BROOKHFVEN

NATIONAL LABORATORY

BNL-107605-2015-CP

Using the Vaadin web framework for developing rich
accelerator controls user interfaces

W. Fu, K. Brown, T. D’Ottavio, S. Nemesure, E. Schuhmacher

Presented at the 15™ International Conference on Accelerator and Large Experimental
Physics Control Systems (ICALEPCS 2015)
The Melbourne Convention and Exhibition Centre (MCEC), South Warf, Victoria,
Australia
October 17-23, 2015

October 2015

Collider-Accelerator Department

Brookhaven National Laboratory

U.S. Department of Energy
Office of Science, Office of Nuclear Physics

Notice: This manuscript has been authored by employees of Brookhaven Science Associates, LLC under
Contract No. DE-SC0012704 with the U.S. Department of Energy. The publisher by accepting the
manuscript for publication acknowledges that the United States Government retains a non-exclusive, paid-up,
irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others

to do so, for United States Government purposes

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government nor any
agency thereof, nor any of their employees, nor any of their contractors,
subcontractors, or their employees, makes any warranty, express or implied, or
assumes any legal liability or responsibility for the accuracy, completeness, or any
third party’s use or the results of such use of any information, apparatus, product,
or process disclosed, or represents that its use would not infringe privately owned
rights. Reference herein to any specific commercial product, process, or service
by trade name, trademark, manufacturer, or otherwise, does not necessarily
constitute or imply its endorsement, recommendation, or favoring by the United
States Government or any agency thereof or its contractors or subcontractors.
The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof.

USING THE VAADIN WEB FRAMEWORK FOR DEVELOPING
RICH ACCELERATOR CONTROLS USER INTERFACES

Wenge Fu, Kevin Brown, Ted D'Ottavio, Seth Nemesure, Enrique Schuhmacher
Brookhaven National Laboratory, Upton, NY 11793, USA

Abstract

Applications used for Collider-Accelerator Controls at
Brookhaven National Laboratory typically run as console
level programs on a Linux operating system. One
essential requirement for accelerator controls applications
is the bidirectional synchronized 10 data communication.
Several web frameworks have made it possible to develop
web based Accelerator Controls applications that provide
all the features of console based user interface
applications. Web based applications give users flexibility
by providing an architecture independent domain for
running applications. Security is established by
restricting access to users within the local network.
Additionally, the web framework provides the
opportunity to develop mobile device applications that
makes it convenient for users to access information
anywhere and anytime. The Vaadin Java Web
Framework is a tool kit being used to develop client side
web interfaces. Vaadin provides Java developers a short
learning curve overhead. @ Most Java Technologies,
including JavaEE and third party packages work well
within the Vaadin framework. This paper explores the
feasibility of using the Vaadin web framework for
developing UI applications for Collider-Accelerator
controls at Brookhaven National Laboratory.

INTRODUCTION

"Vaadin Framework is a Java web application
development framework that is designed to make creation
and maintenance of high quality web-based user
interfaces easy"[1]. First released in 2009, the Vaadin
web application framework has been a fast growing API
in terms of popularity among web developers for its rich
functionality. The Vaadin framework has an advantage
over other web development technologies because it uses
the Java programming language which is more familiar to
the application development community.

The Vaadin application framework provides two
programming models: server side (Java) and client side.
The client side framework is backed by the Google Web
Toolkit (GWT). Program code is written in Java and
resides on the server side. Server side program code
helps make web applications more secure. Vaadin has a
rich set of UI components. The server side and client side
communicates via HTTP (or TCP when websockets are
used) protocol and transfers data in JSON. The Vaadin

* Work supported by Brookhaven Science Associates,
LLC under Contract No. DE-SC0012704 with the U.S.
Department of Energy..

* fu@bnl.gov

framework supports all major web browsers without
additional plugins[2] and works well with major IDEs.
This makes the web application coding and debugging
easier. In Vaadin, the look and feel of the web
application is controlled by CSS themes. This makes
web application GUI richer, and more configurable;
Vaadin is best used for designing single page web
applications which typically work like console level Ul
applications.

VAADIN FOR ACCELERATOR
CONTROL APPLICATIONS

Controls applications used in accelerator controls
systems have many common characteristics, such as:

e They mostly require fast live bidirectional
communications with many different systems
such as hardware controllers, database servers,
file servers, and other legend systems on
different platforms (Unix, Linux, Windows etc.);

e Requires fast Ul and interactive responsiveness.

e Rich UI for control data visualization for single
or multiple GUIs.

These features can be relatively easy to implement
with traditional languages such as C++ and Java. As
Vaadin uses the Java programming language, server side
java JDK (or JavaEE) APIs, third party APIs and jar
packages can be used directly. This makes Vaadin a
favorable choice when choosing a web application
framework.

In a Vaadin web application, the server side programs
(written by developers) and client side code (generated
by Vaadin from server side code) have a common shared
state, which helps enhance Ul responsiveness and overall
performance. =~ For web based accelerator controls
applications, the UI design and GUI layout are relatively
easy to implement. It is critical for the client-server
bidirectional communication layer to be -effectively
managed. Vaadin data push features make this kind of
bi-directional communication easy to setup.

Vaadin push can be configured with Java annotations:
@Push(PushMode, Transport) in program code or with a
configuration file. There are three push modes:

* AUTOMATIC (default)

* MANUAL

 DISABLED
and 3 transport methods
request/response cycles:

* LONG_POLLING

* STREAMING

* WEBSOCKET

These push modes and transport methods can be either

for communication in the

set in the program or set
web.xml).

Since STREAMING is very similar to
LONG_POLLING and has been deprecated since V7.5.0,
this paper just focuses on the long_polling (the “fake”
push) and websocket (the real push) methods.

Long polling is a process whereby clients send
requests to the server, and the server receive the requests,
but holds it for a set period of time. The response
happens when new data is available within the time
period. Meanwhile, the client keeps the connection open
and ready to receive data from the server. In this method,
although all requests are initiated from client side, it
effectively achieves a real time server push-like
bi-directional communication.

Websocket, on the other hand, is a full duplex TCP

in a configuration file (e.g.

connection that is independent of the HTTP
request/response cycle. Once the connection is
established, it is a true real time bi-directional
communication.

For accelerator controls applications, both methods
work well. But they do have some differences because of
the nature with which the communication is established.
The long_polling method is easy to setup and is supported
by most web browsers. However, there may be a short
delay in data transport, while requiring more server
resources such as memory. Websockets use dedicated
connections between server and clients, use fewer
resources and is capable of handling large amounts of
client/server connections. Figure 1 diagrams the
relationship between web application (client), Vaadin
application server and the back end accelerator control
system.

Secure control network

VAADIN CONTROL APPLICATION
EXAMPLES

Vaadin is primarily designed for single-page web

applications which work like desktop applications. The
common life cycle for developing Vaadin web
applications include, designing and writing web

application UI Java code, tuning the look and feel of the
Ul in CSS, deploying the application to a web container
(such as Glassfish server) and testing the application in a
web browser. Since the UI design is very similar to
strategies used with other languages, the focus of our tests
addressed synchronized IO communication with simple
GUIs and default CSS settings. We tested Vaadin with 3
different types of controls applications:
1. A single page application with no push (data
polling , HTTP).
2. A single page application with manual push in
long_polling. (HTTP)
3. A single application with automatic push in
websockets. (TCP)
The Glassfish server v4.1 (and v4.0) are used as the
application servers.

In the first case, we converted a C++ based controls
application into a Vaadin web application. The
application's name is SystemViewer. The basic function
of this simple program is to display the current statuses of
all monitored control systems based on live data in a back
end database, and to highlight any system which may
have problems or need System Administrators' attention.
This program also displays the detailed system data for
any monitored systems, and is capable of launching
diagnostic tools (other GUI programs) with related

Figure 1: Diagram of Vaadin for accelerator control application

context directly from the web application. All features of
the C++ version were implemented in the Vaadin version.
This makes the program available anywhere within the
security network. In this case, all data are periodically
polled from the client side and the program works just as
fast and as reliable as the C++ version. In fact, the Vaadin
version includes more features such as allowing hiding
and showing columns in the GUIL. Figure 2 shows the
GUI of the C++ vs the Vaadin web GUI.

In the second and third cases, we converted a GUI
instance of a C++ application called PET (Parameter
Editing Tool) into a Vaadin web application and use the

are the recommended push technology for web based
control applications.

In our Control System, we have successfully developed

a DashBoard[3] web application system using the Vaadin

technology. It provides a flexible system for quickly

setting up web based controls applications with a rich

GUI to monitor accelerator operations.

Testing has uncovered some common problems with
data push in Vaadin:

* After an application is running for some period

of time, a "UlDetachedException" error occurs

causing the web application to stop updating IO

=i Systemviewer o=
File Options Help
Display Mode: Al with Bad Status —| updateEvery: |16 seconds Update: “ Dn - OIF Refresh Data, Laxt Upduind @ 40N faeg 21 1028512 2013

— System Statuses Reported by System Monl
Ol oot Mome

Siteatus

SMacnllnd3 System Monitor Aot runelng

Last Chechked
response failure —> aonf Mon Aug 24 11:29:09
—» acnlind3, [Mon Aug 24 11:28:23

Last Alarm
Sun Aug 23 06:15:26
Wed Pug 12 10:31:00

Last {AutolStorted | Alarm? | HonitorMame | |5
| Enabled Fec
[Fri Jan 2 OG:d1:43 |

cfe-030-timne?

Toshlba Siewmans WPS Mt oKL E Mo Aug 24 11:27:51 [Tue Aug 18 13:02:17 Enabled

1006b—contral s—ups LIPS troubla HMon Aug 24 11:26:59 Tus Aug 18 13:05:18 | Inspactar
Alcowe SC UPS-3 S Lrouble HMon Aug 24 11 :36:43 [Tus Pug 18 13:04:53 | Inspoclar
Marning Swap Space - Logging Hoot |reoponmse Fallure -» coloMon fug 24 11:26:37 Mon fug 24 10:00:38 Frci 11 aay B

responoe Failure —3 acnf|Fri Aug 14 17:17:36

Fri fug 14 18:17:36 | [Enabled Mo Longer Ma

HPSa3 ¢ BMan_SEHhe

vl

running P ceingecto|Hed Aug 12 13:04:10

Med Pug 12 00:20:22 [Tue Aug 11 15:23:36 |[Enabled No Longer ba

| 51

SBystemViewer updates data every 10 seconds.

2| | = —kl_&

w Sm Wiswes -
Lile £dit isw Histary Seesmarks feols Gslp
§= Book at vaadin

J= WasHin AP Indes = -waa,., = | System weawer = an

unbnLaew B0 5 U

Dispay Mode: Al with Bad Status Upaate Every: 10 Secondgs

Control System Statuses

Lipdate:

- Seal U &+ A W B O a4 B

O Refresh Data | Last Updated@: OB28:75 11:31:321 S 12 HRp

= Cn T

LECEE]

2011 Enabled

c|o|o|o|E &2 £ @

Slo|o|b 3

data push approach with long_polling and websockets,
respectively. In these two cases, the programs connect to
control devices and display (or change) the live setting or
measurement values of these devices. Two of the devices
have data updating at various frequencies ranging from
1Hz to 1000Hz. In both cases, we found that the Vaadin
web application works well when the data frequency
<100Hz. When the frequency > 100Hz, the GUI becomes
sluggish. On a graphical display, a frequency >10 Hz is
usually not necessary. In practice, this kind of high
frequency push may not be reasonable for GUI
applications. Figure 3 shows this application in C++ vs
Vaadin version, Tests concluded that, the performance
difference between data push with long_polling and
websockets are negligible. Both long_polling and
websockets can be wused in controls application
development. It is recommended that websocket based
push is used for long running web applications(>24
hours). Long_polling is supported by most of existing
systems as it is an HTTP based "fake" push technology.
Websocket is a relatively new technology, and requires
new versions of application server software. Websockets

Figure 2. SystemViewer application: C++ (top) vs Vaadin (bottom)

data. When this happens, re-loading page
doesn't always help. The application server
requires a restart. This problem may be caused
by user session time outs.

* The Web UI seems unable to handle high
frequency 10 data with data update rates >
~100Hz. Developers need to keep this in mind
when deciding if Vaadin is good for the type of

target applications which requires high
frequency data updates.
e The IO connections between front end

application and Vaadin application server, and
the IO connections between Vaadin application
server and the rest of control system have to be
properly controlled and coordinated, otherwise,
the control system may be over burdened.

Some of the problems can be resolved by using proper
system settings and program logic controls; Others may
require software updates. For example, after upgrading
from Glassfish 4.0 to v4.1, the UlDetachedException
problem disappeared.

It is noticed that, with Vaadin, we can develop web

s | FECS/Managers/spachFan | — /1 >
Fage kA Dewvice Lata 1 ols Buffter Help I
ey
=T Tal
O N R e T T s Rirmge SGtate T et d s Toars d g
r AngSpeec . b lue Ton Specias ~r
irmgSEac . b Luc Eoom Erecr g < _ o
mAingESEecs - b Loc = oamams 1. o
rAirnaSyec b Lue Store Toge
r-irgsSpeescs _ k> Loges Plosmmasrs Lo Spar-aszacd
rirsSeec o kLo Searvochwr-o Lr-ors Toares
A S L B Luaes veartical Chromaticituy e <}
A RS . B Ll Howv i Zomntal Chvonest ioitig =L e
Lat N RTE s ICU R T RN Lo T I N T SR 1582 7
A ESsc: - b 1 use Timea OF F111 Start R - = - e Ty)
[e T T R St e Lomngtih Cmd s I E ity
rmAngSGEec - Llucs Tim= OFf Flattop Stoart == <data
ringSpoec .. bluc PRigidity From MDD momed:z [wFg rt—Irigiclitey
F
F=a =
et (5.1 TText™ Mudge: o i [N | [u]
Twue Auug 25 OF S-S5 2015: copying parameter values to buffer. =
F SRS 2015 SGet and Async reguests complete. -1

Tue Suag 25 O

e FAa e (= Uerslers — R a=TTTe Y
e e Bt prre b ErETeTr

s
ae — ==

RHIC RimMes Statu=

PR Cemtos Dus spEmoo Ao

Figure 3: specMan: C++ (top) vs Vaadin (bottom)

applications without explicit knowledge of HTML and
Javascript. However, since all client side web applications
are essentially based on HTML, Javascript and CSS,
familiarity with HTML, Javascript and CSS will help
developers make web applications more flexible.

SUMMARY

The Vaadin web application frame work offers web
application developers rich sets of Ul components,
add-ons, Java APIs, and powerful console level
application like features. It makes accelerator control
web application development simpler for Java developers
without the prerequisite of HTML and Javascript
knowledge. The key aspects of accelerator control
applications include a fast and responsive bi-directional
IO connection and UI interactions on web GUIs. The
Vaadin web framework does a good job in this regard
with server push features that support long_polling or
websockets. The testing of accelerator control web
applications developed with Vaadin technology shows
that, it is easy to convert console level control
applications to HTMLS5 supported web platforms, and the
web applications can be just as robust as the OS console
level applications. As Vaadin technology and application
server technology evolves, this web application
framework will become more reliable. These
technologies will aid in making web based accelerator
control application development easy, powerful and more

convenient to end users. The testing work with Vaadin
showed some problems that needed attention during
application development. Avoiding these pitfalls will help
to develop robust and high performance web applications.

REFERENCES
[1] Book of Vaadin: https://vaadin.com/book/
[2] Wikipedia: https://en.wikipedia.org/wiki/Vaadin
[3] T. D'Ottavio, S. Nemesure, DashBoard HTTP API:

http://www.cadops.bnl.gov/Controls/doc/DashServer/Das
hServerInterface.html

[4] Vaadin: http://demo.vaadin.com/sampler/

http://www.cadops.bnl.gov/Controls/doc/DashServer/DashServerInterface.html
http://www.cadops.bnl.gov/Controls/doc/DashServer/DashServerInterface.html
http://demo.vaadin.com/sampler/

	89404
	BNL-107605-2015-CP
	Using the Vaadin web framework for developing rich accelerator controls user interfaces
	W. Fu, K. Brown, T. D’Ottavio, S. Nemesure, E. Schuhmacher
	Presented at the 15th International Conference on Accelerator and Large Experimental Physics Control Systems (ICALEPCS 2015)
	The Melbourne Convention and Exhibition Centre (MCEC), South Warf, Victoria, Australia
	October 17-23, 2015
	Collider-Accelerator Department
	Brookhaven National Laboratory

	WEPGF135

