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Synopsis Individual crystallites contribute multiple beams to diffraction spectra from nanocrystalline 

powders. This complicates correlating the number of diffracting grains with diffracted intensities.  

Abstract In a previous article (Ozturk et al., 2014) we showed that the sampling statistics of diffracting 

particle populations within a polycrystalline ensemble depended on the size of the constituent crystallites: 

broad X-ray peak breadths enabled some nano-sized particles to contribute more than one diffraction spot 

to Debye-Scherrer rings. Here we show that the equations proposed by Alexander, Klug and Kummer 

(AKK) (Alexander et al., 1948) to link diffracting particle and diffracted intensity statistics are not 

applicable if the constituent crystallites of the powder are below 10 nm. In this size range, (1) the one-to-

one correspondence between diffracting particles and Laue spots assumed in the AKK analysis is not 

satisfied, and (2) the crystallographic correlation between Laue spots originating from the same grain 

invalidates the assumption that all diffracting plane normals are randomly oriented and uncorrelated. Such 

correlation produces unexpected results in the selection of diffracting grains: For example, three or more 

Laue spots from a given grain for a particular reflection can only be observed at certain wavelengths. In 

addition, correcting the diffracted intensity values by the traditional Lorenz term, 
�

����
 , to compensate for 

the variation of particles sampled within a reflection band does not maintain fidelity to the number of 

Laue spots contributing to the diffracted signal. A new term, 
�����

����
, corrects this problem . 
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Nomenclature 

ik


Incoming X-ray wavevector 

dk


Diffracted X-ray wavevector 

λ X-ray wavelength 

q


Momentum transfer vector 

)(

)(

r

r







Electron density functions (Local density above and 3D periodic density below) 

)(ry


 Shape function of a diffracting particle 

Fhkl Structure factor of the unit cell 

Hhkl Pole enhancement factor 

D Particle diameter 

Nc Number of unit cells in a particle in the direction of the momentum transfer vector 

β Full width at half maximum of an intensity peak 

C Scherrer shape factor 

Γ The complementary angle to the angle between the pole vector with the incoming 

wavevector 

s Range multiplier (integer) 

mhkl Multiplicity of the {hkl} planes 

*
hklP Activated hkl pole 

αhkl Reflection band-width  

NG Number of irradiated grains in the powder 

NP,hkl Number of poles belonging to the {hkl} planes 

NG*,hkl Number of grains that are diffracting at the hkl reflection 

pP*,hkl Probability of having an activated pole within the hkl reflection band 

NP*,hkl Number of activated poles within the hkl reflection band 

P*1 An activated singlet pole 

P*n An activated n-let pole 

iC


The vector pointing from the origin of the reference sphere to the i’th pole on the surface 

of the sphere 

AC


Grain orientation vector 

P*C3 An activated pole corresponding to the C3 pole vector 
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pP*2 Probability of having two poles activated simultaneously  

pP*2,1 Probability of the first member of the doublet poles to be activated 

ij Interplanar angle between ‘i’ and ‘j’ planes 

dhkl Interplanar distance between {hkl} planes 

λES Enhanced selection wavelength (special wavelength where highly correlated poles 

appear) 

NG*T The total number of all diffracting grains within a powder 

NP*T The total number of all activated poles from a powder sample 

I Integrated intensity 

CT1, CT2 Correction factors for the activated pole distributions  

Xu~ Relative uncertainty of quantity ‘x’ based on a given set of measurements 
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1. Introduction

Structural parameters obtained from analysis of powder diffraction data, such as crystallite size,  atomic 

site occupation parameters, defect concentration, texture, strain and phase fractions are complicated 

average values of the actual distributions existing within the sampling volume (Fewster, 2014). There are 

two independent factors which determine the uncertainty associated with these structural parameters. 

First, the total volume fraction of crystallites contributing diffracted intensity determines how 

representative refined structural parameters might be of the entire sample. The second factor is the quality 

of the measured intensity profiles: low peak intensity values, coupled with high background and 

overlapping diffraction peaks can lead to erroneous structural characterization of the sample.  

Combining the uncertainties from both factors to develop quality metrics for diffraction profiles is a 

complex problem. For a non-textured powder sample estimating the number of grains which will 

contribute finite intensity to a particular reflection is traditionally carried out using the Lorenz formulation 

(Cullity, 1978). This formulation assumes that each crystallite contributes a single ray to the diffraction 

pattern (single-pole per particle (SPP) assumption). Consequently, any statistical variation in the number 

of grains1 oriented favourably for diffraction will be directly proportional to the variation in the measured 

diffracted intensity. In other words, with the exception of the uncertainties in photon counting, the 

statistical variation of diffracted intensity can be computed directly from grain sampling statistics. The 

Alexander, Klug and Kummer analysis (henceforth referred to as the AKK analysis) utilizes this idea to 

construct equations which predict the expected uncertainty in diffracted intensities as functions of grain 

size, Bragg angle, X-ray beam divergence, etc. These equations were originally tested with experimental 

intensity data from quartz powder samples with particle sizes between 5 to 50 micrometers. For this size 

range, the measured and computed uncertainties showed reasonable agreement.  

Neither the AKK formulation, nor the Lorenz analysis has any provisions for large scale failure of the 

single-pole assumption; namely, the presence of a large fraction of grains with multiple poles, satisfying 

the diffraction condition and resulting in many diffraction spots per crystallite. Such failure is possible: in 

a recent study (Ozturk et al., 2014) it was shown through modelling that, for nano-sized particles with 

dimensions smaller than 10 nm, individual crystallites contribute multiple spots to the Debye-Scherrer 

ring of a given reflection, and the one-to-one correspondence between the number of diffracting particles 

1 In this article, the terms “(powder) particle”, “crystallite” and “grain” are used interchangeably to describe a single, 
perfectly crystalline volume, similar to standard usage in diffraction literature, e.g. Smith, D. K. (2001). Powder 
Diffr 16, 186-191, ibid. 
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and number of diffraction spots in the Debye-Scherrer ring did not hold. In that reference, the ratio of the 

diffraction spots to the number of diffracting grains was parameterized as the “pole enhancement factor” (

hklH ), which increased as the particle size decreased and multiplicity of a reflection increased; the hklH  

value computed for the 311 Debye-Scherrer ring of 1.6 nm gold particles illuminated by a planar 

monochromatic X-ray beam of 12 keV energy was ~1.25, indicating that there were 25% more spots than 

grains.  

The hklH  parameter described by Öztürk, et.al. does not provide the link from particle sampling statistics 

caused by variations in the orientation distribution of sample crystallites to the diffracted intensity 

statistics. In addition, hklH  does not differentiate between grain subsets which contribute two, three or 

more spots to the ring. Consequently it cannot be used to investigate the correlation between the statistical 

variations in diffracted intensity with the statistical variations in the number of diffracting grains. 

Experimental determination of such correlation through experiments is also a nontrivial undertaking.  In 

the current manuscript these issues are addressed through modelling and geometric analysis. 

2. Theory

2.1. Basic Formalism 

In this section a simple formalism for modelling the powder diffraction process from a random 

polycrystalline sample is presented. In contrast to the venerable Debye equation (Hall, 2000), this 

formalism permits the sampling statistics to be unambiguously linked to diffracted intensity statistics: 

each diffraction peak is modelled by identifying all crystallites which satisfy the diffraction condition for 

the particular reflection, and then summing up their (angle-resolved) intensity contributions. To facilitate 

interpretation of the results by removing all uncertainty sources unrelated to sampling, the following ideal 

conditions will be assumed: 

2.1.1. Basic Assumptions 

1. All crystallites in the powder sample are exactly spherical gold particles and have the same

diameter, �. Their orientations in the laboratory space are completely uncorrelated, resulting in a

perfectly “random” powder specimen.

2. All atoms of a crystallite belong to complete unit cells of a single space group, described by a the

single structure factor, ����, corresponding to the particular hkl reflection of gold.
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3. All atoms are static, with no thermal vibrations. This corresponds to a temperature of 0 K in

classical mechanics.

4. The incident beam is a perfect, monochromatic plane wave of exact wavelength, λ. There is no

angular divergence in either incident or diffracted beams.

5. There is no photoelectric absorption, fluorescence or inelastic scattering.

6. The diffraction process operates at the kinematical limit.

7. An ideal two-dimensional detector with infinite resolution and dynamical range, infinitesimal

pixel size, zero dark current and no background noise is used.

8. There are no alignment errors of any kind.

Assumptions 1 through 3 define an “ideal powder sample”; assumptions 4 through 8 define an ideal 

experimental set-up. Combined, these assumptions define an ideal experiment which should yield the 

lowest possible uncertainty values associated with (modelled) sampling and intensity parameters. In other 

words, one cannot achieve higher accuracy in their diffraction data than the limits investigated in this 

article.  

2.2. Computation of diffracted intensity from a single crystallite 

Assumptions 1 to 8 permit the use of the Patterson formalism to exactly determine the rocking curve of a 

spherical crystallite (Patterson, 1939a). Accordingly, the angle dependent intensity, I(Δ2θ), can be written 

as  

    2222
)]([22 qYFNAI hklC


   (1-a) 

where  2A is the complex amplitude, NC is the number unit cells in the particle, Fhkl is the structure 

factor and )(qY


is the Fourier transform of the shape function associated with the momentum transfer 

vector q


given by








 


3

sincos
3)(




qY


  (1-b)        
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Here  



 2cos  BD ; where D is the diameter of the perfectly spherical crystalline particle2, θB is 

the Bragg angle of the hkl reflection being measured and 2 is the deviation of the Laue spot from twice 

the exact Bragg angle, B2 , of this reflection. Numerical analysis shows that, for finite D, )2( I

exhibits a strong maximum at the exact Bragg condition, 02   , with subsidiary maxima or “thickness 

fringes” bracketing this primary peak; the thickness fringe intensities tend to zero at  2 . As D 

increases, 2)]([ qY


decays quickly and the peak function becomes narrower, converging to a Dirac delta in 

the limit of infinite sphere diameter. Since 2)]([ qY
  tends to unity at 02    for all D, the maximum 

intensity of the primary peak of the rocking curve for any sphere with “Nc” unit cells is equal to

22
hklC FN . 

In Figure 1 normalized diffracted intensity plots, )02(/)2(   II , calculated by using Eq. (1-a) for 

the 200 reflection of spherical gold particles, with diameters of 5, 10 and 50 nm respectively, are shown. 

For these computations, a planar X-ray beam of 12.4 keV energy (=1 Å) was used, resulting in 200 

diffraction peaks from the gold lattice at the Bragg angle o
B 36.282  . Within the angular range covered 

in this figure, the peak function of the largest (50 nm) particle decays five orders of magnitude before the 

peak function of the smallest (5 nm) particle reaches to 50% of its peak value.  

The full-width-at half-maximum (FWHM),  , of the primary peak of the rocking curve or the period of 

the minima (zeroes),  , of the thickness fringes predicted by Eq.(1-a) can be obtained from: 

BD 




cos

17.1
 (2-a) 

BD 




cos
 (2-b) 

Eq. (2-a) is a particular form of the traditional Scherrer equation3 (Patterson, 1939b): 

2Due to the requirements of the crystalline lattice, not all atoms on the surface of the sphere can be exactly at the 
geometric sphere boundary. This approximation becomes weaker as the size of the sphere decreases and should fail 
when the crystallite size is comparable to the unit cell size.( Palosz, B., Grzanka, E., Gierlotka, S. & Stelmakh, S. 
(2010). Z Kristallogr 225, 588-598.) 
3 This equation is obtained from Eq. (1-a) by setting the left-hand side to half of the maximum intensity,

2/)02(  I , and numerically solving for the corresponding 2  values. Similarly, Eq. (2-b) is obtained by 

determining the position of all minima in the thickness fringes, where �(Δ2�) = 0. ( Yan, H. (2006). PhD thesis, 
Columbia University, Ying, A. (2010). PhD thesis, Columbia University, Ying, A. J., Murray, C. E. & Noyan, I. C. 
(2009). J Appl Crystallogr 42, 401-410.The thesis works can be downloaded from the following links, respectively: 
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BD

C






cos
 (2-c) 

where “C” is the Scherrer constant. For spherical crystallites, C is equal to 1.17. 

2.2.1. Basic diffraction geometry 

Figure 2 shows a schematic of the diffraction geometry when a single particle is irradiated with a parallel 

plane X-ray beam of wave-vector �����⃗  and wavelength λ. The wave-vector of the diffracted beam is ������⃗  , 

[hkl] is the normal vector to the set of diffracting planes, (hkl), and ��,���  is the (exact) Bragg angle for 

the hkl reflection. The [hkl] vector forms the polar angle �� =
�����,���

�
 with �����⃗ . The intersection of the 

[hkl] vector with the surface of the unit sphere is termed an activated hkl pole, ����
∗ . This pole 

corresponds directly to a particular diffracted spot on the reference sphere surface, and to its projection on 

a 2-D detector. This (projected) intensity spot on the detector is termed a “Laue spot”. In this construct, 

(activated) poles are elements belonging to the (powder) sample space whereas the diffracted spots or 

Laue spots are elements of the detector space.  

If an ideal powder specimen is placed at the unit sphere origin in Figure 2, the locus of activated poles 

from the (randomly oriented) grains diffracting at the exact Bragg angle, ��,���, will be the hkl reflection 

circle (the dashed line in Fig. 2). Crystallites whose orientations deviate from the Bragg condition while 

still remaining within the rocking curve will broaden the reflection circle into a reflection band of angular 

width, ����. The corresponding loci of all diffracted beams on the reference sphere will be the Debye-

Scherrer halo. The projection of this halo on the 2-D detector will yield the Debye-Scherrer ring which 

contains all Laue spots of finite intensity. The “range factor”, s, defines the angular range, in terms of a 

multiple of the FWHM, �, within which the activated poles contribute finite intensity to the hkl 

reflection. This term depends on the angular coverage desired in the experiment.  For a given range factor, 

s, the relationship between the angular width, �����, of the Debye-Scherrer ring and the breadth of the 

reflection band, ����, which contains the corresponding (activated) poles is ���� = �����/� (Ozturk et 

al., 2014).  

https://www.researchgate.net/publication/33743142_Modeling_of_strain_fields_in_semiconductor_single-
crystals_using_dynamical_diffraction_theory_ 
http://gradworks.umi.com/34/42/3442837.html ) 
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2.2.2. Computation of the diffracted intensity from the ideal powder sample 

The intensity diffracted by the ideal powder sample at a particular Δ2θ angle around the Bragg peak will 

be due to the contributions from all crystallites oriented for diffraction at this particular angle. Since 

nanosized crystallites can contribute more than one Laue spot to the Debye Scherrer ring, the 

contributions from all Laue spots of finite intensity, rather than crystallites, must be summed together. In 

that case the intensity expression becomes:

   
2

1
3

,

,,,

1

22
,

sincos
322 

 









 


jSjS N

i ij

ijijij
N

i
jhklcijjtot FNII




   (3) 

Here ijI , is the intensity contribution due to spot number ‘i’ at the “jth” diffraction angle; 
jBj  222  , 

and 
jSN  is the number of spots properly oriented to scatter at this angle. Equation (3) shows that, for the 

ideal powder sample under assumptions 1-8, the diffracted intensity at a given angle has two components: 

1) A deterministic value, given by Eq. (3), which depends only on the symmetry, size and composition of

the crystallite and 2) the number of spots oriented to scatter at this angle, 
jSN , which is a stochastic 

quantity. This term will have different values for every member of a set of identical ideal powder 

samples, each with the same number of grains. The variation among 
jSN is due to the random 

distribution of crystallite orientations. Thus, neglecting counting statistics, the statistical variation in the 

measured intensities will be caused by the statistical variations in 
jSN  for all angles, Δ2��. 

Determination of ��� is not straightforward since the relationship between this term and the number of 

diffracting grains within the powder sample depends on the particle size (Ozturk et al., 2014). For a set of 

identical powders, the actual number of grains oriented at a particular solid angle should be distributed 

normally around a mean value. If each grain had only one pole associated with it (SPP assumption), the 

distribution of poles on the surface of the unit sphere would also be random, and the mean and standard 

deviation of the poles would be equal to the corresponding grain values. When multiple poles are 

associated with a single grain, the assumption that all poles are randomly distributed on the unit sphere 

surface becomes weaker since the orientations of diffracting poles from a single grain are linked through 

crystal symmetry. To understand how such linkage determines the functional dependency between grain 

and pole populations, we used a simple geometric analysis, which is an extension of the classical Lorenz 

formulation. This is described in the following. 
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2.3.  Diffracting Grain vs. Activated Pole Fractions in an Ideal Powder Sample 

2.3.1. Fraction of Total Activated Poles in a Given Reflection Band 

If the single crystallite in Figure 2 is replaced by an ideal powder sample which contains NG grains, the 

total number of poles, NP,hkl, on the surface of the sphere corresponding to an hkl reflection of 

multiplicity, ����, will be GhklhklP NmN , . Among these poles, only those which fall within the 

reflection band will become activated and have corresponding Laue spots in the Debye-Scherrer ring. If 

all poles were uncorrelated, the probability,
hklP

p
,* , of any one hkl pole falling within the reflection band

would be equal to the fractional area of this band with respect to the surface area of the reference sphere: 















 






4
sincos

4

sin

2

42

42

2

0

,*




















 s

r

drrd

A

A
p B

s

s

sph

band

hklP

B

B

 (4-a) 

Substituting for   from Eq. (2-c), and assuming small 








4

s  values, one obtains the modified Lorenz

equation (Ozturk et al., 2014): 

D

C
sp

hklP 4,*


            (4-b) 

The number of activated poles expected in the reflection band is, then, given by: 

D

C
smNpmNN hklGhklPhklGhklP 4,, **


     (4-c) 

Eq. (4-b) predicts that, for typically used X-ray wavelengths and large crystallite sizes, D>500 nm, the 

probability of any one pole falling within the reflection band, and thus contributing finite intensity to the 

rocking curve is quite small (on the order of 10-4 ). Consequently, each diffracting crystallite can be 

assumed to possess only one, single, activated pole. For crystallite diameters around 10 nm, 
hklP

p
,*

values are on the order of 10-2. Below this size the angular breadth of the reflection band is of the order of 

several degrees and, thus, the probability of multiple poles from a single crystallite falling within this 

band is finite. (Ozturk et al., 2014). To investigate the differences between distributions of activated poles 

and diffracting grains in detail, two types of activated poles are defined:  
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1) Uncorrelated (Independent) Poles: These “singlet” poles, ��
∗, have no other members of the

<hkl> family belonging to the same grain within the reflection band of width hkls .

2) n-fold Correlated Poles: These poles belong to “n-let” groups, such as doublets, triplets, etc.

with each group having ‘n’ members )2( n  of the hkl poles belonging to one particular grain.

The i-th activated pole belonging to a particular n-let is denoted by ��,�
∗ . The orientations of ��,�

∗

with respect to each other are fixed by the crystal symmetry.

The total number of (activated) poles within the reflection band is the sum of poles for all groups: 





r

n
nPPhklP

nNNN
2

*,1*,,* (5-a) 

Here ��∗,� is the population of n-fold correlated poles, and “r” is the largest n-let dimension that can be 

observed for the particular crystal in the particular diffraction geometry. 

From equations (5-a) and (4-b) we obtain:  

D

C
sp

mN

N
p

r

n
nP

hklG

hklP
hklP

4. 1
*

*,
*,


 



    (5-b) 

Eq. (5-b) indicates that the probability of finding an activated pole belonging to a given <hkl> family 

should be approximately equal to the probability predicted by the modified Lorenz equation. Any 

deviations will be due to the correlation among n-lets. 

Equation (5-b) cannot be factored to yield the probabilities of the activated pole subgroups (singlets, 

doublets, triplets, etc.) existing in the reflection band. We now investigate if these subgroup probabilities 

can be obtained from geometric considerations. 

2.3.2. Expected Fraction of Doublets in the Reflection Band 

Consider Figure 3, where the intersection of the reference sphere surface with vector 3C


, belonging to the 

<h00> family4, forms an activated pole,
*

3CP , on the reflection circle. While keeping the angular position 

of 
*

3CP invariant, the pole of the 2C


vector, 
2CP , can be brought within the reflection band through a 

4 In this formulation the <h00> family is used for convenience; this family has the lowest multiplicity and all family 
members are orthogonal. 
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rotation   around 3C


. The locus of angular positions within the reflection band where 
2CP  will be

activated simultaneously with 
*

3CP  is the general quadrilateral within the reflection band (shaded area in 

Figure 3) and its complement on the other side of the half-sphere. These quadrilaterals are formed by the 

intersection of the two great circles which form the loci of the h00 poles when 2C


 is rotated around 3C


at 

the two limiting polar angles, 4/s , of the reflection band. Thus, to a first approximation the 

probability of having two simultaneously activated correlated poles,
 2*Pp , will be given by the product

of: 1) the probability, 
1,2*Pp , of the first pole, 

3CP , being within the reflection band and, 2) the 

probability,
2,2*Pp , of the second pole,

 2CP , falling within either of the general quadrilaterals on the 

reflection band. The first probability term, 
1,2*Pp , is given by Eq. (5-b). The activation probability of the 

second pole,
2,2*Pp , is proportional to the ratio of the quadrilateral area to the area of the spherical lune:  

 



























 









4
sincos

2

1

2

4
sincos

4
2

22

sin2

2

2

2

42

42

4

4
2,2*






























 s

sr

s
sr

r

s

drrd

A

A
p B

B

s

s

s

s

lune

quad

P

B

B     (6) 

The probability of simultaneously activating two poles belonging to the <h00> family will be: 

2

2,2*1,2*2 4
sincos.* 










  sppp BPPP

   (7-a) 

Substituting for hkl  from Eq. (4-c), and using the small angle approximation we obtain: 

2

2 4
* 







D

sC
p

P


    (7-b) 

For a fixed crystallite shape and constant wavelength, the probability of activating two h00 poles from a 

given crystallite is predicted to be proportional to 
2)/( Ds . 

For the <h00> family of directions, Equation (7-b) describes the probability of a given pair of h00 poles 

being activated together; it does not preclude the probability of a third pole (if exists) also being 

simultaneously activated. Since the position of this third pole is dictated by crystal symmetry, this third 
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probability cannot be computed from simple area fractions. For general hkl type reflections, where the 

plane normal vectors are not mutually orthogonal, the integrals in Eq. (6) must be modified.  

2.3.3. Expected Fraction of Triplets in the Reflection Band 

Consider the case where three poles, 321

*** ,, CCC PPP  belonging to three members of the general <hkl> 

family, 3,1],,,[  ilkhC iiii


, are exactly on the reflection circle (Fig.4-a). In this case a crystal 

orientation vector, ],,[ pnmCA 


, which is anti-parallel with the incident wave vector, ik


 , must

simultaneously satisfy the angular relationship: 


















 

222222

1coscos

iii

iii
iAiA

lkhpnm

plnkmh
CCCC


  (8-a) 

for all iC


. Here iii lkh ,,  are the indices of the particular vector, iC


, of the <hkl> family.

The crystallography of the unit cell imposes three additional constraints on the angular relationships 

between the vectors iC


:













 

222

1coscos
lkh

llkkhh
CCCC jijiji

ijijjiji 


    (8-b) 

Here ,ij are the interplanar angles between the planes normal to ji CC


, ; these angles can be calculated, or 

obtained from published tables (Kelly & Knowles, 2012; Won-Sik Han, 2007). The angle, ij , between 

vectors, ji CC


, , defines the angular separation of the corresponding activated poles in polar coordinates. 

Eq. (8-a) defines the diffraction condition, where a particular orientation vector AC


 makes the 

complementary angle 
B




2
with all members of a select triplet of the poles belonging to the  <hkl> 

family. This defines the condition where the planes normal to the three crystal vectors, iC


, exactly satisfy 

the Bragg condition ( 02   ) and, thus, diffract waves at maximum intensity (Eq. (1-a)). In this case, 

the triplet of the iC


 vectors has rotational symmetry around the incident beam vector; rotating the crystal 
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around this axis will not change the angular positions of the poles, iCP*
, with respect to ik


, or the

diffracted intensities of the corresponding Laue spots.  

Deviation of AC


 and ik


 vectors from the exact antiparallel condition will move the iC


 vectors away 

from the Bragg condition, decreasing the intensity diffracted by the corresponding {hkl} planes. As long 

as the misorientation between ik


and AC


 is small enough to retain the poles of the iC


vectors within the

reflection band area, all three poles will remain activated; the intensities of the corresponding Laue spots 

will be proportional to the relative elevation angle that each pole is displaced from the reflection circle. 

Then, as long as the pole
ACP  belonging to the orientation vector AC


 is within a small area on the sphere 

surface centred around ik


, then the triplet of poles, 321

*** ,, CCC PPP , will remain activated. Thus, the 

probability of activating a triplet of poles will be proportional to the ratio of this area to that of the sphere 

surface.   

In Figure (4-b), the areas swept by the pole, 
ACP , while keeping the normal vectors, 32 ,CC


, within 

reflection bands of breadths, 0000 hh   and 0000 2 hh    are shown. Using numerical analysis the area 

ratios of these bands to the sphere surface were found to be approximately proportional to

  222

B )4/(/4)(scos DsC  .  

2.3.4. Dependency of Triplet Activation on the Illumination Wavelength 

For low multiplicity reflections, the set of equations given in Eq. (8-a) uniquely defines the diffraction 

condition for the activation of a triplet of correlated poles. In the limiting case, for h00 reflections from 

cubic crystals, where 6hklm , only a unique crystal vector AC


, anti-parallel with the incident wave

vector, ik


 at one single wavelength,  , can satisfy the diffraction condition for triplets. This condition

can be observed by combining Eq. (8-a) with Bragg’s law, Bhkld  sin2 , and substituting 
B




2
, 

to yield: 






















hkl

iAiA
d

CCCC
2

arcsinsin


 (9-a) 

which, upon re-arranging, becomes: 
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iA

iA

hkl CC

CC

d

























2
arcsinsin


 (9-b) 

For an h00 reflection from a cubic crystallite, the AC


axis must have three-fold symmetry; this condition 

is satisfied only by one of the cube diagonals, <111>. Consequently, Eq. (9-b) indicates that triplets of 

activated h00 poles at the exact Bragg condition can be observed only for a particular enhanced-selection 

wavelength, ES :

3

2 00h
ES

d
  (9-c) 

In the case of a gold crystallite with lattice parameter 4.08Å, 200 type triplets with all poles at the exact 

Bragg condition would be observed for ES 2.36 Å. The finite breadth of the reflection band, 2/hkls , 

within which pole activation is possible permits the observation of these triplets over a range  ES . 

This range can be determined by substituting 
42




s
  into Bragg’s law. 

2.3.5. Expected Fraction of Singlets in the Reflection Band 

For a single crystallite at the origin of the reference sphere, the number of poles in the half-sphere 

containing the reflection band is half of the multiplicity of the hkl reflection, 2/hklm . To treat the case 

where only one of these correlated poles can be within the reflection band, the probability formalism must 

be modified to include a term describing the conjunctive probability of having none of the remaining 

)1
2

( hklm
 poles to be within the reflection band. Since the poles that are associated with a single 

diffracting grain are perfectly correlated through crystal symmetry, the probability 1*Pp  cannot be

evaluated from )1( *2 jP
g
j p   where 

2
hklm

g  and hklPp *,  is given by Eq. (5-b). However, using Eq. (5-

b), it is possible to write: 





r

n
nPhklPP ppp

2
**,1*     (10-a) 

Here the summation is over all possible “n-lets” (n≤g ) which can occur in the reflection band. For the 

case of the h00 reflection Eq. (10-a) becomes: 
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)( 3*2**,1* PPhklPP pppp          (10-b) 

)(
4

3*2*1* PPP pp
D

sC
p 


                (10-c) 

This equation predicts the following: 

1) Since both 2*Pp  and 3*Pp  are proportional to 
2)/( Ds , 1*Pp values should vary nonlinearly

with Ds / .

2) For the hypothetical case where the diameter “D” is small enough to broaden the reflection band

over the entire half-sphere, the probability of having one and only one independent pole per grain

to be in the diffraction condition will be identically equal to zero since all poles will have

correlated siblings.

3) For large D, Eq. (10-c) tends to the classical probability (of any active pole)  given by Eq. (4-b)

since as both 2*Pp  and 3*Pp  rapidly approach zero. 

4) For intermediate D values the probability, 1*Pp , will be smaller than the probability values 

computed using the modified Lorenz approximation, i.e., Eq.(4-b). 

2.3.6. Fractions of higher multiplicity reflections 

Equations (8)-(10) can be extended to reflections of higher multiplicity through geometric analysis. In the 

general case, many activated triplets within the general <hkl> family, corresponding to arrays of 

orientation vectors 
AC


and enhanced selection wavelengths,
ES , will exist. Similar considerations apply to

having simultaneously activated quadruplets, quintuplets or higher order n-lets of poles for higher 

multiplicity reflections. In such cases, the governing equations are also quite unwieldy; therefore, they 

will be investigated through modelling. 

In conclusion, for those cases where the conditions for multiple pole activation are satisfied, the 

diffracting grain population can no longer be considered equivalent to the diffracted Laue spot population.  

Moreover, although the orientation distribution of the crystallites making up the ideal powder sample 

must be random by definition, the distribution of the diffracted spots within a given Debye-Scherrer ring 

cannot be completely random: the multiple spots that are diffracted from one crystallite will have definite 

orientation relationships imposed by the crystallographic structure of the crystallite. To understand how 
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these issues influence the diffracted intensity, the true intensity profiles from ideal powder samples must 

be computed using the angular distribution of all activated poles. This task is not analytically tractable. 

We used rigorous numerical modelling for this purpose. 

3. Modelling Procedure and Results

In this section, the process of modelling the diffraction signal expected from an ideal, untextured, powder 

ensemble will be described in detail and the results obtained from these computations will be compared to 

the predictions from the equations derived in Section 2 where appropriate. Our modelling algorithm 

consists of the following steps: 

1-A perfectly spherical crystalline gold particle of a certain diameter is defined. 

2-We use a true randomizing algorithm  (Kuffner, 2004) to assign a random orientation to this crystallite 

in the laboratory coordinate system in which diffraction will be modelled. 

3-We place this particle at the centre of a hypothetical diffractometer equipped with a 2-D detector, and a 

monochromatic plane wave incident beam. 

4-For a given family of planes, {hkl}, we check the orientation of each set of planes (hkl) to see if the 

normal to this set of planes, the vector [hkl], falls within the corresponding reflection band.   

5-In the laboratory coordinate system, the angular coordinates of those plane normal, [hkl], which 

intersect the reflection band, and thus form activated poles, are noted. A typical distribution of activated 

poles within the reflection band area is depicted in Figure 5-a.  

6-Each coordinate set is used to determine the position of the Laue spot within the Debye-Scherrer ring 

corresponding to a particular set of planes (hkl), and the Patterson function for the particular shape is used 

to compute the diffracted intensity for each Laue spot belonging to the particular crystallite. 

7-This procedure is repeated for all crystallites in the powder ensemble. This yields a “spotty” Debye-

Scherrer ring (Figure 5-b) for the hkl reflection in which each particular Laue spot can be referred to the 

crystallite from which it was diffracted from. In addition, the “siblings” of any Laue spot (those 

originating from the same grain) can be identified. This information is tabulated. 

8-The Debye-Scherrer rings are azimuthally compressed (caked) (Sulyanov et al., 1994) to yield the 

rocking curves or the radial (  /2 ) scans (Figure 5-c) of the corresponding reflections. These plots are 

analysed to obtain parameters such as the integrated and maximum peak intensities.  

9- Peak intensity values are correlated with the number of diffracting grains and activated poles, and used 

to test the applicability of the previously published statistical equations.   
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Simulations were carried over a range of wavelengths, , and particle sizes, D.  Several reflections, 

corresponding to a broad range of multiplicities were modelled. The simulation parameters are 

summarized in Table 1. 

Particle Shape Spherical; C=1.17 

Particle Diameter (nm) 2.4, 2.86, 4.0, 5.0, 8.0, 10.0, 25.0, 30.0, 80.0, 200, 

250, 300, 700 

Wavelengths,, (Å) 0.7, 1.0, 1.5, 2.0, 2.29, 3.0 

Reflections used (multiplicities) 111 (8), 200 (6), 220(12), 311(24) 

range multiplier  (s) 2, 3, 4 

# of irradiated grains,  ��  104, 5x104,105 

Table 1 Simulation parameters used in the modelling procedure. 

3.1. Grain and Pole Sampling Statistics 

In Figure 6 the total number of diffracting grains, 
TG

N * the total number of activated poles,
TP

N * , and

the populations of all correlated n-lets, ��∗� for the 200 reflection from 2.86 nm diameter spherical gold 

nanoparticle ensembles are shown as a function of wavelength for sampling interval, s, equal to 4. In this 

range, 
1*P

N  and 
2*P

N  obtained from the simulation program are finite, continuous, non-monotonic and 

nonlinear over the tested wavelength range. The number of activated poles belonging to triplets, on the 

other hand, changes discontinuously: 
3*P

N is finite only at =2.29Å, which is within the selection range 

defined by Eq. (9-c); 
3*P

N  is zero for all other wavelengths used in the simulation. The number of 

activated poles belonging to doublets, 
2*P

N , drop steeply when triplets are activated and shoot up when 

triplets are supressed again, surpassing the number of singlets, 
1*P

N  , for =3Å. At this wavelength, the 

reflection band is quite wide and doubly correlated poles are more probable, as discussed previously. 

In contrast to the behaviour observed for 
1*P

N , 
2*P

N and
3*P

N , the variation of the total number of 

activated poles, 
TP

N * , with respect to λ is continuous and linear. In addition,
TP

N * obtained from the
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simulation program is equal, within statistical error, to the value computed from Eq. (4-c), indicating that 

the area fraction of the reflection band is an acceptable approximation for the total pole probability, ��∗. 

Similar behaviour was observed for all modelled reflections: for a fixed selection interval, s, the variation 

of the total number of activated poles, 
TP

N * , was continuous and linear over the tested wavelength range,

and agreed within statistical error with the 
TP

N * values computed from Eq. (4-c). On the other hand, the

variation of the number of diffracting grains, 
TG

N * with  was nonlinear for all cases.

Eq. (4-c) also intimates that the variation of 
TP

N * should be linear with the parameter, s/�, for fixed

wavelength, , for all reflections. Our simulation results for =2.29Å showed that this prediction was 

largely obeyed (see Figures 7-a and 7-c for the 200 and 311 reflections of the spherical gold nanoparticle 

ensembles). For the 200 reflection, the variations of 
1*P

N , 
2*P

N and 
3*P

N  show a quasi-parabolic

dependence on �/�, as anticipated through Equations (7-b) to (10-c). For the 311 reflection, all nPN 311*, , 

with the exception of 311,*TPN , exhibit non-monotonic and nonlinear behaviour over the �/� range used 

in the simulations. The 111 and 220 reflections showed similar behaviour. 

The variation of the total number of diffracting grains, 
hklTG

N
,* , and the populations belonging to their 

respective subsets with n-let activated poles are depicted in Figures 7-b and 7-d for these two reflections. 

All of these populations exhibit nonlinear behaviour over the �/� range used in the simulations. 

Figures 7-a and 7-c show that the variations of hklTPN ,*  are linear, and approximate the predictions of Eq. 

(4-c), over the �/� range used in our simulations. In contrast, the total number of diffracting grains 

(Figures 7-b and 7-d) approach linear behaviour only for 
�

�
< 0.02. For s=4, this corresponds to a particle

diameter of 200 nm. Below this size ��∗�,���	cannot be obtained from the Lorenz formulation. 

A closer examination of Figure 7-d reveals that 311,*TPN obtained from the simulation diverge slightly 

from the predictions of Eq. (4-c), at the larger 	�/� values. This is shown more clearly in Figure 8-a, 

where )4.(,,,
)()( *** cEqhklTPsimhklTPhklTP

NNN   is plotted as a function of s/� . 

Figure 8-a shows that 
hklTP

N
,*  systematically increases with the multiplicity of the reflection and also 

with increasing  �/� ; the dashed line in Figure 8-a depicts a 3rd order polynomial fitted to the 
311,*TP

N

values. This deviation is due to the assumption, implicit in the derivation of Eq. (4-c), that the poles 
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existing within the reflection band are completely uncorrelated. As expected, this assumption becomes 

weaker with increasing multiplicity and	�/�, as shown in Figures 7-a and 7-c. 

Figure 8-b shows 
hklTP

N
,*  as % fraction of the total number of activated poles. It is seen that, on average 

a 1% systematic difference is expected for the higher multiplicity reflections at large �/� values. At the 

very low values, the large error bars are due to the large propagated statistical error: the number of grains 

selected for diffraction is much smaller at these large sizes for all reflections. 

The close correspondence of the total number of poles obtained from simulation,  
simhklTP

N
,* , with the 

values computed from Eq. (4-c) also intimates that the ratios of   
simhklTP

N
,*  from various reflections, 

''',*

,*
*

lkhTP

hklTP
P N

N
R   , should yield values approximately equal to the ratios of the multiplicities from 

these reflections. These ratios are plotted in Figure 9-a for various reflection pairs; the corresponding 

multiplicity ratios are depicted by dashed lines. The results are quite close. In contrast, the ratios of the 

total number of grains from various reflections (Fig. 9-b) approach the multiplicity ratios only for small 

�/�, where the probability of diffracting multiple Laue spots per grain is much lower. 

3.1.1. Influence of the Range Multiplier “s” on Sampling Statistics 

The probabilities of activated poles of all flavours, singlets through n-lets, as well as the total activated 

pole probability for any reflection, computed from simple area ratios (Eq. (4), Eq. (7)), depend, either 

linearly or through a power law, on the normalized angular width, ��/2, which is expressed in radians. 

After substituting for	� from the Scherrer Equation (Eq. (4-c)), this width becomes the dimensionless 

quantity DsC 4/ . This expression implies that all of these probabilities should increase continuously as 

the parameters �, �	and D/1 increase. In the case of the wavelength,	�, this intimation is wrong: as 

discussed in section 2.3.4 and shown in Figure 6, simple area ratios do not capture the constraints 

imposed on diffracting pole selection by crystal symmetry for n-lets with dimensions equal or higher than 

three; such n-lets are only activated at special wavelengths, ���, given by Eq.(9-c). Consequently, the 

probabilities (and populations) of all flavours of activated poles should change continuously with the size-

normalized selection interval, �/� only for a fixed wavelength. This prediction was verified by our 

simulation results5. We note that, while the inverse sample diameter, D/1 , can exist over a (mostly) 

5 If Figures 7-a and 7-c are replotted with simulation results from multiple wavelengths, with the abscissa based on 
parameter Ds / , some of the traces are no longer smooth. These plots are not included for brevity.  
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continuous range, the range multiplier term “s” is meaningful only for those values of �� within which 

Laue spots have finite intensities. It is possible to determine this range independently from particle 

diameter, D, by expressing the angular variable of the abscissa of Figure 1 in integral multiples of β. The 

results are shown for three particle sizes in Figure 10-a. Almost perfect agreement is observed between 

the respective normalized intensities. Figure 10-a also indicates that most of the integrated peak intensity,

 2)2( 



 dII , is captured for  42   or 4s . In Figure 10-b, the fractional integrated 

intensities, 



2)2(/2)2(% 







 dId

s

s
IfI , are plotted over the range of 80  s . The fractional 

(percent) intensity, fI% , tends asymptotically to 100% following the empirical equation: 

.)]01.0(105.0[*)6(174)8.0(100%
s

fI   Here the values in the parentheses are the errors associated with 

the fitted values. It can be seen from this equation and from Figure 10-b that regions with s greater than 4 

contribute negligibly to the integrated peak intensity. Thus, reflection bands of width 2� are sufficiently 

wide to capture all activated poles for any wavelength and crystallite diameter. Consequently, setting s 

equal to 4 and varying only particle size,

 

D , should be sufficient to compare sampling and intensity 

statistics for each wavelength. This approach will be utilized in the following sections where the intensity 

profiles corresponding to the activated pole distributions will be presented. 

3.2. Distribution of the Activated Pole Populations and the Resulting Intensity Profiles in the 

Vicinity of the Bragg Angle  

Figure 11-a shows the activated pole distributions contributing to the 200 reflection of an ideal gold 

nanoparticle ensemble irradiated with 1, 1.54 and 2.29 Å wavelength X-rays, respectively. In these 

computations 104 randomly oriented, spherical particles, 28.56 Å in diameter, with lattice parameter, 

�� =	4.08Å, were modelled. Per Section 3.1.1, identification of activated poles were limited to an angular 

band of width 4β200, centred at the Bragg angle,2��, of the 200 reflection. To generate statistically 

representative data, 10 independent runs were executed. Due to the random orientations of the constituent 

crystallites, statistically equal numbers of activated poles at each angular step,	Δ2θ, were expected. 

However, this was not the case: for all three wavelengths 200,*TPN changed linearly with  Δ2θ , with fewer 

poles being activated on the high angle side of the Bragg peak, indicating the presence of a (pole) 

sampling bias. The least-squares lines fitted to the 200,*TPN  vs. Δ2θ data were steeper with increasing 
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wavelength; the slopes of the corresponding regression lines were -0.96 (±0.29), -1.36 (±0.36) and -5.47 

(±0.50). 

Figure 11-b shows the polycrystalline diffraction profiles obtained from the product of these activated 

pole distributions with the rocking curve scans of properly oriented single crystallites (Eq. (3)). Due to the 

negative slopes of the activated pole profiles, apparent peak shifts to lower angles are expected. This is 

shown in Table 2 where the Bragg angle, 2��, FWHM () and the peak shift due to the sampling bias (in 

micro strain), corresponding to the profiles in Figure 11-b are tabulated. 

Wavelength 

(Å) 

B

(expected, deg) 

β 

(expected 

deg-2θ,) 

B

 ( fit, deg) 

βfit 

(fit, deg-2θ) 

Peak shift 

6

0

0 10*
a

aasim 

(με) 

1 14.188 2.42 14.19 (0.01) 2.50 (0.06) 207 

1.54 22.176 3.90 22.17 (0.01) 3.90 (0.06) 214 

2.29 34.144 6.50 34.10 (0.02) 6.48 (0.09) 1082 

Table 2 Expected and fitted peak parameters and the peak shift error (in micro strain) for the profiles 

shown in Figure 11-b. The first two columns were computed from Bragg’s law and Scherrer equation, 

respectively, for the listed wavelengths. The corresponding simulation values were obtained from fitting 

the intensity profiles using Gaussian functions. Fit errors are shown in parentheses.   

This sampling bias was first predicted by Lorenz (This was mentioned in an article by P. Debye and P. 

Scherrer, based on a simple geometric analysis. See page 197 of the compilation of early papers on X-ray 

diffraction analysis (Bijvoet et al., 1969).); it is caused by the variation of the ���	� term (Eq. (4-a)) over 

the width of the reflection band. Thus, for a given reflection, hkl, the sampling bias would be more 
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pronounced at larger wavelengths where the Bragg angle of the reflection shifts to higher values and the 

value of β increases. In a similar fashion, for a given wavelength, �, the Lorenz sampling bias is expected 

to increase with decreasing interplanar spacing. This is shown in Figure 12, where the variation of 

activated poles for the 111, 200, 220 and 311 reflections with Δθ are plotted for the powder sample 

discussed in Figure 11. The slopes of least-squares lines fitted to these data are -5.08 (±0.46), -5.47 

(±0.50), -23.21 (±0.55) and -149.11 (±0.88), respectively. The highest peak shift will, thus, occur for the 

311 reflection. 

To avoid the spurious shifts in Bragg peak positions due to the systematic variation of 
hklTP

N
,*  within the 

reflection band, a geometry-based correction must be used (Reynolds & Reynolds, 1986; Yinghua, 1987; 

Fitzsimmons et al., 1991; Bijvoet et al., 1969; Buerger, 1940). An examination of Eq. (4-a) shows that the 

dependency of 
hklTP

N
,* on Δθ	can be remedied by multiplying )(

,* 
hklTP

N  either by CT1= 
cos

1 , or 

with CT2=



cos

cos B ; this second correction term is obtained by removing the (implicit) assumption used 

in the derivation of Eq. (4-c): that cos  is approximately equal to 
Bcos  within the reflection band. In 

Figure 13 the application of these corrections to 
311,*TP

N  vs. Δθ data are shown. Both corrections 

significantly reduced the sampling bias: the slopes of regression lines fitted to the “corrected” pole 

distributions are -4.43 (±2.54) or -1.62 (±0.93) for corrected data with CT1 or CT2, respectively; these 

values correspond, approximately, to 4% and 1% of the original slope. Diffraction peak profiles computed 

for the corrected pole distributions yielded peak shifts corresponding to an apparent strain of 

approximately 80 which is an acceptable uncertainty.

Figure 13 also shows that, while the profile corrected by the CT2 term maintains fidelity with the total 

number of activated poles, 
311,*TP

N , within the reflection band (22251±149 for the corrected profile vs. 

22308±162 for the uncorrected one), the CT1 correction increases this parameter by approximately three 

times (61002±444). Thus correction by the CT2 term appears to be preferable for single peak analysis. For 

full-profile fitting (such as Rietveld analysis) this term cannot be used directly: multiple peaks with their 

individual pole populations must be considered simultaneously and separate correction term are needed 

for each reflection. We are using further modelling to investigate how fidelity to the diffracting pole 

populations can be maintained for this case. These results will be reported in a later article. 

We note that, in the literature, the correction for sampling bias is usually combined with other diffraction-

geometry dependent terms to derive specific intensity correction formulations. These are  termed, in 

aggregate, as the Lorentz factor, L(θ). For example, for synchrotron-radiation diffraction analysis of 
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randomly oriented nanometer-sized crystalline Pd, the Lorentz factor was given as 



2sinsin

1
)( L

(Fitzsimmons et al., 1991) . Such intensity corrections cannot be used in the sampling domain and are not 

directly applicable to pole distributions, such as Figures (11-a) or (12). 

3.3. Comparison of Sampling vs. Intensity Statistics 

At this point the simulation process can be used to test the statistical analysis, published by Alexander, 

Klug and Kummer in 1948 (Alexander et al., 1948), where measured intensity values were related to the 

number of diffracting crystallites through Laplace’s generalized probability formula. This analysis is 

based on the SPP assumption, and postulates that the intensity of the diffracted ray will be directly 

proportional to the number of diffracting particles. This postulate can be tested by comparing the 

diffracting grain populations obtained from the simulations to the (computed) diffracted intensities. Table 

3 summarizes the results of such a test where intensity and sampling data for the 200 and 311 reflections 

were computed for 104 , 5x104 and 105 particle polycrystalline gold samples. For each reflection, the 10x 

increase in the total irradiated particle population results in an equal increase in the peak and integrated 

intensities, as well as the total number of activated poles and diffracting particles. The ratios of the 

maximum and integrated intensities 
����

����
� , and the total number of activated poles,

200,

311,

*

*

TP

TP

N

N
scale, 

within statistical error, with the ratio of the corresponding multiplicities, 4)/( 200311 mm . On the other 

hand, the ratio of the number of diffracting particles, 
200,

311,

*

*

TG

TG

N

N
, is approximately 2.1. This ratio 

correlates neither with the increase in the irradiated grains, nor with the multiplicity ratio of the 

corresponding reflections and indicates the breakdown of the SPP assumption in the intensity domain. 

(These results complement those presented in Figures 9-a and 9-b which show that the ratios of the 

activated pole populations are equal to the ratios of the multiplicities of any two reflections over the entire 

normalized selection range, s/D. The diffracting particle populations are equal to this ratio only when the 

SPP assumption is valid.)  

NG Imax Iint
N

G*T 
N

P*T Imax Iint
N

G*T 
N

P*T 
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(λ=2.29A) (200) (200) 
(200) (200)

(311) (311)
(311) (311)

104 57.93 

(±1.2) 

58.27 

(±0.8) 

4793  

(±60) 

5589  

(±65) 

234   

(±2) 

231 

(±2.6) 

9864  

(±7) 

22273   

(±113) 

5x104 287.22 

(±2.9) 

289.53 

(±2.4) 

23761 

(±120) 

28038 

(±129) 

1158 

(±6) 

1155 

(±5) 

49331 

(±25) 

111370 

(±170) 

105 577 (±7) 579      

(±5) 

47595 

(±113) 

56175 

(±222) 

2325 

(±11) 

2316 

(±6) 

98677 

(±25) 

222770 

(±297) 

Table 3 Sampling and intensity parameters of 200 and 311 reflections from 2.86 nm diameter gold 

nanoparticle ensembles with 104, 5x104 and 105 particles, respectively, illuminated with 2.29 Å X-rays. 

The errors in parentheses show the standard deviation from the mean of 10 independent simulation runs. 

Consequently, for any s/D value where the SPP assumption is unjustified, changes in the diffracted 

intensities caused by changes in the (angular) width of the reflection band cannot be directly linked to the 

changes in the number of diffracting particles. An example is shown in Table 4, where the maximum and 

integrated peak intensities of the 200 intensity profiles corresponding to the 104 particle ensemble are 

tabulated for illumination with 1, 1.54 and 2.29 Å wavelengths, respectively, along with the numbers of 

the corresponding diffracting particles and activated poles8. The relative increases in the intensity 

parameters with increasing wavelength track the corresponding changes in the activated pole counts, 

while the relative increases in the numbers of diffracting particle counts are lagging. 

λ 

(Angstrom) 

Intensity 

Max 

Integrated 

Intensity 

N
G*T 

N
P*T 

1 25.21 (±1.56) 25.87 (±0.75) 2321 (±41) 2457 (±42) 

1.54 38.60 (±1.48) 39.50 (±1.01) 3425 (±34) 3787 (± 38) 

2.29 57.93 (±1.2) 58.27 (±0.82) 4739 (±60) 5589 (±65) 

8 These data correspond to the profiles shown in Figures 11-a and 11-b. 
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Table 4 Peak and integrated intensities of the 200 reflections shown in Figure 11-b, and the grain and 

activated pole populations contributing to these reflections. The errors in parentheses are based on the 

standard deviation from the mean values for 10 independent simulation runs each with 104 particles. The 

individual particle diameter is 2.86 nm. 

In conclusion, our analysis shows that when the SPP assumption fails, the variation of the diffracting 

grain populations do not maintain fidelity with the variation of the intensity parameters. Thus, diffracted 

intensity ratios cannot be used to compare the corresponding diffraction volumes even when all other 

parameters, such as the structure factor, absorption, polarization, etc., are taken into account. As a 

corollary, in such cases the uncertainty due to statistical sampling of diffracting particles from an ideal 

powder sample might not be linked directly to the uncertainty in the resulting intensity data or vice-versa. 

This problem is examined next. 

3.4. Comparison of Statistical Sampling Uncertainty and Intensity Uncertainty 

In the AKK formulation, the relative uncertainty, ���∗,���, in the number of diffracting grains, ��∗, within 

a powder sample with ��  illuminated grains is assumed to be equal to the uncertainty in intensity data, 

���,���, given by the Laplacian probability equation: 

hklGG

NhklI
pN

p
uu hklG

hklG

*,

,
*,

*,

1~~ 
 (11) 

The relative uncertainty, xu~ , is defined as ratio of  the standard deviation of the relevant quantity ‘x’ to

its mean value, �̅, and  ��∗,��� is the probability that a given grain is in the diffraction condition for the 

hkl reflection. In terms of the FWHM through the Scherrer equation, this term becomes:  

D

sCm
p hkl

hklG
4

*,


           (12)        

Relative uncertainties for the diffracting grain and activated pole populations,  ���∗,���, ���∗,���, as well as 

for the maximum and integrated peak intensities,  �������,���, �������,��� were computed from the data sets 

shown in Table 3; these mean values and standard deviations were obtained from powder samples with 

104 , 5x104 and 105 particles	(��), respectively. For each ensemble size, 10 independent simulations were 
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performed. The results are presented in Table 5, where the predictions of the AKK formulation (Eq. (11)) 

are also tabulated. 

NG*
200max,

~
Iu 200int,

~
Iu

200*,

~
GNu

200*,

~
PNu

*

~~
, GNhklI uu 

Eq.(11) 

104 0.0207 0.0137 0.0125 0.0116 0.0088 

5x104 0.0102 0.0083 0.0051 0.0046 0.0039 

105 0.0121 0.0085 0.0024 0.0040 0.0028 

Table 5 Fractional relative uncertainty values for the intensity parameters, diffracting particle and 

activated pole populations computed from the dataset shown in Table 3 for the 200 reflection. The 

simulations used a particle size of 2.86 nm, wavelength of 2.29 Å and s=4. 10 independent runs were used 

to obtain the mean and standard deviation of the relevant quantities for each. The intensities were 

computed after pole distributions were corrected by the CT2.term. The last column lists the uncertainties 

predicted by Eq. (11). 

Table 5 shows that, as the total irradiated particle population increases, the uncertainties in both intensity 

and sampling parameters decrease in a manner consistent with the Laplacian probability theory utilized 

the AKK formulation, which predicts the decay rates for the uncertainties to be proportional to the square 

root of the relative increase in the sample size. However, in contrast to the AKK formulation, the 

uncertainty values associated with the intensity and sampling parameters are not equal. The relative 

uncertainty values in the peak and integrated intensity parameters are much higher than the uncertainty 

values associated with diffracting grains or activated poles.   Consequently, for those particle sizes where 

the SPP assumption fails, the uncertainties in the diffracting particle populations cannot be used to 

compute the expected relative uncertainties associated with the intensity parameters.  

4. Summary and Conclusions

In this article, a diffraction experiment on an ideal nanocrystalline powder sample was reconstructed 

using rigorous modelling. The simulation started by defining an aggregate of nanocrystallites where the 

orientation of each was defined in the diffraction system coordinates. Based on this information, those 
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grains within the powder aggregate which satisfied the Bragg condition for one or more activated poles 

(those poles which fall within the reflection circle and correspond to Laue spots on the Debye-Scherrer 

ring) were identified. The (kinematic) diffracted intensity for each grain was computed by summing the 

diffracted intensity corresponding to each of its activated poles. The diffracted intensity from the 

aggregate for a given reflection was computed by summing the intensities from all particular diffracting 

grains. This procedure was repeated for several reflections spanning a range of multiplicities. In contrast 

to an actual diffraction experiment, this procedure provided full sampling information: the number and 

exact orientation of all diffracting grains and their corresponding activated poles were available in 

addition to the diffracted intensities. Thus, the sampling parameters contributing to the “diffraction 

inverse problem” were accessible.  

Our analysis showed that the classical Lorenz formulation for computing the expected fraction of grains 

in the Bragg condition in a randomly oriented aggregate of crystallites was valid only for the large 

particle regime where SPP assumption holds. The failure of this assumption also invalidated the intensity 

statistics developed by Alexander, Klug and Kummer, which linked the uncertainty in integrated and 

maximum intensity values to the statistical variations in the number of properly oriented particles. The 

relative standard deviations in intensity values obtained from the simulation were much higher (~4x) than 

the relative standard deviation in the number of diffracting grains. This finding precludes using the AKK 

formulations for estimating the number of particles needed in an irradiated volume interacting with the 

incoming X-ray beam for obtaining a specified relative standard deviation in peak intensity. 

Analysis of the angular distribution of the activated poles within the reflection band showed that their 

fraction decreased with increasing . This sampling bias was first predicted by Lorenz (Bijvoet et al., 

1969); it is caused by the variation of the ���	� term (Eq. (4-a)) over the width of the reflection band, and 

causes the Bragg peak position to shift to lower diffraction angles, corresponding to spurious “strains”. 

This sampling bias was eliminated by multiplying the activated pole counts within the reflection band by 

the factor, CT2=



cos

cos B  . This term removed the sampling bias while maintaining fidelity to the 

number of activated poles. Employing the traditionally recommended term, CT1= 
cos

1 , also mitigated 

most of the bias. However, this correction did not preserve the number of poles within the reflection band; 

for the 200 reflection of our ideal gold nanopowder sample the overall number of poles were increased by 

almost 4 fold. 

A simple numerical computation showed that, for an ideal random powder with identical, monosized, 

spherical crystallites, almost all of the activated poles which contributed finite intensity to the diffraction 
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peak of a given reflection were within a corresponding reflection band of width 2. The total number of 

poles in this band could be predicted within 1% of their true value by the “Modified Lorenz Equation” 

(Eq. (4-c)), which is obtained from the band’s area fraction (Figure 2). This 1% error is due to the 

crystallographic correlation between the poles from individual grains and cannot be eliminated. 

The activated poles within the reflection band are divided into two subgroups. The “independent poles” or 

singlets have no other member of the <hkl> family within the band. “n-lets”, on the other hand have “n” 

perfectly correlated members, all referred to a particular crystallite. The largest “n-let” dimension, “n” is 

half of the multiplicity of the particular reflection, 2/hklm . The grain fractions which contribute “n” 

poles to the reflection band cannot be predicted from simple area fractions due to the crystallographic 

correlations of the probabilities. It was interesting to note that, for n>2, crystallographic orientation 

relationships can limit the formation of n-lets to specific wavelengths, which we termed “enhanced-

selection wavelength” ES . For example, for the h00 reflection from a cubic particle, triplets could only

be observed for
3

2 00h
ES

d
 . The presence of higher dimension “n-lets” can complicate the analysis of 

diffraction data; this is analogous to some grains voting more than once in the diffraction process. 

In summary, rigorous grain-by-grain forward modelling of the diffraction process provides useful 

checkpoints for the correct analysis of diffraction data from nanoparticle powder ensembles. Such 

modelling enables direct comparison of sampling statistics to intensity data and can be useful in 

elucidating the meaning of “diffraction average” terms as they relate to polydisperse samples. We note, 

however, that our analysis yields a lower uncertainty limit since we did not consider complications due to 

peak overlaps over the entire diffraction spectra. In addition, the use of Fourier transforms in rocking 

curve calculations, which assume exact particle shapes, can be overly simplistic when the particle size is 

very small or in cases where the particles have irregular shapes. In such cases, least squares refinement of 

nanoparticle diffraction data will yield larger uncertainties associated with the (extracted) average 

structural parameters. We are currently working on these issued and will report our findings in a future 

article. 
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Figure 1 Rocking curve scans for a single, crystalline, gold nanoparticle computed around the 200 

reflection. Each trace corresponds to a different particle size. The irradiation wavelength. λ, is 1 

Angstrom, the Bragg angle is 2θ200=28.36 degrees and the intensities are shown in log 10 scale.  
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Figure 2  Schematic of the diffraction geometry for a single crystalline particle (shown by a simple 

cube). Here the reflection band contains the (activated) hkl poles which produce spots in the Debye-

Scherrer band (D-S band). The projection of these spots onto the 2-dimensional detector forms the 

polycrystalline Debye ring. ( This figure is adapted from our earlier work (Ozturk et al., 2014).) 
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Figure 3 Diffraction geometry for forming an h00 doublet. For this condition both poles, 
3CP and  

2CP

must fall within the reflection band of width 2/s . For the case shown, where 
3CP  falls exactly on the 

reflection circle corresponding to the Bragg angle, a   rotation around the 3C


vector is needed to rotate 

2CP into the shaded area defined by the intersection of the spherical lune with the reflection band. (This 

figure was created with the assistance of Mr. A. Ellis of IBM Research Division) 
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Figure 4 -a)  Diffraction geometry when three h00 poles belonging to one crystallite with cubic 

symmetry (an h00 triplet) fall exactly on the reflection ring corresponding to the Bragg angle. This 

condition is automatically satisfied when a <111> body diagonal is antiparallel with the incident beam 

vector.  4-b) Schematic of the areas swept by the pole of the 
AC


 vector while keeping all three h00 poles 

within the reflection band; the red and black lines denote two reflection bands of 5 and 10 degrees angular 

width, respectively (not-to-scale). Here the viewer is assumed to be looking at the reference sphere along 

the incident beam vector, ik


. (These figures were created with the assistance of Mr. A. Ellis of IBM

Research Division and Ms. Connie Phung of the Department of Mechanical Engineering, Columbia 

University) 
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Figure 5 -a) The distribution of all singlet (red) and doublet (green) poles falling within the reflection 

band (s=4) for the gold 111 reflection, when 104 particles, each assumed to be a perfect 2.86 nm diameter 

sphere, are irradiated by X-rays of ,=1Å. The reflection band is a conical segment with varying leading 

and trailing radii. Here the Δθ-axis corresponds to the acceptance angle of the crystallite (
2

s , s=4) 

which is the width of the reflection band.  5-b) The corresponding 111 Laue spots on the detector, 

obtained from the intersection of the diffracted beams with the detector plane.  A transmission pin-hole 

pattern with no texture is observed9. 5-c) The “caked” intensity profile (in Log 10 scale) corresponding to 

the Laue spot distribution shown. The profiles represented by red and green dots correspond to the 

intensity contribution from uncorrelated and doubly-correlated 111 poles respectively. The profile shown 

with black dots is the total intensity from all activated 111 poles. 

9 The relative intensities of the Laue spots are not included for ease of viewing. 
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Figure 6 Dependency of the total population of diffracting poles, hklPN *,  and the populations of its

subsets (n-lets) on irradiation wavelength for the 200 reflection. The data are obtained from 104 identical, 

gold nanoparticles with 2.86 nm diameter. The total population of the diffracting grains, 200*,GN  is also 

shown, along with the estimated values from Eq. (4-c). The simulation was repeated ten times, with 

independent populations. The statistical error bars are comparable to the size of the symbols. 
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Figure 7 Variation of the diffracting pole populations, 
hklP

N
,*  and their subsets with the normalized

selection range, s/� , obtained for the simulation of 200 (Fig. 7-a) and 7-c) and 311 reflections (Fig. 7-b) 

and 7-d) when 104 gold spheres of various diameters were irradiated with 5.41 keV monochromatic X-

rays. (The parameters considered are shown in Table 1.) In Figures 7-b) and 7-d), the behaviours of the 

corresponding diffracting grain populations are shown. 
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Figure 8 –a) The difference between the total number of poles obtained from simulation and Eq. (4-c), 

)4.(,,,
)()( *** cEqhklTPsimhklTPhklTP

NNN  , plotted as a function of the normalized selection range, 

�/�. In Figure 8-b) hklPN *,  is expressed as the percent fraction of hklPN *, .

8-a 8-b
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 9-a  9-b 

Figure 9 -a) Ratios of  
simhklPN *, from various reflections: 

'''*,

*,
*

lkhP

hklP
P N

N
R  plotted as a function 

of the normalized selection range, �/�. The corresponding multiplicity ratios, ����/������� are shown as 

dashed lines. In Figure 9-b, the corresponding “total diffracting grain” ratios are shown. 
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Figure 10 -a) Rocking curve scans around 200 reflection for three spherical crystalline gold 

nanoparticles with 5, 10 and 50 nm diameters. The horizontal axis is scaled such that the deviation from 

the Bragg angle Δ2θ is given in multiples of the Scherrer breadth. (The data corresponding to 5, 10 and 50 

nm particles coincide almost perfectly) - b) Integrated intensity vs the extent of the Bragg peak. 

10-b10-a
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Figure 11 -a) The distribution of the total activated pole populations around the 200 reflection for 

three irradiation wavelengths. Average values and their standard deviations of data from ten independent 

simulations, each with 104  identical spherical Au particles are shown. 11-b) The corresponding intensity 

profiles of the 200 pole distributions on the left. This calculation includes only the mean pole counts and 

11-a 11-b
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excludes the atomic scattering factor, Fhkl, as well as the 
2
CN  term in Eq. (3) to isolate and visualize the 

effect of the angle-dependent selection bias. 

Figure 12 The distribution of the total activated pole populations around the first four Bragg 

reflections for a random gold powder sample of 104 particles irradiated with 2.29 A wavelength X-rays. 

The individual crystallite diameter is 2.86 nm. The data points correspond to mean counts of ten 

simulations whereas the error bars show the standard deviation from the mean. 
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Figure 13 Correction of the sampling bias of the as-simulated 311 pole population (also shown in 

Figure 12, black trace) after multiplication with CT1 (red trace) and CT2 (blue trace) terms. 
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