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ABSTRACT 

Using differential thermal analysis, we investigated the parameters of the processes of melting and crystallization of the 
CdTe-Al system near the CdTe side (CdTe + 2 mol. % Al, CdTe + 4 mol. % Al, and CdTe + 6 mol. % Al). By varying 
the melts’ intermediate isothermal holding temperature for 10, 30, and 60 minutes whilst heating them up to 1423 K, we 
determined the conditions needed for the melts’ full homogenization. We demonstrated that increasing the Al content 
changes the mechanism of the melting of the CdTe phase. 
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INTRODUCTION 

AIIBVI compounds, in particular cadmium telluride,  are some of the most widely used among all other semiconductor 
materials. The main fields to which they contribute are IR optics, room temperature X- and γ-ray detectors, 
optoelectronics, nonlinear optics, and photovoltaics.1, 2. By appropriately doping the CdTe, we can tune the optical and 
electrical properties of the material over a broad range. Using solid solutions based on CdTe allows us to obtain the 
desired values of the band-gap for different applications.  

It is well known that a system of solid solutions of CdTe-In offers great potential for improved electron lifetimes and 
enhanced electrical resistivity compared to undoped CdTe3. Similar to In, such compensatory action was shown4 for 
other Group-III elements, namely aluminum, which provides the material with high resistivity. Thus, using aluminum as 
a donor impurity to obtain material with n-type conductivity and high resistivity is a promising approach as an 
alternative to In, or as a co-dopant with In. However, the solid-solution system CdTe-Al still has not been investigated 
adequately6. Perhaps, this lack is caused by the complexities in synthesizing this type of material and by the active 
interaction of aluminum with oxygen. 

The aim of our work was to synthesize CdTe-Al alloys with a relatively small Al content (<6%) and to investigate their 
melting and crystallization particularities by differential thermal analysis (DTA). Use of this technique allows us to 
determine the phase transformations during heating / cooling near the melting point of CdTe, the temperature range of 
the solid solutions’ melting and crystallization, and the kinetics of the processes. Having such data is important in 
allowing us to predict the properties and methods of synthesis and production of semiconducting alloys of CdTe-Al 
crystals. In addition, despite numerous studies of the Cd-Te system, there still is continuing discussion on the placing of 
its solidus and liquidus lines, and the precise value of CdTe’s melting point7, 8. 

EXPERIMENTS 

We synthesized batches of CdTe-Al (m = 5 g) at 1393 K from pre-made high-purity CdTe and elemental Aluminum in 
graphite crucibles that were placed in quartz ampoules. The ampoules then were evacuated to 10-3 mbar. The material for 
differential thermal analyses in amounts of 500 mg next was quantitatively moved to graphitized ampoules for the DTA 
and then sealed, leaving a minimum of free space. 
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DTA measurements were conducted on an automated DTA setup similar to that described in9. The experiments were 
carried out with a heating/cooling speed of 10 K/min.  A separate series of investigations were carried out using controls 
by a programmable Maxthermo MC2738 thermocontroller within the range of ± 0.5,K from the set temperature. We 
used S-type thermocouples (platinum/platinum + 10% rhodium) to measure the temperature. Each measurement was 
repeated  three times. 

RESULTS AND DISCUSSION 

Figs. 1a-d show typical thermograms of the phase-melting process of pure CdTe and CdTe-Al in a dynamic heating 
regime.  The sharp breaks in the thermograms of the CdTe samples after heating at 1366 and 1379 K demonstrated the 
sensitivity of the DTA apparatus to both the large endothermic effect of melting and the small additional endothermic 
effect that is peculiar to the melting process10-14.  Increasing the aluminum content in the system proportionately 
diminishes the endothermic effect at the start of the melting process and increases the baseline curvature. This 
compounds the difficulties in precisely determining the “melting point” of the solid solution from the thermograms. So, 
the “melting points” can be estimated as 1358, 1342 and 1339 K in the case of CdTe + 2 mol. % Al, CdTe + 4 mol. % 
Al, and CdTe + 6 mol. % Al, correspondingly (Figs. 1b-d). It resembles the situation with indium as the dopant in 
CdTe14. However, opposite to the indium effect the aluminum doping prevents any additional endothermic contributions 
peculiar to CdTe melting process.  Interestingly, according to the data in Figs. 1b-d, the temperature of the crystallization 
of the CdTe phase crystallization became “insensitive” to the increase in the content of doping impurities (1357, 1360 
and 1359 K for the alloys with 2, 4 and 6 mol. % Al, correspondingly) and even exceeds the “melting temperature”. 
Considering that that one of the reasons of such discrepancy can be the non-equilibrium of the heating process, we 
heated the sample up to 1423 K with an intermediate isothermal dwell to determine the precise temperature of the phase 
transition of these alloys. For example, an endothermic effect is registered even after a rather high temperature dwell of 
60 minutes of the CdTe + 2 mol % Al melt (Fig. 1e). Therefore, we systematically investigated the kinetics of the CdTe-
based phase melting and crystallization processes for these alloys (Fig. 2). 

We used three isothermal holding durations (10, 30 and 60 minutes) to determine the time required for the system to 
shift to equilibrium after the start of the melting of the CdTe phase. Comparing the area of the “full” endothermic effect 
in the thermogram of dynamic heating, Stotal (see examples in Figs. 1b-d) with the area of the endothermic effect after 
heating the sample after the dwell Sdwell (Fig. 1e, marked in green), we can determine the volume fraction (φ) of solid-
like species (clusters) with strong bonds that remain in the melts. Thus, the φ value was defined as the ratio of the 
melting peak area Sdwell after an intermediate isothermal dwell to the total area of the melting peak obtained under 
dynamic heating conditions Stotal. The dwell temperature dependencies of φ for three alloys we investigated after various 
dwell durations are shown in Fig. 2. 

According to the data in Figs. 2a-c , the CdTe phase begins to melt near 1330, 1300, and 1290 (±1) K in the alloys with 
2, 4, and 6 mol. % Al, which is considerably lower than “melting points” we estimated in thermograms of dynamic, non-
equilibrium heating (Figs. 1b-d). Fig. 2 also presents the temperature of the system’s complete transformation into a 
liquid (at 1370, 1365, and 1362 K, correspondingly), wherein the φ value reaches zero. As was expected, in most cases 
the longer duration that the system dwelled at an intermediate high temperature resulted in a lower value of φ.  The 
higher the dwell temperature, the shorter the duration of dwell time that is needed. Therefore, Figs. 2(a-c) indicate the 
conditions of a sufficiently rapid transition of the system to the equilibrium state, which may be caused by the influence 
of aluminum atoms in the solid-phase structure.  
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Fig. 1. Typical thermograms of the melting and crystallization of CdTe (a) and CdTe-Al alloys: b, e) - CdTe + 2 mol. % Al; 
c) - CdTe + 4 mol. % Al; d) - CdTe + 6 mol. % Al in dynamic heating regime and  with intermediate isothermal holding (e)
followed by next heating to 1423 K 

Comparing the logarithmic dependencies of the volume fraction of the remaining solid phase in the melt versus the 
reciprocal dwell temperature (Figs. 2d-f), we see that the slope of the straight line sharply changes at a certain 
temperature for each of the three samples. Such temperatures are indicated in Fig. 2 by dotted lines. That situation is 
similar to the one for pure CdTe and CdTe with addition of 2 mol. % Ge or Sn13. This bend denotes a change in the 
mechanism of the solid phase melting with the rise in temperature.  Probably this break indicates the existence of various 
structural units in the melts at higher and lower temperatures compared with the temperature of the break.  The data of 
Figs. 2d-f  also leads us to a conclusion about the difference in the mechanism of melting of the CdTe phase between the 
alloy with 2 mol. % Al and in those that contain 4 and 6 mol. % Al.  
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Fig. 2. The temperature dependencies of φ solid state in (a, d) CdTe + 2 mol. % Al, (b, e) CdTe + 4 mol. % Al, and (c, f) CdTe + 6 
mol. % Al melts after the isothermal dwell. 

This conclusion is confirmed by another DTA experiment, namely by the correlations between the temperatures of the 
CdTe phase crystallization Ts and the system’s dwell temperature Tdwell (Fig. 3). As illustrated in Fig. 3, lower dwell 
temperatures cause crystallization at higher temperatures.  In general, Ts declined when Tdwell increased. It signifies that 
the applied thermodynamic conditions are enough to assure full homogenization of the melt. However, the mutual co-
location of atoms needed for rapid nucleation during next cooling is preserved in the liquid phase. 

A different situation is observed in the alloy CdTe + 4 mol. % Al (Fig. 3b). At low dwell temperatures, crystallization 
occurred near the temperature of the dwell demonstrating the “memory” of the melt “crystal-like” structure. Only at 
rather high superheating (1370 – 1420 K) did this “memory” disappear and Ts stabilized independently on a superheating 
value. Similar regularities can be observed in the case of CdTe + 6 mol. % Al case (Fig. 3c). Thus, we can define the 
temperature ranges wherein the liquids became two-structural systems (amorphic matrix and crystal-like clusters), and 
the temperatures of the melts where they show full homogenization. 

and the temperatures of the melts’ full homogenization. 
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Fig.3. Temperature of crystallization versus temperature of dwell dependences for (a) CdTe + 2 mol. % Al, 
(b) CdTe +4 mol. % Al, and (c) CdTe + 6 mol. Al %. 

Consequently, we have established the melting temperature of alloys CdTe + 2, 4, 6 mol. % Al that respectively are 
1329, 1300, and 1290 K. We assume that in those alloys with higher aluminum content, a second phase with an 
unexplored composition exists that has a melting temperature of 1362 K. Moreover, the melts of the investigated alloys 
may contain some structural formations or forms of self-organized atoms of liquid that are based on aluminum. They 
serve as a prerequisite for the future formation of crystalline phases in the melt.  The duration of the isothermal holding 
has no substantial influence on these processes. 
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