about 9% of the total
weight in the p(reh) (attractive) profile is relocated from long r
to short r. More significantly, a much larger fraction of the to-
tal weight in the p(ree) (repulsive) is relocated to short r, lead-

ing to a reduced biexciton-to-trion ratio. Specifically, for the
screened potential (2), about 31% of the weight is relocated,
which leads to a biexciton binding energy that is smaller than
the trion binding energy; for the Coulomb potential, only 26%
of the weight is relocated, and the biexciton binding energy
remains larger than the trion binding energy. The relocated
repulsive area is shaded for both potentials in Fig. 2(c),(d).
From an energetic standpoint, this more notable change in the
repulsive profile occurs because in the trion, there is no reason
for the like charges to be physically close in space. However,
in the biexciton, the complex can achieve stabilizing electron-
hole interactions by having the like charges closer together in
space.

A final question that may be raised concerns the qualita-
tive difference between biexcitonic stability as found by DMC
calculations and that extracted from experiments. As men-
tioned above, experimentally reported biexciton binding en-
ergies significantly exceed experimentally determined trion
binding energies, and are about a factor of two or more larger
than calculated DMC values. Since our DMC values are ex-
act within the confines of the effective mass and effective po-
tential models, one possibility is that these model ingredients
are oversimplified, and need to be amended. First, we have
neglected screening from the substrate and surrounding envi-
ronment. In fact, the results of Refs. [50, 52] suggest that the
biexciton binding energy may be higher than the trion binding
energy for certain substrates; future work will be dedicated to
a more microscopic treatment of substrate screening to eluci-
date this behavior. Second, it is unclear if the assumption of
effective pairwise additive interactions is a good one for larger
excitonic complexes; perhaps three-body or higher-order in-
teractions are needed. On the other hand, experimental de-
termination of biexciton binding energies in the TMDCs is
quite difficult and involves both assumptions of the nature of
spectral signals as well as extrapolations. Clearly future work
should be devoted to addressing this interesting discrepancy
between theory and experiment.

Note added– Since this work was completed, a preprint
has appeared which uses high-accuracy stochastic variational
Monte Carlo to calculate the properties of excitons, trions,
and biexcitons in monolayer TMDCs [53]. The results are in
agreement with the present manuscript and the authors further
speculate as to the origin of the biexciton discrepancy noted
above.
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COMPUTATIONAL DETAILS

In this section we outline the computational approach and model used to investigate excitonic complexes. Our technique of
choice is diffusion Monte Carlo (DMC). Because DMC is such a widely used approach, we do not give a detailed account of the
method, and refer the reader to more complete technical discussions [1–3].

DMC calculations use the imaginary-time Schrödinger equation along with a guiding wavefunction ΨT to project out excited
states from an initial wavefunction Φ(t = 0), propagating it in imaginary time until the true ground state wavefunction ψ0 is
found. If we define the mixed probability f (R, t) = ΨT(R)Φ(R, t) [4, 5], where R contains the spatial coordinates of all particles,
then the equation of motion for f (R, t) derived from the imaginary-time Schrödinger equation is

−
∂ f (R, t)
∂t

= −
1
2
∇2

R f (R, t) + ∇R · [v(R) f (R, t)] + (EL(R, t) − Eref) f (R, t), (S1)

where

v(R, t) = Ψ−1
T (R)∇RΨT(R), (S2)

EL(R) = ΨT(R)−1ĤΨT(R), (S3)

and Eref is an arbitrary energy offset. A solution to the importance-sampled imaginary-time Schrödinger equation is then sampled
using approximate (short time) Greens functions that result in the drift-diffusion motion and the branching action [1]. For the
systems we consider, the exact ground state wave function is nodeless, so DMC yields exact ground state energies and a sampling
of the exact ground state wavefunctions.

The guiding wavefunction used in this work is of the form ΨT(R) = eJ(R), which contains the Jastrow factor introduced
in Ref. [6] adapted specifically to the potential (2). The Jastrow term contains two-body electron-hole and electron-electron
(hole-hole) terms

ueh(r) = c1r2 ln(r)e−c2r2
− c3r

(
1 − e−c2r2)

, (S4)

uee(r) = c4r2 ln(r)e−c5r2
. (S5)

The constants c1 = memh/2(me + mh) and c4 = −me/4 (me,h are the effective masses of the carriers) were chosen to satisfy the
logarithmic analogue of the Kato cusp conditions; the other constants were optimized via unreweighted variance minimization
to improve the efficiency of the Monte Carlo sampling [7, 8]. A blocking method is used to gauge the correlation timescales
for the energy estimates, and yields accurate standard deviations for the final average [9]. Energy estimates were obtained for
calculations with ∆t ∈ {0.01, 0.03, 0.1}, and then extrapolated to zero timestep. All reported DMC probability distributions were
sampled from forward-walking DMC calculations [10] with the optimal guiding wave function described by Eqs. (S4)–(S5), and
∆t = 0.01. A forward walking time of 300 a.u. was used for calculations employing the Keldysh potential; that time was 30
a.u. for calculations using the Coulomb potential.

For computational efficiency and consistency with past variational calculations, we use a modified form of the effective
potential (2), given by

V ′(r) = −
1
r0

[
ln

(
r

r + r0

)
+ (γ − ln 2)e−r/r0

]
, (S6)



2

where γ is Euler’s constant [11]. Calculations with the unaltered potential (S6) typically result in exciton ground-state energies
that are merely 2–3 meV lower than those produced with (2).
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