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We describe a method for simulating the real time evolution of extended quantum systems in two
dimensions. The method combines the benefits of integrability and matrix product states in one
dimension to avoid several issues that hinder other applications of tensor based methods in 2D. In
particular it can be extended to infinitely long cylinders. As an example application we present
results for quantum quenches in the 2D quantum (2+1 dimensional) Ising model. In quenches that
cross a phase boundary we find that the return probability shows non-analyticities in time.

The advent of ultra cold atomic gas experiments has
led to a surge of interest in the time evolution and out-of-
equilibrium behaviour of many-body quantum systems.
Much effort has been focused on one dimensional (1D)
problems because these can be tackled by analytically
tractable or highly accurate numerical methods. Key
questions that these studies have sought to elucidate are
whether and how such systems thermalise after a sudden
change, or ‘quantum quench’ of a system’s Hamiltonian;
with particular emphasis on the role played by conserved
charges in 1D integrable systems [1–11].

Experiments however, are not limited to 1D and it is
interesting to explore similar questions in two dimensions
(2D) and above [12]. Unfortunately there is no analogue
in 2D of the aforementioned analytically exact 1D meth-
ods. Numerical approaches using matrix product state
(MPS) representations, so successful in 1D, suffer in 2D
due to the ‘area law’ growth of entanglement [13, 14].
This growth reduces the efficiency of MPS (and related
‘tensor’) algorithms and limits them to smaller system
sizes.

Nonetheless MPS algorithms can be applied in 2D, by
labeling lattice sites (usually in a zigzag fashion) to map
to a 1D system [15]. The cost is that nearest neighbor in-
teractions in 2D are mapped to increasingly long ranged
1D interactions, imposing an increasing numerical bur-
den. Recently progress has been made in performing real
time evolution on MPS with such long ranged Hamilto-
nians by two different routes [16, 17]. Algorithms based
on generalizations of MPS to higher dimensions, such as
projected entangled pair states (PEPS) [18, 19], make
use of imaginary time evolution to find ground states
[20]. However these higher dimensional tensor methods
have not been applied to real time evolution.

In this letter we demonstrate that real time evolution
is possible for large 2D systems by combining informa-
tion coming from exactly solvable models with a highly
anisotropic MPS formulation. Such an approach retains
the contraction efficiency of matrix product states over
other tensor methods, while avoiding the build up of

FIG. 1. Anisotropic setup for a 2D system as an array of
N chains of length R, coupled by an interaction J⊥. The
cylinder can be joined together at its ends to study toroidal
systems.

long ranged interactions. Our setup will be similar to
that used in the density matrix renormalisation group
(DMRG) studies described in Refs. [21, 22] except that
here we are explicit in our use of MPS. This change allows
for straightforward implementation of algorithms other
than DMRG, including those for time evolution and for
accurately working with the thermodynamic limit. In
particular using time evolving block decimation (TEBD)
[23] we demonstrate that we can study the time evolu-
tion after a quench of infinitely long cylinders, with suf-
ficient circumference that we approach the 2D thermo-
dynamic limit. This includes strong quenches where we
cross phase boundaries of a 2D quantum system.

Method: At the core of our method is the wish to max-
imise the analytically exact input going into our MPS
algorithm, while simultaneously controlling the growth
of entanglement entropy. The construction we use is de-
picted in Fig. 1: a coupled array of exactly solvable 1D
subunits. For each subunit, we have exact knowledge of
the spectrum and matrix elements. This exact knowledge
means that we begin with the numerics already having
accounted for much of the strong correlations of the sys-
tem. We emphasize our use of exactly solvable models
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as a building block is not much of a limitation to the
method. Such models are ubiquitous in 1D, including
Heisenberg spin chains, Luttinger liquids, and Hubbard
models to name but a few [24, 25]. In this framework, a
state of a system of N chains is written in MPS form via

|Ψ〉2D =
∑
σ

Aσ1[1] · · ·AσN [N ]|σ1 · · ·σN 〉 (1)

where each matrix Aσi[i] is labelled by a chain i and an
eigenstate of that individual chain σi. Like the single sites
used in 1D MPS algorithms, we are able to manipulate
these chain eigenstates because we know their energies
and matrix elements for any relevant operator.

For ground and low-lying states of the system the en-
tanglement entropy SE scales as the boundary ‘area’,
that is to say the chain length. By keeping the chain
length finite we can throttle the growth of SE . By part-
nering this with the fact that for the systems that we
will study, finite size effects are exponentially suppressed,
we are able to keep SE small while remaining in the 2D
thermodynamic limit. We have previously demonstrated
the effectiveness of this methodology in equilibrium by
studying a 2D quantum (i.e. 2 + 1 dimensional) critical
point [21, 22].

The continuum 1D subunits will necessarily have an
infinitely large Hilbert space. However if the system size
R is finite the spectrum is discrete, and we may trun-
cate at a cutoff energy Ec. This step is justified by ap-
peal to the truncated conformal spectrum approach [26]
where it has been observed over a wide body of examples
[27–29] that for relevant (in the renormalisation group
sense) interchain interactions, the low energy sector of
a perturbed integrable system is formed primarily from
(possibly strong) admixtures of low lying states of the
unperturbed system. Here we will focus on exactly such
interchain perturbations.

Eq. 1 differs from a MPS for a 1D system only in
that the ‘physical indices’ σ may be large (see Table I in
[30]), requiring strict use of sparse matrices to maximise
computational resources. It is also important to take ad-
vantage of good quantum numbers and to perform ma-
trix operations (e.g. singular value decompositions) in a
block diagonal manner, to help preserve the sparse nature
of the matrices and increase numerical efficiency.

MPS time evolution algorithms may then be imple-
mented just as for a 1D system, including TEBD [23]
and its infinite counterpart (iTEBD) [31, 32]. For the
former we may work with a torus or open cylinder ge-
ometry; the latter corresponds to an infinitely long cylin-
der. Both algorithms decompose the time evolution oper-
ator exp[−iHt] into a product of Nt time step operators,
t = Ntτ . Each step is itself approximately decomposed
into a product of two site (or chain) operations. The er-
ror at each step is proportional to the time increment τ
raised to a power given by the order of the decomposition.

A more important source of error is the compression of
the MPS after each step via Schmidt decompositions. We
compress by fixing a minimum singular value size, smin:
singular values smaller than this threshold value are dis-
carded. In this sense our algorithm is adaptive, as χ,
and the degree of encoded entanglement can grow. ‘Lieb-
Robinson’ type arguments limit the rate of growth of SE
after a quench [33–35], but χ may grow exponentially,
limiting the maximum timescales that can be reached.

For our 2D algorithm, forming the time evolution op-
erator requires the exponentiation of a two chain Hamil-
tonian, which in turn necessitates the diagonalisation of
the same object. This is a numerically costly step, but
need only be done once at the beginning, and the result
stored for later use.

In this letter we present results for quenches in the 2D
quantum Ising model:

H2DQI =
∑
i

[
H1D,i + J⊥

∫ R

0

dx σzi (x)σzi+1(x)

]
. (2)

We represent the model as 1D Ising chains (of index i and
length R) coupled together with a longitudinal spin-spin
interaction. We take each chain H1D,i to be the con-
tinuum limit of the 1D lattice quantum Ising model—or
transverse field Ising model (TFIM)—with Hamiltonian,
−J‖

∑
l[σ

z
i,lσ

z
i,l+1 + (1 + g)σxi,l)] with l an index along

the chain. In the continuum limit this reduces to a the-
ory of a 1D Majorana field with mass ∆ = gJ‖. An-
alytic expressions for the spectrum of this theory and
the spin matrix elements are detailed in Ref. [36]; we
summarize the salient features in [30]. Expanding the

Majorana field in terms of fermionic modes ψ†ki and
ψki (the continuum versions of the usual Jordan-Wigner
lattice fermions) yields a quadratic chain Hamiltonian

H1D,i =
∑
ki
εkiψ

†
ki
ψki , with dispersion εki =

√
∆2 + k2

i .
We work in units such that the intrachain velocity, v, is
dimensionless and equal to unity. We also define a dimen-

sionless interchain coupling j⊥ = J⊥ |∆|−7/4
. For disor-

dered (∆ < 0) chains a finite value of the interchain cou-
pling j⊥ leads to a 2D quantum (d=2+1) order-disorder
transition at a critical value j⊥ = jc = 0.185 [22].

We compute the evolution of the postquench state us-
ing iTEBD and TEBD, with first and second order Trot-
ter decompositions of the time evolution operator, and
time steps τ . The error associated with such decomposi-
tions is dependent on j⊥ and τ , but even for the strongest
quenches presented in this work we can choose τ small
enough for convergence (see the supplementary material
[30]). For each set of parameters, we first establish that
the numerical results are converged in smin or χ before
increasing the cutoff Ec. Convergence of the method in
smin is demonstrated in [30]. We have also checked the
algorithm for two analytically tractable cases: the per-
turbative limit (j⊥ � 1) and a model of free fermionic
chains with interchain hopping. In both cases we find
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FIG. 2. Fermion occupation number, ni(x) scaled by inter-
chain coupling, j2

⊥. We indicate the time scale tR at which
we expect the system postquench to see the effects of the fi-
nite circumference of the system. Inset: R = 10 iTEBD data
compared with the perturbative result (P.T.) (dashed line).

0 1 2 3 4 5 6 7 8 9 10
t/t∆

0

0.5

1

1.5

2

n i(x
)/j

⊥
2

R=4, Ec=8|∆|
R=4, Ec=10|∆|
R=6, Ec=6|∆|
R=6, Ec=8|∆|

0 2 4 6 8 10t/t∆
-2

-1.5

-1

-0.5

0

< 
σz i(x

) σ
z i+

1(x
)>

/(j
⊥
 |∆

|1/
4 ) R=8, j⊥=0.01

R=10, j⊥=0.01
R=8, j⊥=0.1

j⊥=0.2

tR=8tJ⊥=0.1 (R=8)

FIG. 3. Fermion occupation number, ni(x), scaled by inter-
chain coupling, j⊥ = 0.2, squared. Curves for different Ec

are shown, corresponding to more than doubling the num-
ber of retained states in the chain spectrum. The agreement
is excellent until the latest times, even though this quench
crosses a critical point. Inset: the nearest neighbor spin-spin
correlation function showing scaling with j⊥ and R.

excellent agreement with our numerical results [30].
Results: In the following we present results of quantum
quenches where the initial state of system corresponds to
the j⊥ = 0 ground state, whereupon at t = 0 we turn
on a finite interchain coupling j⊥. We focus mainly on
results for infinitely long cylinders, leaving a discussion
of the effect of finite chain number, N , until the end. We
first address the question of what time scales we expect
to feature in the quench. To provide a partial answer

we turn to the quasiparticle causality picture of Refs.
[1, 2, 33]. The energy imparted by the quench produces
quasiparticle excitations which are entangled on a length
scale |∆|−1

along the chain. Intrachain scattering then
only has an effect after a time, t∆ = (2v |∆|)−1. On
the other hand, the time scale governing interchain scat-
tering can be estimated using Fermi’s golden rule to be

tJ⊥ = |∆|1/2 (J⊥R)−2. The final time scale of import
is that encoding the chain length, R. This scale, given
by tR ∼ R/2v = |∆|Rt∆, describes the time for two
quasiparticles, created at the same point and moving in
opposite directions, to travel around a chain and then
meet again. Hence there is a region, t∆, tJ⊥ < t < tR,
where we may expect the time evolution to be represen-
tative of the 2D thermodynamic limit. But for t > tR
the finite nature of the chains’ circumferences will play
a role. We stress that tR does not govern the time scale
for revivals in the system. Instead these occur on a much
longer time scale, trevival ∼ NtJ⊥ where N is the number
of chains in the system. Thus in our iTEBD simulations,
we never expect to see strict revivals.

To illustrate these time scales in operation, we con-
sider the occupation number, ni(x) = ψ†i (x)ψi(x), for a
fermionic mode on chain i, a simple measure of how the
system departs from the initial state, for which ni(x) = 0.
In Fig. 2 we present how ni(x) evolves with time for a
quench to j⊥ = 0.1. On the basis of our perturbative
results for very small j⊥ [30], we plot n(x) in units of
j2
⊥ for all four quenches presented. These four quenches

correspond to four different chain lengths, R.
We see that at short times, the results for ni(x)/j2

⊥
collapse onto a single curve as a function of t/t∆. As
time increases, the curves cease to track one another.
The first to do this is the R = 4 curve, then the R =
6 curve, and then finally the R = 8 curve. The time
at which this happens corresponds, roughly, to tR, the
scale on which the quench explores the finite length of
the chain. We expect a small departure from this time
scale because a finite j⊥ will renormalize the quasiparticle
velocity v = 1 in tR. We also see from the inset of Fig. 2
that the evolution at longer times is no longer described
by perturbation theory.

In Fig. 3 we explore a quench to a j⊥ which exceeds
jc, the critical coupling for the 2 + 1 dimensional system.
Such a quench is among the most challenging numerically
as the population of higher energy chain states becomes
significant. Concomitantly, the time evolution is most
dependent on Ec in this case. Ramped, rather than sud-
den, quenches can be implemented with some possible
advantages in this regard [37], though we have not yet
explored this possibility. Nonetheless in Fig. 3 we see
that for a given chain length, R, we can find cutoffs, Ec
such that the time evolution is converged.

It is also possible to calculate postquench correla-
tions between the chains. We show the nearest neigh-
bor spin–spin correlation function as a function of time,
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FIG. 4. Logarithm of return probability G(t), for R = 6 for
j⊥ = 0.1, 0.5. Non-analytic behaviour is seen at short times
for a quench to j⊥ = 0.5. We find no non-analytic points
for the corresponding quench to j⊥ = 0.1, even at longer
times up to t = t∆ = 10.0 (not shown). Inset: comparison
of the infinite chain number system data with a system with
N = 100 chains computed using TEBD. The first non-analytic
point for the infinite cylinder forms the edge of a plateau,
whereas for a finite number of chains it takes the form of a
peak.

〈σzi (x, t)σzi+1(x, t)〉, for a selection of R and j⊥ in the
inset of Fig. 3. Our choice of j⊥ > 0 favors antifer-
romagnetic correlations, producing the overall negative
sign. An expansion in small t shows that this quantity
is proportional to j⊥t

2 allowing us to collapse the results
onto a single curve at short times. Here we see signa-
tures of both the tJ⊥ and tR scales. In the inset we have
marked the intrachain scattering time tJ⊥ , for the system
with R = 8 and j⊥ = 0.1. It is visible as the time that
the j⊥ = 0.1 and j⊥ = 0.01 data begin to diverge. We
also mark the time scale tR at which the data for chains
with R = 8, j⊥ = 0.01 begins to diverge from that of
R = 10, j⊥ = 0.01.

To show that our method can handle non-trivial as-
pects of quenching through the critical coupling of the
coupled chain system, we search for non-analyticities
in the Loschmidt echo as a function in time. The
‘Loschmidt echo’ or overlap probability at a particular
t is the modulus squared of the overlap between the ini-
tial and time evolved state:

G(t) =
∣∣〈Ψ0| e−iH2DQIt |Ψ0〉

∣∣2 (3)

where Ψ0 is the ground state of the uncoupled chain sys-
tem. In 1D it is useful to define a per site rate func-
tion, `(t) via G(t) = exp[−N`(t)]. Non-analyticities in
`(t) have been interpreted as ‘dynamical phase transi-
tions’, following an exact calculation of this quantity for
the 1D TFIM [38–40]. The general association of such

non-analytic points with equilibrium critical phenomena
is contested [41, 42], but we demonstrate analytically in
low order perturbation theory[30] that for quenches to
j⊥ > 0.27 we expect non-analyticities in G(t). While
this estimate for the value of j⊥ is larger than jc – be-
cause of the low order to which we took the computation
– it does suggest that simple perturbation theory for the
quantity G(t) can be used to estimate the phase bound-
aries in some 2D quantum systems.

In Fig. 4 we plot logG(t) for a quench to j⊥ = 0.5 –
a value of j⊥ where we should see non-analyticities. In
2D this quantity scales with system volume RN , as does
its 1D counterpart [38]. It also scales with j2

⊥. As ex-
pected we find non-analytic behaviour for this quench,
within the time window we are able to simulate, and see
that the non-analyticity has the same qualitative struc-
ture for both Ec = 7 |∆| and 8 |∆|. For comparison we
plot logG(t) for a quench to j⊥ = 0.1, where in contrast
we find that this quantity is smooth within our simula-
tion window. We remark that non-analyticities appear
for the same quantity with j⊥ = 0.2 (not plotted), just
above jc = 0.185, but they first occur only at the edge of
the attainable times with iTEBD.

Finally we consider the case of finite length and open
boundary conditions. The TEBD algorithm is slower by
approximately a factor of N due to the loss of transla-
tional invariance along the cylinder. We find negligible
effect, for finite N & 10 and i away from the ends of
the cylinder, on the results for local quantities such as
ni(x) (up to the time scales we reach). However this is
not true for the Loschmidt echo (a global measure), es-
pecially when |j⊥| > jc. The inset of Fig. 4 shows the
difference between the iTEBD and N = 100 results for
R = 6, j⊥ = 0.5. While there is excellent agreement up to
t ∼ t∆ (not shown), afterwards there is a clear change in
the non-analytic point structure. We also find that this
effect is even more pronounced for very small R and large
N (where our model reduces to a single 1D TFIM), sug-
gesting that boundary conditions have a non-negligible
effect on the Loschmidt echo even for large systems. This
last result has important consequences for possible exper-
imental investigations.

Conclusions: We have demonstrated a robust method
to compute dynamical behaviour in 2D quantum
(d=2+1) systems after a quench, which we intend to use
to study other systems including coupled quantum wires
(i.e. coupled Luttinger liquids) and Heisenberg chains.
The algorithm should prove especially useful when inter-
preting non-equilibrium cold atom [43, 44] and pump-
probe experiments in the cuprates [45, 46].

We wish to acknowledge enlightening discussions with
John Cardy, Fabian Essler, Andrew Goldsborough, Is-
rael Klich, Anatoli Polkonikov, Rudolf Römer and Steve
Simons. This work was supported by the Engineering
and Physical Sciences Research Council (grant number
EP/L010623/1) and the US Department of Energy, Of-
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SUPPLEMENTAL MATERIAL

Free Fermions

In this section we describe our method applied to an
exactly solvable quantum model in 2D. Consider a free
Majorana field ψ = ψ†, {ψ(x, t), ψ(x′, t)} = δ(x−x′) with
mass ∆, confined to a ring and with a Lorentz invariant
action

S =

∫
dt

∫ R

0

dxψ̄(iγµ∂µ −∆)ψ, (4)

where µ = 0, 1 refers to time and space coordinates, ψ̄ =
ψ†γ0 and γ0,1 are suitable 2D Dirac matrices. The field
has an expansion in fermionic modes

[
an, a

†
m

]
= δm,n

ψ =
∑
n

√
m

2εnR
eθn/2

(
ωane

−i(tεn−xpn)+

ω?a†ne
i(tεn−xpn)

)
,

ψ̄ = −
∑
n

√
m

2εnR
e−θn/2

(
ω?ane

−i(tεn−xpn)+

ωa†ne
i(tεn−xpn)

)
. (5)

Here ω = eiπ/4, and εn = ∆ cosh θn, pn = ∆ sinh θn.
The momentum can take discrete values pn = 2πn/R for
integer n, and εn =

√
∆2 + p2

n. Note that in this case
we are not mapping from a putative spin system using
the Jordan-Wigner transformation, so there is no sepa-
ration of the spectrum into Ramond and Neveu-Schwarz
sectors. Using the mode expansion we obtain the chain
Hamiltonian

H1D,` =
∑
n

εna
†
n,`an,`, (6)

with chain index `. We can build a 2D quantum system
from an array of N of these chains coupled with a nearest
neighbor interaction (here we assume our 2D system is a
torus)

Hint = −
∑
`,n

t⊥
∆

εn

(
a†n,`an,`+1 + H.c.

)
(7)

where the coupling strength is t⊥. This chain array sys-
tem Hfree =

∑
`H1D,` + Hint can be solved trivially by

Fourier transformation from chain index ` to momentum
km = 2πm/N (note this is transverse to the momentum

index n along the chains).

a†` =
1√
N

∑
m

eikm`a†` (8)

{akm , a
†
km′} = δkm,km′ (9)

Hfree =
∑
n,m

(
εn −

2∆t⊥
εn

cos km
)
a†n,man,m (10)

The Hamiltonian is diagonal in n and m: if so desired it
can be treated as either a set of N 1D uncoupled bands
indexed by m, or infinitely many 1D bands, indexed by n.
In either case the system can then be treated by standard
1D MPS methods, because the lack of coupling between
bands means that one needs to keep only those eigen-
states from the spectrum of H1D,` that are present in the
initial state of the chain array. Beyond this the cutoff
Ec does not play a role. For example consider the initial
state

|Φ〉 =

N
2 −1∏
i=0

1√
2

(
|0〉i |n = 0〉i+1 + |n = 0〉i |0〉i+1

)
, (11)

in which alternating pairs of chains are entangled, with a
superposition of ground states (|0〉i) and lowest excited
states (|n = 0〉i) on the chains. Evolving this state under
Hfree does not involve any other states from the chain
spectrum. For such an evolution the return probability
can be calculated exactly using a determinant method,
yielding

G(t) =
∣∣∣det

(
M + (1−M)R exp{−iht}R

)∣∣∣2, (12)

M = diag(0, 1, 0, 1, 0, · · · ),

R =


1 1
1 −1

1 1
1 −1

. . .

 ,

h =


∆ −t⊥

−t⊥ ∆
.. .

. . .
. . .

 , (13)

with N ×N matrices. We compare this result (evaluated
for a torus of N = 800 chains) with the iTEBD result
computed with our code implementing Hfree in Fig. 5.
Note that in this case a change in ∆ can be absorbed into
a simultaneous rescaling of t⊥ and t, so the hopping t⊥
sets the time scale.

Further details of method

The structure of the spectrum of the continuum limit
Ising chain is detailed in Ref. [36] but we give a brief de-
scription here for convenience. The spectrum splits into
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two sectors, Neveu-Schwarz (NS) and Ramond (RM).
The energy of a state with a particular fermion configu-
ration is given by

E({ns}) = Es +
∑
{ns}

Ens
(14)

Ens
=

√
∆2 +

2πns
R

(15)

where s = NV or RM and Es is the vacuum energy (dif-
ferent in the two sectors). For the disordered phase of
a chain, ∆ < 0, states with even numbers of particles
(including the 0 particle vacuum state) are in the NS
sector (ns ∈ Z), while odd particle states are in the Ra-
mond sector (ns ∈ Z/2) The spin operator, σz, is off
diagonal in sector, so that on an individual chain RM
states are only scattered into NS states and vice-versa by
the J⊥ term. This fact that makes perturbative calcu-
lations significantly easier. As a consequence the overall
sector (whether there is a odd or even number of Ra-
mond chains) is conserved by H2DQI. The total sector
and momentum (along the chain direction) for two chains
is also conserved by the two chain time evolution oper-
ator. These conservation laws are useful for performing
matrix operations by sub blocks.

The fermionic representation is symmetric with respect
to the spin direction, as is our pre-quench state, and
H2DQI itself does not break this symmetry. Hence the
local magnetization 〈σzi (x)〉 is always zero.

We implement iTEBD [31] using the alteration due
to Hastings [47] that improves numerical robustness by
removing the need to divide by very small singular values.

0 1 2 3 4 5 6 7 8
t/t∆

0

0.5

1

1.5

n i(x
)/j

⊥
2

smin = 5×10-4, χf=8

smin=10-4, χf=47

smin=7×10-5, χf=65

smin=4×10-5, χf=105
χ=20
χ=100

7 7.5 8
t/t∆

0.7

0.8

0.9

n i(x
)/j

⊥
2

smin = 5×10-4, χf=8

smin=10-4, χf=47

smin=7×10-5, χf=65

smin=4×10-5, χf=105
χ=20
χ=100

R=10
Ec=6|∆|
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FIG. 6. Convergence in smin for R = 10, J⊥ = 0.1, using
a smallest retained singular value criterion, smin (the largest
bond dimension used during the calculation is given as χf .
Also shown for comparison is data collected using a fixed bond
dimension, χ.

Before computing expectation values the iTEBD transfer
matrix must be ‘orthogonalised’ as described in Refs. [14,
32, 48].

Instead of imposing a fixed bond dimension, we per-
form TEBD and iTEBD using a cutoff on the minimum
singular value that is retained, smin. This translates to
a minimum eigenvalue of the reduced density matrix,
ρmin = s2

min. The advantage over fixed bond dimen-
sion is that when working with large matrices, one may
drop unwanted singular values as individual sub blocks
are processed, as opposed to recording the full results of
the singular value decomposition and sorting by magni-
tude before truncating. In principle the maximum value
of SE that can be captured in this way is −2 log smin. In
Fig. 6 we give an example of convergence in this param-
eter and compare with a version of the algorithm that
uses a fixed bond dimension throughout.

We mainly use the second order Trotter decomposition
in this work, and find it sufficient for the time scales we
are able to reach before bond dimension, χ, becomes the
limiting factor. For very weak quenches however, a first
order Trotter decomposition still gives good results, even
to quite large times. This is because the leading error
term in the decomposition is proportional to J⊥. A more
sensitive test is whether the sharp non-analytic features
in the return probability (Loschmidt echo) for j⊥ = 0.5
are well converged in the time step τ . Figure 7 shows
the logarithm of the return probability for τ = 0.008t∆
and 0.002t∆ using second order Trotter decompositions.
There is negligible difference except in the immediate ap-
proach to the non-analytic point, and even in this case
the difference is less than 1%.
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R=10, j⊥=0.01

R=6, j⊥=0.5

FIG. 7. Convergence in the time step τ (in units of t∆). Left
panel: In the perturbative (j⊥ � 1) limit results converge
extremely quickly as a function of τ , for both 1st order (T1)
and 2nd order (T2) Trotter decompositions. Right panel: At
the other extreme, for j⊥ > jc we see that the sensitive place-
ment of non-analytic points is converged for sufficiently small
τ .

Discussion of the effects of the cutoff

TABLE I. The number of chain states kept (including the
ground state) for various combinations of R and Ec (∆ = −1).

Ec/ |∆|
R 4 5 6 8 10
2 5 5 5 12 19
4 11 14 19 43 90
6 19 33 52 124
8 29 55 103 308
10 44 97 172
12 63

The number of chain states increases approximately
exponentially with Ec and R for Ec > ∆. In Table I we
show the number of chain states kept for a range of chain
lengths and cutoffs. It is clear that changing Ec from
4 |∆| to 8 |∆| (for example) has a much more dramatic
effect on the number of included states at R = 8 than
at R = 4. However with quenches below the critical
coupling Jc, we find that in general we see very little
difference between Ec = 6 |∆| and Ec = 8 |∆| for R ≥ 4.

Small R limit

For a single chain there should be a crossover to effec-
tive 0D (0+1 dimensional) behaviour when the correla-
tion length is of order the system size, |∆|−1 ∼ R. When

|∆|R� 1 only the chain ground state and lowest excited
state survive with the energies of higher excited states
scaling as multiples of (|∆|R)−1. For ∆ < 0 the ground
and first excited states are the Neveu-Schwarz vacuum
and the zero momentum single particle Ramond states
respectively. In this case the Hamiltonian of the coupled
chain system becomes

lim
R→0

H2DQI =
∑
i

[(
|∆|+ ERM 0

0 ENS

)
i

+J⊥R

(
0 M
M 0

)
i

(
0 M
M 0

)
i+1

]
,

(16)

where M = 〈RM, k = 0|σz |NS, vac〉 ∈ R. This can be
written as the Hamiltonian of a single 1D lattice quantum
Ising chain (up to some unimportant constants):

lim
R→0

H2DQI = H1DQI =
∑
i

(
h̃σ̃zi + J̃ σ̃xi σ̃

x
i+1

)
, (17)

where σ̃x, σ̃z are the usual Pauli matrices and we make
the identifications

h̃ =
|∆|+ ERM − ENS

2
, (18)

J̃ = J⊥RM
2. (19)

This is a useful check of the code, as it is easy establish if
one recovers the correct 1D behaviour, including the 1+1
dimensional phase transition when h̃ = J̃ . For example
at R = 1, and by using Ec to restrict the number of chain
states to two, we are able to successfully reproduce the
predicted positions of non-analytic points, for quenches
of the 1D quantum Ising model through its critical point
[38].

Perturbation Theory

In the limit of small interchain coupling |J⊥/Jc| � 1
a perturbative expansion is appropriate. We use uni-
tary perturbation theory, following Ref. [49], in order to
avoid spurious secular terms that grow in time without
bound. The expectation of an operator A at time t after
the quench (assuming that the pre quench Hamiltonian
commutes with it, [H1D,i, A] = 0) is given to order J2

⊥ by

〈A(t)〉 = 〈A(0)〉+ 4J2
⊥

∫ ∞
−∞

dωF (ω)
sin2(ωt/2)

ω2
, (20)

F (ω) =
∑
Φ

∣∣∣ 〈Ψ0|
∑
i

σzi σ
z
i+1 |Φ〉

∣∣∣2 (21)

× 〈Φ|A |Φ〉 δ
(
ω − (EΦ − EΨ0

)
)
, (22)

where |Φ〉 is a tensor product of unperturbed chain states,
|φ1〉 ⊗ |φ2〉 ⊗ · · · ⊗ |φN 〉. In this work we choose the pre
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FIG. 8. Fermion occupation number, ni(x), at position x on
chain i, scaled by the interchain coupling, J⊥ = 0.01, squared.
Differences as a function of cutoff are negligible for Ec > 4 |∆|.
Dashed line: the perturbative result for R = 10.

quench state to be the ground state of the uncoupled
chain system,

|Ψ0〉 =
∏
⊗i

|0i〉 , (23)

where |0i〉 is the ground state of chain i. For the operator
A we consider ni,k, the occupation number for a fermion
on chain i with momentum k (along the chain). With
these choices the only states that contribute to F (ω) for
the quantum Ising system are tensor products of chain
vacuum states, with a single nearest neighbor pair of
chain excited states:

|Φ+〉 = · · · ⊗ |0i−1〉 ⊗ |φi〉 ⊗ |φi+1〉 ⊗ |0i+2〉 ⊗ · · · ,
|Φ−〉 = · · · ⊗ |0i−2〉 ⊗ |φi−1〉 ⊗ |φi〉 ⊗ |0i+1〉 ⊗ · · · . (24)

Using these states we find

F (ω) =R2
[ ′∑
φi+s,φi

s=±1

∣∣∣ 〈0i|σzi |φi〉 〈0i+s|σzi+s |φi+s〉 ∣∣∣2
× δ(ω − (Eφi

+ Eφi+s
− 2E0)) 〈φi|ni,k |φi〉

]
,

(25)

where Eφ is the energy of the (unperturbed) chain state
|φ〉. The restriction on the sum indicates that the mo-
menta of the chain states |φi〉 , |φi±1〉 must sum to zero.
For the expectation at time t we obtain

〈ni,k(t)〉 = (2J⊥R)2
′∑

φi+s,φi

s=±1

∣∣∣ 〈0i|σzi |φi〉〈0i+s|σzi+s |φi+s〉 ∣∣∣2

× sin2(tEi+s,i/2)

E2
i+s,i

〈φi|ni,k |φi〉 . (26)

Here Ei+s,i = Eφi
+ Eφi+s

− 2E0 and the restriction on
the sum is as above. The sum over s will contribute a
simple factor of 2 unless the system is an open cylinder
and i = 1, N , in which case one of the sums vanishes due
to the missing nearest neighbor.

We now make some remarks about the result at or-
der J2

⊥. For all i, k Eq. 26 is a sum of oscillatory terms
with no ‘decay’ even in the thermodynamic limit. There
are no boundary effects, excepting the trivial factor of 2
described above due to the different number of nearest
neighbors. With disordered chains, for which the chain
ground state is in the Neveu-Schwarz sector, only excited
chain states of the Ramond sector will contribute. Con-
sequently at this order 〈ni,k〉 will be zero for half integer
momenta, k = 2π(n+ 1/2)/R.

Using the above we calculate the occupation numbers
perturbatively for a large range of k by evaluating the
sums over states numerically. From these results it is
simple to to find the position space occupation:

Rni(x) =

∫ R

0

dx̃ ni(x̃) =
∑
k

ni,k, (27)

using translational invariance along the chains, provided
the ni,k drop off sufficiently rapidly with k. We show
our results for J⊥ = 0.01 together with the perturbative
curve (dashed curve) for R = 10 in Fig. 8. The agree-
ment is excellent at short times and still very good at
longer times for ni(x).

Estimate of Critical Coupling, Jc

In this portion of the supplemental material we ar-
gue that the appearance of non-analyticities in the return
probability post-quench can be used to estimate the value
of the critical coupling Jc marking the phase transition
(although see discussion below). To this end we employ
the observation of [38] that in quenching from an initial
value of the coupling, J⊥i, to a final value of the cou-
pling, J⊥f , non-analyticities appear in the return prob-
ability whenever a fermionic mode (of the post-quench
Hamiltonian) has an occupation of at least 1/2, i.e. ap-
pears with an occupation corresponding to either infinite
or negative temperatures. In the case considered in [38],
these athermal occupations only occurred if the coupling
crossed a phase boundary. The appearance of the non-
analyticities can then be used to estimate the location of
these boundaries. However it is at least possible that in
general interacting models (such as the XXZ spin chain
considered in [41, 42], such occupations can be induced
without crossing a phase boundary. We will use low order
perturbation theory to estimate the coupling Jc at which
athermal mode occupations appear, noting that because
of the work of [41, 42] that this Jc may not correspond
to the critical coupling determining the equilibrium phase
transition in the two dimensional quantum Ising model.
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The modes that we will consider in this argument take
the form

ψ†kx,ky (J⊥) =
1√
N

∑
j

eikyjA†j,kx +O(J⊥) + · · · (28)

where A†j,kx is an operator on the j-th chain that creates
a fermion with momentum kx along the chain. We then
want to find the minimum value of J⊥ such that

〈nkx,ky 〉 = 〈i|ψ†kx,ky (J⊥)ψkx,ky (J⊥)|i〉 = 1/2,

where |i〉 is the initial state of the quench (here the
ground state of the system for J⊥ = 0). The mode
for which this will first occur is (kx, ky) = (kx,min, 0) =
(2π/R, 0) as this is the mode with the lowest energy that
couples to the perturbation, and so is easiest to drive
athermal.

To compute 〈nkx,min,0〉 we expand it in terms of the
eigenstates {|s〉} of the post-quench Hamiltonian

〈nkx,min,0〉 =
∑
s

|〈s|i〉|2〈s|nkx,min,0|s〉. (29)

We will suppose that this sum is dominated by states
involving at most one fermion on any given chain. The
only such state |s〉 that then contributes to this sum is

|kx,min, 0;−kx,min, 0〉 = ψ†kx,min,0
(J⊥)ψ†−kx,min,0

(J⊥)|0〉.
While we cannot write down an exact expression for this
state as a function of J⊥, we are able to write down to
second order the contribution to this state coming from
the J⊥ = 0 vacuum |0〉 – the only part that matters in
computing the overlap 〈s|i〉. To second order we have

|kx,min, 0;−kx,min, 0〉 = ψ†kx,min,0
(0)ψ†−kx,min,0

(0)|0〉

+
σ̄2J⊥
E2
kx,min

(i− 2J⊥σ̄
2

E2
kx,min

+O(J2
⊥))|0〉+ · · · . (30)

We use here the conventions and notation of [36]. In
particular σ̄ = 1.35783834 . . . and E2

kx
= ∆2 + k2

x. Thus
to second order in J⊥ we have

〈nkx,min,0〉 =
|∆|1/2σ̄4J2

⊥
E4
kx,min

(1 +
4|∆|1/2σ̄4J2

⊥
E4
kx,min

). (31)

For R → ∞ the value of j⊥ = J⊥/ |∆|7/4 at which
〈nkx,min,0〉 = 1/2 is j⊥ = 0.27119 . . .. While this value
of j⊥ is considerably larger than the value of jc = 0.185
given in [21] for where the equilibrium phase transition
occurs, we can at least partially attribute this difference
to the neglect both of terms higher order in J⊥ in this
computation as well as J⊥ = 0 states involving more than
one fermion per chain.
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