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1 CONTEXT / WORKING HYPOTHESES

1.1 Subcritical reactor facility
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1.2 High power from proton accelerators

• Required beam powerPB to generate the necessary source-neutron rate yielding
Pth reactor power :

With beam energy EB ≈ 1 GeV, a handy estimate is

PB ≈ 1
2(1− keff)Pth

PB = EB
Pth
f Ef

(1− keff)
keff























keff =

{

neutron multiplication
factor of the reactor

=
n produced
n absorbed

≈ 0.95 ∼ 0.98

Ef = energy released per fission≈ 200 MeV

f = fraction of neutrons causing fission
1GeV−p
≈

20 n/incident p
2.5n/fission

neutron yield per incident proton
(lead target, L=60cm, diameter 20cm)
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- Typical figures -

Reactor Proton beam
thermal power keff Energy / Current / Power

Demo transmuter MYRRHA: 50-100 MW-th ≈ 0.95 600 MeV / 4 mA / 2.4 MW

EFIT industrial transmuter: several 100 MW-th ≈ 0.97 800 MeV / 20 mA / 16 MW

China’s demonstrator program: 1000 MW-th 1.5 GeV / 10 mA / 15 MW

• Reactor’skeff is central to the accelerator parameters.
The closer to 1 (the closer the reactor core to critical), the lower the beam power

needed.

• Thermal efficiency of the ADS-R in-
stallation

- Power demand by the accelerator sys-
tem :

PA = PB
ηA ≈ 1− keff

2ηA
Pth

ηA = accelerator′s plug − to− beam

power conversion efficiency
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1.3 Foreseeable accelerator technologies
Reference : US ADS White Paper (2010)

• Separated sector cyclotron

Paul Scherrer Institute
First beam 1973, 10s of kWs
At present 590 MeV, 1.3 MW CW beam

• Normal conducting proton linear accelerator

LANSCE 800 MeV n Science Center linac, first beam 1972
Ran in 1 mA / MW range in the 1980s
120 Hz repetition rate, DC 7.5%

•Superconducting linear accelerator

SNS 1 GeV n science linac at ORNL
First beam 2006
Beam power now 1.2∼1.4 MW
60 Hz, DC∼6%. Accelerates H- for stripping
injection into accumulator ring,
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ACCELERATOR TECHNOLOGIES, FOR MULTI-MW BEAM POWER (CONT’D )

Alternative approaches to high power include :

• Pulsed synchrotron technology,

Potentially allows≈1 MW, for ≈1 GeV
Limited by pulsed operation, few 10s of Hz,
rather large ring

Ex. : ISIS rapid-cycling synchrotron, RAL, UK.
Running since 1984,
50 Hz, 800 MeV, 200 kW beam power Beam current at ISIS TS1

• Fixed Field Alternating Gradient (FFAG) accelerators

- FFAGs allow very high repetition rate (100s of Hz as former synchro-cyclotrons),
no principle limit in beam energy,
“With further development, FFAG technology may also demonstrate applicability in the
5-10 MW power range.” [US ADS White Paper]
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2 CYCLOTRONS

2.1 Principles
• High power requires separate sectors. This allows drifts for beam manipulations:
injection and extraction systems, RF cavities, beam instrumentation, etc.

Fixed freq. RF cavities

Fixed field magnets

• Fixed frequency, high-Q RF re-
quires isochronism :

Trevol. = 2πR/βc = constant

i.e.,R ∝ β, ensured by designing

B(R) = Bc γ(R)

• So, k(R) ≈ R
B
dB
dR

= γ2 − 1 ensures isochronism

• k and “flutter”, F, ensure transverse stability :

{

Qr ≈
√
1 + k ≈ γ

Qz ≈ −k + F 2
√
1 + 2 tan ξ

- Weak focusing
- Wave numbers change
with energy,  0.4

 0.6

 0.8

 1

 1.2

 1.2  1.4  1.6  1.8  2

Q
z

Qr

TUNE DIAGRAM

• The energy gain per turnUt ensures turn separation
at extraction :

dR
n = Ut

mc2
R

β2γ3
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2.2 Today’s practical reference, PSI cyclotron

• CW, 590 MeV, 2.2 mA, 1.3 MW, en route for 1.8 MW (3 mA).

- 85-90% availability (5000hrs/yr), ∼ 99.99% ex-
traction efficiency, beam loss in ring< 200 W

Φ=15 m

• Many upgrades, including changing the initial in-
jector, allowed intensity increase from initial 100µA.

• Upgrades include RF : Cu cavities,
∼4 MV/turn :

Longitudinal space charge losses∝ N 3

Turn separation∝ Energy gain

Power from plug :
goes essentially into RF system :∼34%
plug-to-beam efficiency (magnets etc.
∼few %) [Ref. A. Adelmann, 2014].
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2.3 Pushing PSI technology to 10 MW (1/2)

Note : redundancy of resonators opens up the way to compensation of failed res-
onator.
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Pushing PSI technology further (2/2)

• 1995, the energy amplifier (CERN/AT/95-44), a 3-stage cyclotron facility.

• Energy 1-1.2 GeV, beam current 10-15 mA CW, 10 MW+ beam power

MAIN RING :

- 16 m diameter

- 10 cells for more RF

- 9 mm turn separation at extraction

based on
{

large∆E/turn
large R/low B̂=1.8 T

- minimized space charge losses :
{

more RF for less turns (losses ∼ N3),
harmonic cavities

• RF aspects, for 1 GeV/10 mA beam :
- From 3 to 6 MeV/turn from injection to extraction
- Power, hyp.

{

AC/DC×DC/RF×RF/beam
0.90× 0.65× 0.55

:

1.7 MW/cav. in beam / 32%×6cavities−→ ∼30 MW electrical

• Magnet aspects :
- Maximum field 1.8 T
- Total weight 3200 tons
- Power 2.7 MW
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2.4 Texas A&M “TAMU” design
SC technology, and two (earlier) concepts exploited here :
• Folded beam channel, strong focusing / constant tunes
• Flux coupled stacked gaps
• Possible design : 800 MeV, 8 MW/stack
• Plug to beam power efficiency 50%

Folded, double-quarter-wave cavity structure

• 4-sector 100 MeV injector stack

• 12-sector main ring stack. 1T main field, Panof-
sky SF quadrupole channel, window frame cor-
rector dipole.

• 10 SC cavities per beam for 20 MeV/turn

• Large turn separation allows SC channels

• Isochronism ensured by tappered poles
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2.5 DAEδALUS H+
2 style design

“Decay-At-rest Experiment for δCP studies At the Laboratory for Underground Science”

• Delivers 800 MeV, 10 mA / 8 MW proton beam. Potential for 1.5 GeV/15 m.
• Major ingredients : acceleration of molecularH+

2 , superconducting magnets.

• H+
2 stripping extraction - relaxes on turn

separation thusallowing high magnetic field
(compactness)

• Relaxes on space charge effects, weak at
5 mA H2+, i.e., 10 mA extracted proton beam

• Magnetic field 6 T, RF 4MV/cavity

• Plug-to-beam power efficiency∼ 60% ex-
pected.

Power balance at the RIKEN cyclotron:
- Helium cooling system : 1MW
- Power supplies for SC coils (main coils
and superconducting trim coil) : 0.2 MW
- PS for warm trim coil : 1MW
- PS for injection/extraction : 1MW
- RF system : 1.5 MW
- Total : 4.7 MW

Similar design to RIKEN K2600
SC cyclotron
- Diameter 19m, 3.8T field, 6 RF cavities
- World first SC cyclotron, first beam 2006
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2.6 Revatron, by AIMA Company

• Concept exploited here : reversed valley field.
• 800 MeV/u (p orH+

2 ), triple-beam 3× 5 mAmp to mitigate space charge
• Axial injection, 60 kV/u : no injector ( → compactness, cost savings, reliability)
• Reverse field allows direct outward extraction

SC coils. Radius : 4.2→ 7.1 m
6 RF cavities / 12 gaps per turn,

0.15 MV → 0.45 MV per gap

Triple injection
(3 spiral inflectors)

Direct extraction in reversed field valley.
Turn separation ∼15 mm
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3 FIXED-FIELD ALTERNATING GRADIENT ACCELERATORS

3.1 MURA strong focusing, constant tune (scaling) FFAGs

• The first model, radial sector FFAG, Mark II. First operation March 1956, Uni-
versity of Michigan.

F magnet, positive field, radially focusing.

FFAG ring parameters

Einj − Emax keV 25 - 400
{

small size, easy to build

orbit radius ( C/2π) m 0.34 - 0.50
field not too low, ms lifetime

Optics
lattice D

2
FD

2

number of cells 8 16 magnets & 4.41 deg. drifts
field indexK 3.36 g/r =Cst & pole-face windings
νr / νz 2.2-3 / 1-3

Magnet radial sector B = B0(r/r0)
K F (θ)

Acceleration Induction
rep. rate Hz a few 10s

SCALING :
Bz (Gauss)
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X (cm)
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Y
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cm
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• Second model, spiral sector FFAG, Mark V

First operation Aug. 1957 at the MURA Lab., Madison.

Logarithmic spiral poles

Spiral FFAG parameters
Einj − Emax keV 35 - 180

orbit radius m 0.34 - 0.52
Etr / rtr keV / m 155 / 0.49

Optics
lattice spiral sectors
number of sectors 6
field indexK 0.7
flutter Feff 1.1
νr / νz 1.4 / 1.2

Magnet:spiral sector B=B0(
r
r0
)K F (ln r

r0
/w −Nθ)

Acceleration betatron and RF

rep. rate Hz a few 10s
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3.2 Recent proton R/D

• 1999 - mid 2000s, working frame : Neutrino factory R&D
Interest: Fast acceleration (short lived muons, high average proton beam I), strong focusing (mit-

igates space charge effects), very large acceptance.

-.2 -.1 0.0 0.1 0.2

-.5

0.0

0.5

1.

1.5

  Bz (T)  on closed orbit   vs.  angle (m)         

   10 MeV                         

   22 MeV                         

   43 MeV                         

   85 MeV                         

  125 MeV                         

POP FFAG - First beam Dec. 1999

Einj − Emax keV 50 - 500
orbit radius m 0.8 - 1.14
lattice / K DFD × 8 / 2.5
νr / νz 2.2 / 1.25
RF swing MHz 0.6 - 1.4
voltage p-to-p kV 1.3 - 3
cycle time ms 1

∫ ∫

2.0

1.5

1.0
3.02.52.0

 measurement tune shift
 integer resonance
 half integer resonance
 sum resonance
 difference resonance
 normal 3rd order resonance
 skew 3rd order resonance
 structure resonance

F/D=3.52

F/D=3.90

F/D=4.29

F/D=4.68

F/D=3.12

F/D=2.74

F/D=2.35

Medical application program
150 MeV radial sector FFAG - startup

2003

Einj − Emax MeV 12 - 150
orbit radius m 4.47 - 5.20
lattice / K DFD × 12 / 7.6
νr / νz 3.7 / 1.3
RF swing MHz 1.5 - 4.5
voltage p-to-p kV 2
rep. rate Hz 250
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• Mid 2000s on, KURRI KUCA

- A feasibility evaluation of ADS-R as an energy production system.
- First coupling to ADS-R core, March 2009, 100 MeV beam
- Thorium-loaded ADS-R experiment, March 2010 :100 MeV, 30 Hz, 5 mW

100-150 MeV proton, repetition rate 20-50 Hz

• Planned upgrades :

Variable energy 150-700 MeV facility,
neutron flux increased by a factor 30

On-going : H- charge exchange injection
Towards 10s ofµAmp current ranges
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RACCAM - proton FFAG R&D

• Working frame : Neutrino factory R/D. French ANR funding, 2006-2008, 3.5 MEU cost

• A feasibility study of a rapid-cycling, variable energy, spiral lattice scaling FFAG

• Magnet prototyping (SIGMAPHI Company) proved
{

spiral sector FFAG optics
huge dynamical acceptance

• Magnet design further exploited in KURRI-KUCA 700 MeV upgrade designs

• Found application in multi-port hadrontherapy installation [this c onference]
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3.3 Linear FFAG, historical background

• Two concepts where introduced in the late 1990s, in the frame of the “neutrino Factory” R&D :
- “linear lattice” FFAG : magnets are simple quadrupoles
- huge transverse and momentum acceptance (good for space charge)
- “quasi-isochronous” optics : allows using fixed frequency RF cavities (good for CW)

• Linear FFAG lattice, 10-15 years
ago : Well suited for the acceleration
of - short-lived - muons up to 20-50

GeV
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Ring

1.5 − 5.0 GeV

Proton Driver
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Drift 
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Cooling 

Acceleration 
Linac
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Dogbone
FFAG

FFAG

Storage 

beamν
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• Today : The technology of the ERL arcs,
in BNL’s baseline eRIHC electron-ion collider design
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3.4 The EMMA experiment

• An experimental “Electron Model for Many Applications”, to prov e these concepts, in the frame
of an international collaboration.

• Construction at Daresbury Lab. started in 2007

• Commissioning started in 2010

• “Serpentine” acceleration demonstrated in 2011

EMMA parameters
Energy range MeV 10 - 20
number of turns <16
circumference m 16.568
Lattice F/D doublet
No of cells 42

RF frequency GHz 1.3
No of cavities 19
RF voltage kV/cav. 20 - 120
RF power kW/cav. <2

Rep. rate Hz 1-20
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3.5 Proton driver design studies

• Linear FFAG / S. Ruggiero, BNL, 2004
• Linear FDF FFAG triplet

• 3 stages acceleration (3 FFAG rings)

• Lots of resoances to go through :
Qx : 40 → 19, Qy : 38 → 9.

However crossing is fast, at all energy

(p− p0)/p0

• For neutrino factory p-driver, 12 GeV design,
potential for several MW

Ring 1 Ring 2 Ring 3
Energy, Inj. (GeV) 0.4 1.5 4.5

Extr. (GeV) 1.5 4.5 12
# of turns 1800 3300 3600
cycle time ms 6 9 10
Circumf. m 807 819 831
# cells 136 136 136
cell length (m) 5.9 6 6.1
h 136 138 140
RF freq. MHz 36-46 46-49.7 49.7-50.4
E gain / turn MeV 0.6 0.9 2

• Consider ring 1,

- pulsed RF, using ferrite tuned cavities,

- repetition rate >100 Hz,

- assume few1013ppp

hence potential for MW beam power in GeV range.

• CW acceleration based on “harmonic number jump”,
using fixed frequency RF systems, was investigated.
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• Pumplet lattice - 2004

- A non-linear, non-scalingtype of FFAG, “non-linear cyclotron”, G. Rees.
- A scheme investigated for a 20 GeV, 4 MW proton driver in the neutrino factory
(two 50 Hz rings).

• Isochronism involves many variables.
It provides the advantage of on-crest accel-
eration.

Lattice for 8 to 20 GeV / 16 turns / 123 cell ring :

Bbd(x) = −3.456− 6.6892 x+9.4032 x2 − 7.6236 x3 +360.38 x4 +1677.79 x5

BBF (r) = −0.257+16.620 r+29.739 r2+158.65 r3+1812.17 r4+7669.53 r5

BBD(x) = 4.220−9.659 x−45.472 x2−322.1230 x3−5364.309 x4−27510.4 x5

Allows insertion straights , with the advantages of
1. easier injection and extraction,
2. space for beam loss collimators,
3. RF gallery extending only above the insertions,
not above the whole ring,
4. 4-cell cavities usable, thus reducing, by a factor of
four, the total number of rf systems.

Magnetic field in bd, BF and BD.
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• Toward CW high energy FFAG

• A quasi-isochronous lattice design based on a DFD triplet
- with non-linear radial field profiles with alternating norm al-gardient and

reversed-gradient bends,
- and optimized magnet-edge contour

• Features small tune variation over acceleration cycle

• allows near-crest acceleration using fixed-frequency RF

• Numerical beam dynamics studies show huge transverse dynamical acceptance.
OPAL simulations show currents in 20 mA range with no transverse beam growth.

• Principle 6-cell lattice used for numer-
ical beam dynamics studies.
• 0.33 to 1 GeV acceleration.
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• Serpentine acceleration in a scaling FFAG demonstrated in 2012

• Allows fixed RF-frequency acceleration invariable β = v/c regime
- i.e., non-relativistic beam, suitable for proton acceleration.

• Experimental demonstration
performed with an electron
prototype (Japan, 2012):

- small e-beam ring
- 160 keV→ 8 MeV
- F-D-F scaling triplet lattice at
transition gamma (764 keV)
- RF freq. 75 MHz (h=1),
750 kV/gap

• ADS equivalent design, 2013
(Emi Yamakawa et al., NIM A 716 (2013))
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3.6 More is going on in FFAG R&D

See FFAG workshops, PAC and IPAC conferences on JaCOW.

• Compact, β < 1, isochronous lattices, based on radial index and magnet edge
tayloring

• Isochronous,β < 1, lattices exploiting reverse bend optical properties

• Serpentine acceleration

• Magnet technology, SC FFAG magnets

• RF technology

• etc.
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4 CONCLUSION

4.1 Energy efficiency

• A vaste topic in itself. However :a paramount aspect in ADS-Reactor application.

• [RAST review, Vol. 8 - 2] “for ADS the power required by the accelerator can represent a sig-
nificant fraction of the power generated by the blanket. [..] the attractiveness of the system will
be significantly hindered if it requires more power than it generates. There is a strong incentive to
design ADS blankets with the highest keff value reasonable. However, this reduces the margins to
criticality.”

Corrected thermal efficiency, for a typical minor actinides sodium-cooled blanket :
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• [B. Riemer, 5]
- Integrated approaches to source design around specific instrument performance metrics, utilizing
optimization techniques, can show new paths to high-performance

• TS-2 at ISIS
- When isn’t higher target power the right direction for higher pe rformance?

• Spallation sources
• Other high-power target applications
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4.2 Beam flexibility

• In the ADS-Reactor application,do we want that :

• Multi-GeV (Project-X, China-ADS) ?

• H- acceleration for injection into an accumulator ring (SNS) ?

• Multiple species from p to U (FRIB) ?

• A “multi-purpose flexible irradiation facility”, includin g energy upgrade
plans (MYRRHA) ?

• 100s MeV beam energy flexibility in an ADS-R accelerator system (not to
say, any energy flexibility at all) ?

If the answer is “No” to all these questions, then, fixed-fieldring methods are cer-
tainly a way worth investing a lot, starting with prototypin g based on existing de-
signs, in both cyclotron and FFAG sectors.
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4.3 Last slide

• In the matter of GeV beam energy and beyond, multi-MW proton beams, fixed-
field rings still have much to say.

• There has been significant advancements in past years, in relation with technolog-
ical progress, design methods (materials, computational tools...)

• Fixed-field ring technologies have strong potential for high power efficiency, com-
pact facilities, required reliability, comparatively low expense

THANK YOU FOR YOUR ATTENTION
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