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We derive a coupled set of equations that describe the non-equilibrium evolution of cumulants of
critical fluctuations for space-time trajectories on the cross-over side of the QCD phase diagram.
In particular, novel expressions are obtained for the non-equilibrium evolution of non-Gaussian
Skewness and Kurtosis cumulants. Utilizing a simple model of the space-time evolution of a heavy-
ion collision, we demonstrate that, depending on the relaxation rate of critical fluctuations, Skewness
and Kurtosis can differ significantly in magnitude as well as in sign from equilibrium expectations.
Memory effects are important and shown to persist even for trajectories that skirt the edge of the
critical regime. We use phenomenologically motivated parameterizations of freeze-out curves, and
of the beam energy dependence of the net baryon chemical potential, to explore the implications of
our model study for the critical point search in heavy-ion collisions.

I. INTRODUCTION

The structure of the QCD phase diagram has attracted
a large number of theoretical and experimental stud-
ies [1–3]. Of high interest is the possible existence of
a conjectured critical point [4, 5] in the phase diagram.
This critical point is the end point of a first-order phase
transition line that separates, in the chiral limit, a chi-
rally symmetric quark-gluon plasma (QGP) phase from
a hadron matter phase of QCD. An entire experimental
program, the Beam Energy Scan (BES) at the Relativis-
tic Heavy-Ion Collider (RHIC), is dedicated to searches
for the QCD critical point [6, 7].

A universal feature of a system near the critical point
is the growth and divergence of the fluctuations of the
order parameter. These fluctuations can be quantified
by the variance of the critical field (the Gaussian cumu-
lant), as well as higher non-Gaussian cumulants such as
skewness and kurtosis, which correspond, respectively, to
the third and fourth cumulants. They scale with the cor-
relation length ξ, which is large near the critical regime
and divergent at the critical point.

As pointed out in Ref. [8], the non-Gaussian cumulants
are much more sensitive to ξ than the variance. For ex-
ample, while the variance grows as ξ2, the kurtosis grows
far more rapidly as ξ7. Further, even qualitative features
of the non-Gaussian cumulants, such as a change in sign
and the associated non-monotonicity, can signal the pres-
ence of criticality in the QCD phase diagram [9–11]. As
observed in Ref. [11], the sign of kurtosis in equilibrium is
negative when the critical point is approached from the
crossover side and positive when approached from the
first order transition side.

These enhanced near critical fluctuations are accessible

through measurements of event-by-event fluctuations of
various conserved quantities in heavy-ion collisions [11–
13] as well as fluctuations of particle multiplicities [14,
15]. As the QCD phase diagram is scanned by varying the
beam energy, non-Gaussian event-by-event fluctuations
of multiplicities are generically expected to show non-
monotonic behavior in the proximity of a critical point.
Uncovering such behavior, and cleanly identifying this
behavior as a signature of criticality, is a major focus of
the RHIC BES program [16–19].

The above expectations are entirely based on the as-
sumption that the soft modes responsible for critical fluc-
tuations are in equilibrium with the medium. Indeed
if this were the case, fluctuations of conserved quanti-
ties measured in heavy-ion experiments could be directly
compared to equilibrium lattice QCD calculations [20–
23]. However the expanding medium created in heavy-
ion collisions only spends a limited amount of time in the
QCD critical regime and it is unlikely the critical modes
remain in equilibrium in this duration. Therefore the rel-
evant cumulants can in principle differ considerably from
their equilibrium values [12, 24]. For instance, the time it
takes the correlation length to reach its equilibrium value
scales as τeff ∼ ξz, which defines the dynamic scaling ex-
ponent z [25, 26].

Since the non-Gaussian cumulants grow with higher
powers of the correlation length, their relaxation times to
their equilibrium values may be significantly larger. Even
the sign of a non-Gaussian cumulant may differ from its
equilibrium value due to this critical slowing down of re-
laxation rates. These simple considerations suggest that
non-equilibrium memory effects may play an important
role in interpreting the results of BES measurements, and
conversely, in applying lattice results to predict detailed
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features of the data.

A number of papers have previously investigated crit-
ical dynamics off-equilibrium. The quasi-stationary dy-
namics of Gaussian fluctuations near the critical point
was studied in Ref. [24] by using a model equation to
compute the relaxation of the correlation length. Gaus-
sian fluctuations in presence of the critical point were
also investigated within a hydrodynamic approach [27].
Further, the hydrodynamic evolution of a quark-gluon
fluid that is coupled to the classical real-time evolution of
long wavelength modes of chiral fields has been explored
in a number of effective models that contain a critical
point [28–30]. These models have also been employed to
investigate the out-of-equilibrium evolution of the rele-
vant correlation length. Another class of models employs
a coupled Boltzmann-Langevin–Vlasov kinetic approach,
with conserved charges to model the evolution of critical
fluctuations through chemical and kinetic freeze out [31].
These can be contrasted [32] with results from UrQMD,
a hadronic event generator that does not contain criti-
cal fluctuations, to isolate genuine effects due to critical
fluctuations. All the studies outlined focus on the evo-
lution of Gaussian cumulants. (See Refs. [33, 34] for the
evolution of higher order cumulants in a system with-
out critical phenomena.) Analyses incorporating critical
fluctuations of non-Gaussian cumulants off-equilibrium
are sorely lacking.

This paper is a first attempt to address this gap in
our knowledge of non-Gaussian fluctuations and to un-
derstand its consequences. In particular, we compute
the real-time evolution of non-Gaussian cumulants of the
critical field to estimate memory effects in the vicinity of
the QCD critical point. The expressions for the cumu-
lants are derived from the Fokker-Planck equation deter-
mining the evolution of the non-equilibrium probability
distribution function of the critical field σ. One obtains
a set of coupled first order differential equations which
describe the evolution of the mean, variance, skewness
and kurtosis, on the cross-over side of the QCD critical
scaling regime, for trajectories that are close to but not
at the critical point. This coupled set of equations takes
into account universal equilibrium properties and non-
equilibrium dynamics in the QCD critical regime and is
the appropriate theoretical framework to study the evo-
lution of non-equilibrium cumulants in that regime.

The QCD critical point lies in the static universality
class of the 3-dimensional Ising model [5] for which the
equilibrium cumulants are well known [35]. The latter
can therefore be used to fix the equilibrium values of the
cumulants of the QCD critical field. With these fixed,
the non-equilibrium values of the cumulants can be de-
termined from our evolution equations. A key quantity
determining the non-equilibrium evolution of cumulants
is the effective relaxation time τeff of critical fluctuations.
This quantity is unknown and can only be estimated to
be a strong interaction time scale. For reasonable varia-
tions in its value, we will show that strong memory effects
are seen for the non-Gaussian cumulants.

While our expressions in terms of Ising variables are
universal, the relation of these to the temperature T and
the chemical potential µ in QCD is non-universal, and
is a source of significant systematic uncertainty. Never-
theless, with physically motivated assumptions, one can
obtain expressions for the cumulants as a function of tem-
perature and chemical potential. There is a significant
amount of phenomenological information from thermal
model ratios of particle multiplicities that allows one to
extract the chemical freeze-out curve in temperature and
chemical potential in the QCD phase diagram. Further,
the particle ratios, with model assumptions, can be used
to relate µ to the center of mass energy

√
s of the heavy

ion collision. With these phenomenological inputs, our
results can be used to provide qualitative estimates of
the importance of memory effects for the BES.

We will demonstrate that, depending on the trajectory
followed, the sign of Skewness and Kurtosis can flip rel-
ative to their equilibrium values. These results suggest
the need for caution in interpreting, on the basis of equi-
librium expectations, the results of experiments. We also
note that if the system were in equilibrium throughout
its evolution in the T -µ plane, it would have to pass very
close to critical point to be sensitive to critical fluctu-
ations. On the other hand, if memory effects are im-
portant, even a trajectory some distance away from the
critical point may be sensitive to it.

The paper is organized as follows. In Sec. II, we review
the equilibrium properties of the σ field in the critical
regime and derive the non-equilibrium evolution equa-
tions for cumulants. Our results up to this point are
completely general and apply equally to all systems that
lie in the 3-D Ising universality class. In Sec. III A, we
map our results to the QCD critical regime. Because
the QCD critical point lies in the universality class of
the 3-D Ising model, we will be able to specify the equi-
librium properties that are necessary inputs for apply-
ing our equations to study the evolution of cumulants in
the QCD critical regime. We construct a simple model
of the space-time evolution of a heavy-ion collision in
Sec. III B. In Sec. III C, we solve the evolution equations
and present results for a representative trajectory pass-
ing through the critical regime. We further extend our
formalism to model the beam energy scan in Sec. IV. We
summarize our results and discuss their implications for
the QCD critical point search in Sec. V.

II. EVOLUTION EQUATIONS FOR
CUMULANTS

A. Critical fluctuations in equilibrium

We begin by considering the critical field σ(x) and its
zero momentum mode

σ ≡ 1

V

∫
d3xσ(x) , (2.1)
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where V is the volume. The fluctuations of this zero-
mode σ-field are described by the probability distribution
P (σ; τ) which in general depends on the (proper) time
τ . Introducing the average of any σ-dependent functions
with respect to P (σ; τ),

〈. . .〉 =

∫∞
−∞ dσ (. . .)P (σ; τ)∫∞
−∞ dσ P (σ; τ)

, (2.2)

one can define the expectation value of the σ-field M(the
“magnetization”) and the cumulants of the σ-field as

M(τ) ≡ 〈σ〉 , δσ ≡ σ −M(τ)

κ2(τ) ≡ 〈(δσ)
2〉 , κ3(τ) ≡ 〈(δσ)

3〉 ,
κ4(τ) ≡ 〈(δσ)

4〉 − 3 [κ2(τ)]
2
. (2.3)

Before discussing the evolution of non-equilibrium crit-
ical fluctuations, it is useful to first review their proper-
ties in equilibrium. For the static universality class of
the 3-D Ising model, the dependence of the equilibrium
cumulants κeq

n on the Ising variables (the reduced tem-
perature r = (t−tc)/tc, where t is the Ising temperature,
tc the Ising critical temperature and h the rescaled mag-
netic field) is universal. The explicit expressions for these
are given in Appendix A.

Alternatively, the critical fluctuations in equilib-
rium can be described by the distribution P0(σ) ∼
exp (−E0(σ)/T ), where T is the temperature. Here we
expand the effective action functional E0(σ) around the
minimum σ0 in gradients and powers of σ(x) as

E0(σ) =

∫
d3x

{
1

2
[∇σ(x)]

2
+

1

2
m2
σ [σ(x)− σ0]

2
+

λ3

3
[σ(x)− σ0]

3
+
λ4

4
[σ(x)− σ0]

4

}
,

(2.4)

following Refs. [8, 11]. Near a critical point, the mass
(mσ) of the σ field, as well as the other parameters in
Eq. (2.4), scale with the equilibrium value of the correla-
tion length ξeq as [8]1

m−1
σ = ξeq , σ0 = σ̃0T (Tξeq)−1/2 ,

λ3 = λ̃3T (Tξeq)−3/2 , λ4 = λ̃4(Tξeq)−1 . (2.5)

Expressed thus, the dimensionless parameters σ̃0, λ̃3, λ̃4

do not depend on ξeq and therefore remain finite when
approaching the critical point. Because in this work we
are interested in the fluctuations of the zero momentum
mode of the σ field, we will neglect the spatial dependence

1 Following Refs. [8, 11], we shall neglect the anomalous scaling
dimension η, which is only of order few percent, in this work.

of σ(x). Consequently, the equilibrium distribution be-
comes

P0(σ) ∼ exp (−V4Ω0(σ)) , V4 ≡
V

T
, (2.6)

where Ω0(σ) is a function of the zero mode of the σ-field,

Ω0(σ) =
1

2
m2
σ(σ−σ0)2+

λ3

3
(σ−σ0)3+

λ4

4
(σ−σ0)4 . (2.7)

An important quantity characterizing the probability
distribution Eq. (2.6) is the ratio between the correlation
length and the size of the system,

ε =

√
ξ3
eq

V
. (2.8)

Throughout this work, we will work in the scaling regime
(near, but not at the critical point) where the correlation
length ξ is larger than any microscopic scale Lmicr but
smaller than the size of the system, Lmicr � ξ � L.
Hence ε� 1. In this regime, the kinetic term in Eq. (2.4)
is proportional to σ2/L2 and is small compared to the
mass term σ2/ξ2

eq. This justifies our dropping the kinetic
term in Eq. (2.4). Further, truncating the expansion at
the λ4 term in Eq. (2.4) is justified as well because higher
order terms are suppressed for small ε.

Treating ε as an expansion parameter enables us to
relate the parameters σ0,mσ, λ3, λ4 to the equilibrium
“magnetization” M eq and the cumulants κeq

n , n = 2, 3, 4.
To leading power in ε, we obtain,

M eq = σ0 , κeq
2 =

ξ2
eq

V4
, κeq

3 = −2λ3

V 2
4

ξ6
eq ,

κeq
4 =

6

V 3
4

[
2(λ3ξeq)2 − λ4

]
ξ8
eq , (2.9)

where we have employed Eq. (2.2), (2.3) and (2.7). This
result is in agreement with Ref. [8]. Using Eq. (2.5),

we also recover the scaling behavior M eq ∼ ξ
−1/2
eq , κeq

2 ∼
ξ2
eq, κ

eq
3 ∼ ξ

9/2
eq , κeq

4 ∼ ξ7
eq.

B. Evolution equation for cumulants

Now that we have established the behavior of the equi-
librium cumulants in our approach, we will turn to their
non-equilibrium evolution with proper time τ . The non-
equilibrium transport properties of fluids near a critical
point depend on their dynamical universality class; these
were formalized in the classification scheme of Ref. [25].
In the QCD case, which according to [26, 36–38] should
lie in the model H universality class of [25], the relevant
fields are those of the chiral order parameter (the chiral
condensate) and the baryon density.

It was shown in [26] that the relevant hydrodynam-
ical equations for the space-time evolution of these two
fields can be expressed as a coupled set of Langevin equa-
tions. In the late time, long wavelength hydrodynamic
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asymptotic limit, the corresponding eigenvalue problem
can be solved, revealing only one long wavelength diffu-
sive mode, with a diffusion constant that goes to zero at
the critical point. As argued in Ref. [26] , both the chiral
condensate and the baryon density fluctuate on these hy-
drodynamic time scales, with the chiral condensate seen
as “tracing” the profile of the baryon density as it relaxes
to its equilibrium value.

The diffusive properties of this critical mode are cap-
tured by the Fokker-Planck equation for the relaxation
to equilibrium of the distribution P (σ, τ), expressed as

∂τP (σ; τ) =
1

(m2
στeff)

{
∂σ
[
∂σΩ0(σ) + V −1

4 ∂σ
]
P (σ; τ)

}
,

(2.10)

where τeff is the effective relaxation rate. As we shall
discuss further shortly, τeff scales with a universal power
of the correlation length ξ that is characteristic of model
H.

In a static medium where T and V are independent of
time, it is easy to check that Eq. (2.6) is the static solu-
tion to Eq. (2.10). For an expanding medium, the solu-
tion is more involved. Now Ω0(σ) also depends on time
since the thermodynamical variables such as the temper-
ature and the chemical potential change with time. Nev-
ertheless, as long as the expansion rate does not exceed
the characteristic time scales in the system, Eq. (2.10)
will describe the evolution of the distribution towards a
quasi-stationary fixed point solution.

We shall now derive the evolution equations for the cu-
mulants. We first note that for any function g(σ) which
does not grow exponentially in the large σ limit, the evo-
lution of the expectation value 〈g(σ)〉 is given by

∂τ 〈g(σ)〉 =

∫ ∞
−∞

dσg(σ)∂τP (σ; τ)

=
1

(m2
στeff)

{∫ ∞
−∞

dσg(σ) [Ω′0(σ)P (σ; τ)]
′

+V −1
4

∫ ∞
−∞

dσg(σ)P ′′(σ; τ)

}

= − 1

(m2
στeff)

[
〈g′(σ)Ω′0(σ)〉 − 〈g

′′(σ)〉
V4

]
, (2.11)

where we have used Eq. (2.10) and the definition
Eq. (2.2). Here and hereafter, we will use the prime
symbol to denote the derivative with respect to σ. To
obtain the last line in the equality above, we performed
an integration by parts.

We will first study the evolution of M by taking g(σ) =
σ. From Eq. (2.11), we immediately obtain

∂τM(τ) = − 1

(m2
στeff)

〈Ω′0(σ)〉 , (2.12)

where we have used Eq. (2.3). To express the R.H.S of
Eq. (2.12) in terms of cumulants, we first Taylor expand

Ω′0(σ) as a function of σ around σ = M :

Ω′0(σ) = Ω′0(M) + Ω′′0(M)δσ +
Ω′′′0 (M)

2!
δσ2

+
Ω′′′′0 (M)

3!
δσ3 . (2.13)

As Ω0(σ) is a polynomial of σ, the above expansion is
exact. Substituting Eq. (2.13) into Eq. (2.12) and using
Eq. (2.3), we obtain,

∂τM(τ) = − 1

(m2
στeff)

{
Ω′0(M) +

Ω′′′0 (M)

2!
κ2(τ)

+
Ω′′′′0 (M)

3!
κ3(τ)

}
. (2.14)

The evolution equation Eq. (2.14) up to this point is ex-
act but not closed as the R.H.S of Eq. (2.14) depends
on the non-equilibrium values of κ2, κ3. We shall now
demonstrate that the the evolution of κ2, κ3 decouples
from the evolution of M(τ) for small values of ε.

In order to arrive at this result, we first introduce the
dimensionless functions

Fn(M) ≡ V4

[
ε2−nbn∂nσΩ0 (σ)

] ∣∣∣∣
σ=M

, n = 1, 2, 3, 4 ,

(2.15)

which, by construction, are finite in the small ε limit. In
Eq. (2.15), the dimensionful quantity b is the square root
of the variance κeq

2 in Eq. (2.9),

b =
√
κeq

2 ≡

√
ξ2
eq

V4
. (2.16)

The reader should keep in mind that that, for an ex-
panding medium, b will depend on τ due to the change
of both V and ξeq with proper time. Explicitly working
out Eq. (2.15), we obtain

F1(M) = δM̃
[
1 + λ̃3(δM̃) + λ̃4(δM̃)2

]
,

F2(M) = 1 + 2λ̃3(δM̃) + 3λ̃4(δM̃)2 ,

F3(M) = 2
[
λ̃3 + 3λ̃4(δM̃)

]
, F4 = 6 λ̃4 . (2.17)

On the R.H.S, we have defined, for convenience, the di-
mensionless quantity δM̃ ≡ ε (M − σ0) /b.

Using Eq. (2.3), the evolution equation for M(τ) can
be expressed as

∂τM(τ) = −τ−1
eff

(
b

ε

){
F1(M)

+
ε2

2

(κ2

b2

)
F3(M) +

ε4

6

( κ3

ε b3

)
F4

}
.(2.18)

We shall now consider Eq. (2.18) in the small ε limit.
In powers of ε, we will count

εM

b
,
κ2

b2
,
κ3

εb3
,
κ4

ε2b4
, ∼ O(1) . (2.19)
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This power counting, as is clear from Eq. (2.9), holds for
the equilibrium cumulants. In the following, we will as-
sume that Eq. (2.19) also holds for the non-equilibrium
cumulants. To the extent that the Fokker-Planck “mas-
ter” equation is valid, this assumption is reasonable. We
will confirm later that this power counting is consistent
with our evolution equations at all times. Consequently,
the κ2 and κ3 terms on the R.H.S of Eq. (2.18) are sup-
pressed by ε2 and ε4 respectively and one obtains the
closed form expression for M to be

∂τM(τ) = −τ−1
eff

(
b

ε

)
F1(M)

[
1 +O(ε2)

]
.(2.20a)

We wish to emphasize again that while b, ε is independent
of time for a static medium, for the expanding medium
we will study in this paper ε, b will be time dependent due
to the change of volume V (τ), temperature T (τ) and ξeq.

The above derivation can be straightforwardly ex-
tended to obtain evolution equations for higher cumu-
lants. The details are given in Appendix. B. In general,
the evolution of κn is coupled to both lower cumulants
κn−1, κn−2 and higher cumulants κn+1, κn+2. However
the coupling to higher cumulants is suppressed by pow-
ers of ε. Keeping contributions at leading order in ε from
Eq. (B8) in Appendix. B, we obtain the expressions,

∂τκ2(τ) = −2 τ−1
eff

(
b2
) [(κ2

b2

)
F2(M)− 1

] [
1 +O(ε2)

]
,

∂τκ3(τ) = −3 τ−1
eff

(
ε b3
) [( κ3

ε b3

)
F2(M) +

(κ2

b2

)2

F3(M)

]
×
[
1 +O(ε2)

]
,

∂τκ4(τ) = −4 τ−1
eff

(
ε2 b4

){ ( κ4

ε2 b4

)
F2(M)

+ 3
(κ2

b2

)( κ3

ε b3

)
F3(M) +

(κ2

b2

)3

F4

}
×
[
1 +O(ε2)

]
. (2.20b)

As the R.H.S of Eqs. (2.20) only depends on M,κn, n =
2, 3, 4, this system of equations is closed. Eqs. (2.20) are a
key result of this paper, and to best of our knowledge, are
new in the literature. Employing the power counting in
Eq. (2.19), one observes that the R.H.S of the evolution
equations satisfies this power counting. Therefore if ini-
tially the power counting Eq. (2.19) is satisfied, it is pre-
served for all subsequent times. Since in our derivation
we do not assume that the medium is static, Eqs. (2.20)
are well suited for studying dynamical systems such as
those created in heavy-ion collisions.

C. Two limiting cases

It is instructive to examine the evolution equations
Eq. (2.20) in limiting cases. We first consider the limit
where the equilibrium probability distribution P0(σ) is

the Gaussian distribution,

Ω0(σ) =
1

2
m2
σ (σ − σ0)

2
. (2.21)

For this case, the equilibrium values of κn are simply,

M eq = σ0 , κeq
2 = b2 , κeq

3 = κeq
4 = 0 . (2.22)

Further, F1 = δM̃, F2 = 1, F3 = F4 = 0, and Eqs. (2.20)
reduce to

∂τκn = −n τ−1
eff [κn(τ)− κeq

n ] , n = 1, . . . (2.23)

where note that κ1 is shorthand for the magnetization
M . Eq. (2.23) expresses the fact that if the equilibrium
probability distribution of the σ-field is a Gaussian, the
evolution of cumulants are decoupled. For κn, the damp-
ing rate is proportional to n; hence the higher cumulants
approach their equilibrium values earlier than lower cu-
mulants.

With certain assumptions, the results in this Gaus-
sian limit can be shown to be identical to those obtained
previously in Ref. [24]. The latter follow from the rate
equation conjectured to describe the evolution of the non-
equilibrium correlation length,

∂τ
[
ξ−1(τ)

]
= −τ−1

eff

[
ξ−1(τ)− ξ−1

eq (τ)
]
. (2.24)

To facilitate a comparison of this equation to Eq. (2.23),
one identifies the non-equilibrium correlation length to
be

ξ(τ) ≡
√
V4 κ2(τ) . (2.25)

Eq. (2.23), for n = 2, can then be expressed as

∂τ

[
ξ2(τ)

V4

]
= −2 τ−1

eff

[
ξ2(τ)

V4
−
ξ2
eq

V4

]
. (2.26)

If we require the medium to be static and require further
that deviations of ξ(τ) from the equilibrium value ξeq are
small, we then find that Eq. (2.26) reduces to Eq. (2.24)
after a rescaling of τeff by a factor of 2.

Another interesting limit is the near equilibrium limit
where δκn = κn − κeq

n becomes small. In this case, the
evolution equations can be linearized to read,

∂τM(τ) = −τ−1
eff δM , ∂τκ2(τ) = −2 τ−1

eff δκ̃2 ,

∂τκ3(τ) = −3 τ−1
eff (εb3)

[(
δκ3

εb3

)
+ 4λ̃3

(
δκ2

b2

)]
,

∂τ [κ4(τ)] = −4 τ−1
eff (ε2b4)

{ (
δκ4

ε2b4

)
+ 6λ̃3

(
δκ3

εb3

)

− 6
(

2λ̃2
3 − 3λ̃4

)(δκ2

b2

)}
. (2.27)

From the power counting in Eq. (2.19), all the terms in
the [. . .] of the R.H.S of Eq. (2.27) are in the same order
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in power of ε. One can make the following observations
about the evolution of cumulants in this particular limit-
ing case. Firstly, unlike the Gaussian limit, the evolution
of higher cumulants are coupled to the evolution of κ2.
It follows further, in contrast to the Gaussian limit, that
the higher cumulants will approach equilibrium only after
M and κ2 reach their respective equilibrium values.

D. A brief summary

We derived in this section a set of coupled first order
differential equations, Eqs. (2.20), describing the evolu-
tion of the first four cumulants, κn, n = 1, 2, 3, 4 of the
zero mode σ of the critical field in the vicinity of the
critical point. A key feature of these equations is that
the evolution of higher moments are only coupled to the
evolution of lower moments, and not vice versa. One
therefore obtains a closed form system of equations that
can be solved numerically.

In general, the evolution of the first four cumulants
will be coupled to the evolution of higher cumulants,
κn including n > 4 as well. However in the ε � 1
limit, where are results are strictly applicable, we demon-
strated analytically that the coupling of lower cumulants
to higher cumulants is suppressed. Therefore the sys-
tem of equations we derived is applicable for describing
the temporal evolution of moments in the scaling regime
Lmicr < ξeq < L, where ε � 1 is satisfied. For small
values of ε, we have checked explicitly that the difference
between computing the non-equilibrium cumulants from
numerical solutions of the Fokker-Planck master equation
and from solutions of the evolution equations Eqs. (2.20)
is suppressed by ε (see Appendix. B for further discussion
of this point).

We could of course in principle have solved the mas-
ter equation in Eq. (2.10) directly. However, this is
not advisable for both practical and conceptual reasons.
Firstly, from a practical perspective, numerically solving
Eqs. (2.20) is much faster than solving the Fokker-Planck
equation. Furthermore, the interplay between cumulants
is far more transparent in the former approach. From
a conceptual point of view, solving the Fokker-Planck
equation Eq. (2.10) would not give a more faithful repre-
sentation of how cumulants evolve in the critical regime.
This is because an important input into Eq. (2.10) is the
equilibrium distribution function P0(σ), which is not easy
to obtain. From universality, this distribution is also the
equilibrium distribution of the 3-D Ising model. How-
ever, while the cumulants κeq

n in the 3-D Ising model are
known, reconstructing P0(σ) is non-trivial when ε is not
small.

Thus conceptually there is no advantage in solving the
Fokker-Planck equation at large ε and no practical ad-
vantage in solving it for small ε. Hence for the current
state of the art, the derived Eqs. (2.20) provide the most
complete and consistent information, albeit limited, on
the evolution of non-equilibrium moments in the critical

region. We note further that as inhomogeneities may be
important for bubble nucleation in first order transitions,
our studies will be restricted to the cross-over side of the
critical point.

In this work, we shall concentrate on the evolution of
the first four cumulants. It is straightforward to extend
Eqs. (2.20), if so desired, to include the evolution of even
higher cumulants such as κ5 and κ6.

III. OUT OF EQUILIBRIUM EVOLUTION OF
CUMULANTS IN THE QCD CRITICAL REGIME

In this section, we will apply Eqs. (2.20) to study the
evolution of cumulants in the critical scaling regime of
QCD. Our discussion is organized as follows. We will
first discuss the problem in the context of the 3-D Ising
model since it lies in the static universality class of the
QCD critical point. This is important for determining
the equilibrium values of the cumulants that provide the
initial conditions for the evolution equations. In this con-
text, we will also discuss the mapping of the Ising scal-
ing regime to QCD as well as the dynamical universality
class governing the transport properties of the medium
near the critical point. Next, for the purposes of our
study, we will construct a simple model of the medium
that mimics the expanding fireball formed in heavy ion
collisions. Finally, within the framework of this simple
model, we shall present our results for the temporal evo-
lution of cumulants along a representative trajectory in
the QCD critical scaling regime.

A. Fixing parameters from universality

The inputs required to solve Eqs. (2.20) along a tra-
jectory passing through the QCD scaling regime include
σ0,mσ, λ3, λ4 and the effective relaxation time τeff. As
we will also discuss shortly, we will need to know how
V, T change with τ for the case of an expanding medium.

As noted previously, explicit expressions in the 3-
D Ising model for the equilibrium κeq

n (r, h) as a func-
tion of the Ising variables are given in Appendix A.
With these expressions, we can determine the param-
eters σ0(r, h),mσ(r, h), λ3(r, h), λ4(r, h) from Eq. (2.9).
The dependence of τeff on ξeq is universal and can be
expressed in terms of the dynamical critical exponent z
as

τeff = τrel

(
ξeq

ξmin

)z
. (3.1)

Here τrel can be interpreted as the relaxation time at
the outside edge of the critical region, defined by a min-
imal correlation length, ξ = ξmin. As we discussed ear-
lier, the work of Ref. [26] demonstrated that transport
properties in the vicinity the QCD critical point are gov-
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FIG. 1. (Color online) A sketch of the cross-over side of the
scaling regime in the r, h plane. We define the scaling regime
with the criterion ξmin < ξeq < ξmax. To be specific, we take
ξmax/ξmin = 3. The solid curve delineates the boundary of the
critical regime. The dotted curves show where the equilibrium
value of the kurtosis K changes sign. The trajectory A (see
text) is shown with the black dashed vertical line.

erned by the diffusion of the baryon density2. Because
the chiral order parameter is not conserved and mixes
with the baryon density, it does not influence the dy-
namical universality class. Consequently, the dynamical
universality class is that of the liquid-gas phase transi-
tion, model H; in the classification scheme of Ref. [25],
this gives z = 3. It is clear from Eq. (3.1) that the relax-
ation of the critical mode to equilibrium is greatly slowed
down as a spacetime trajectory in the system approaches
the critical point.

Our discussion thus far only relied on the static and dy-
namical universal properties of QCD critical point. How-
ever, as we are interested in the evolution of cumulants in
the QCD critical regime, we also need to specify the map3

between the Ising variables r, h to the QCD variables
T, µ. In the Ising model, the critical point is at r = h = 0.
There is a first order transition for h = 0, r < 0 and a
cross-over for h = 0, r > 0. Therefore the r-axis is the
direction tangential to the line of first order transition
ending at Tc. In contrast, in general, the h-axis will de-
form after the map to the T, µ plane. How this occurs is
not known; for simplicity, we will follow the prescription
of previous studies [24, 27] and assume that h is perpen-
dicular to the r-axis. Specifically, we will assume that h
is parallel to the T axis in the QCD phase diagram. We

2 It is also argued in Ref. [26] that the conservation (or not) of the
isospin density does not influence considerations of universality
because the isospin susceptibility, unlike the baryon susceptibil-
ity, is finite at the critical point.

3 This map is non-universal which is a significant source of system-
atic uncertainty in quantitative dynamical studies in the vicinity
the QCD critical point.

then have following linear mapping relations,

T − Tc
∆T

=
h

∆h
,

µ− µc
∆µ

= − r

∆r
, (3.2)

where ∆T,∆µ denote the width of the critical regime in
the QCD phase diagram. The corresponding width of the
critical regime in the Ising variables ∆r,∆h is defined to
be

ξ(r = ∆r, h = 0) = ξ(r = 0, h = ∆h) = ξmin . (3.3)

The inner and outer boundary of the critical regime in the
r, h plane are illustrated in Fig. 1, where the curves are
obtained from Eq. (A5) and Eq. (A2), for ξmax/ξmin = 3.
The equilibrium kurtosis is even with respect to h. Due
to the potential importance of observables for the sign
of kurtosis, we also plot in Fig. 1 the boundary (from
Eq. (A5) and Eq. (A2)) where the equilibrium kurtosis
flips sign. It is worth pointing out that, in contrast, the
equilibrium skewness is an odd function of h. One may
check from Eqs. (A2), (A3) and Eq. (A5), that the skew-
ness is positive for negative h. Given our choice of the
direction of h-axis in (3.2), the equilibrium skewness is
negative above the cross-over and is positive below it.

B. Simple model of space-time evolution in the
vicinity of the critical point

For a given center of mass energy (
√
s), the space-time

trajectory in the QCD phase diagram, can be determined
by hydrodynamical simulations if the expansion rate is
smaller than characteristic scattering rates. For the il-
lustrative purposes of the study in this paper, a simple
dynamical model of space-time evolution is sufficient. We
will assume that for fixed

√
s, the µ of the fireball is con-

stant during the evolution. This trajectory corresponds
to the vertical dotted line in the critical regime shown
in Fig. 1. It implicitly assumes of course the mapping
relation Eq. (3.2).

We parametrize the evolution of the volume as

V (τ)

VI
=

(
τ

τI

)nV

,
T (τ)

TI
=

(
τ

τI

)−nV c
2
s

, (3.4)

where VI and TI are respectively the volume and tem-
perature of the system at τI , the time at which the tra-
jectory first hits the boundary of critical regime. Here
nV controls the rate of expansion; nV = 3 corresponds
to a 3 dimensional Hubble-like expansion and nV = 1,
a 1 dimensional Bjorken-like expansion. To obtain T (τ)
in Eq. (3.4), we assumed that the total entropy is ap-
proximately conserved during the evolution, and hence
the entropy density goes as s(τ) ∼ τ−nV . We also used
the relation d log T/d log s = c2s, where c2s is the speed
of sound. Even at the highest heavy ion collision ener-
gies, the system is more Hubble-like than Bjorken-like
when trajectories approach the critical point. We will
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therefore take nV = 3 for our study. Further, guided
by lattice measurements [39–42] which indicate that c2s is
around 0.15 near the QCD cross-over line, we will pick
this value for the study in this paper.

Finally, we need to specify the initial conditions for
the solution of Eqs. (2.20). We will assume initially that
M,κn, n = 2, 3, 4 are equal to their equilibrium values at
τ = τI . Choosing the initial volume is tricky, because, for
the reasons outlined previously, we wish to ensure that
ε� 1 at all times. We do this by requiring that the max-

imal value of ε is imposed to be εc ≡
√

ξ3max

Vc
= 0.1. Here

Vc is the volume when the trajectory followed by the sys-
tem crosses Tc in the cross-over region. As long as the
change of the equilibrium correlation length is faster than
the expansion of the volume, εc gives the upper bound
of ε during the evolution of the medium4. For instance,
for ξmax = 3 fm, εc = 0.1 corresponds to Vc ≈ (14 fm)3.
We can then use the time evolution of the temperature
in Eq. (3.4) to determine τI , and subsequently the corre-
sponding equation for V (τ) to determine VI in terms of
τI .

With these model assumptions, we are now ready
to solve Eqs. (2.20) for each given trajectory passing
through the critical regime. Our results will only de-
pend on one dimensionless parameter, τrel/τI , where τrel

is the relaxation time at the boundary of critical regime.
As there are no extant first principles calculations of τrel

in the QCD critical regime, we shall take its value as a
free parameter and solve Eq. (2.20) for different choices
of τrel/τI . We can benchmark this value by noting that
if i) τrel is 1 fm, a characteristic strong interaction scale,
and ii) τI , the initial time at which the system enters the
critical regime, is 10 fm, a reasonable estimate would be
τrel/τI ∼ 0.1.

C. Results for cumulant evolution along a
representative trajectory

For later convenience, we will express the evolution of
the non-Gaussian cumulants in terms of the dimension-
less quantities skewness (S) and kurtosis (K):

S ≡

[
Ṽ

1/2
4 κ3

κ
3/2
2

]
, K ≡

[
Ṽ4κ4

κ2
2

]
, (3.5)

where Ṽ4 is the rescaled V4,

Ṽ4 =
V/T

Vc/Tc
. (3.6)

With these definitions, we have deliberately taken the
four-volume dependence out, as one should in explo-
rations of critical behavior.

4 For ε� 1, our results are independent of the choice of ε.

We will first study the evolution of the non-equilibrium
cumulants along the representative trajectory A in Fig. 1.
Along this particular trajectory, ξeq will approach ξmax

when the trajectory approaches the cross-over line. Mem-
ory effects are therefore most prominent along trajectory
A. For each fixed µ, trajectories can be parametrized by
h, or equivalently T , via the mapping previously out-
lined. We plot in Fig. 2, as a function of varying T ,
the non-equilibrium ratios M/MA, ξ/ξmin, S/SA,K/KA.
Here MA, ξmin, SA,KA are the equilibrium values speci-
fied at the end point of the trajectory.

One immediately observes that non-equilibrium effects
are important for all cumulants. The difference be-
tween the non-equilibrium cumulants and equilibrium
cumulants is apparent unless τrel/τI is much smaller
than the noted benchmark value. (See for instance the
red curves in Fig. 2 that correspond to solutions with
τrel/τI = 0.005.) The difference is most visible near the
cross-over line (T = Tc) where ξeq reaches its maximum
value along the trajectory. This deviation is a direct
manifestation of the effects of critical slowing down.

We shall now examine in detail the evolution for each
individual non-equilibrium cumulant. The behavior of
M(T ) is relatively simple. As Fig. 2 (a) shows, M
tends to follow the equilibrium values, though with crit-
ical slowing down, the change in sign occurs later for
larger values of τrel. ξeq is an even function of the Ising
variable h–due to the mapping relation Eq. (3.2)–it is
symmetric with respect to Tc. Our results for the non-
equilibrium correlation length are qualitatively similar
to previous studies based on solving the rate equation
Eq. (2.23) [24, 27]. The role of memory effects on ξ is
two-fold. On the one hand, when the equilibrium correla-
tion length ξeq is large, the effects of critical slowing down
delay the growth of the effective non-equilibrium correla-
tion length ξ. For example, as shown in Fig. 2 (b), when
T is close to Tc and ξeq approaches its maximum, the non-
equilibrium ξ for all τrel under consideration are smaller
than the equilibrium value. On the other hand, memory
effects of the critical regime are preserved more efficiently
than if the system were in equilibrium throughout. One
observes that when T is below Tc, the non-equilibrium
value of ξ at that temperature is larger than the equilib-
rium value. Similar observations were made previously
in Ref. [24].

Turning now to the evolution of the non-Gaussian cu-
mulants S and K, we first recall that in equilibrium κeq

3 ,
or equivalently Seq, is an odd function of the Ising vari-
able h. It will therefore will flip sign when crossing the
cross-over line, as demonstrated by the dashed curve in
Fig. 2 (c)). In contrast, κeq

4 or Keq is an even function
of the Ising variable h. It is negative at the cross-over
temperature and positive away from it as shown in the
corresponding dashed curve in Fig. 2 (d). However we
demonstrate in Fig. 2 that the non-equilibrium evolution
of skewness and kurtosis do not necessarily follow the evo-
lution of the corresponding equilibrium cumulants, and
can be radically different in both their magnitude and
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FIG. 2. (Color online) (From top to bottom) The evolu-
tion of non-equilibrium mean M/MA(a), effective correlation
length ξ/ξmin (b), skewness S/SA (c) and kurtosis K/KA (d)
as a function of (Tc − T )/∆T along trajectory A (c.f. Fig. 1).
Results for τrel/τI = 0.005, 0.02, 0.05, 0.2 are shown in solid
red, dotted blue, single dot dashed green, double dot dashed
orange curves respectively. The dashed curves plot the cor-
responding equilibrium values. All results are normalized by
the corresponding equilibrium value at the end point trajec-
tory A (c.f. Fig. 1). The dashed vertical lines illustrate the
T at the point where the a freeze-out curve intersects with
trajectory A (from left to right, freeze-out curves of type I,
II, III respectively. For a discussion, see text in Sec. IV B.).

sign.
These differences occur because, as previously noted,

the evolution of higher cumulants is coupled to the lower
ones. Therefore how K (or S) evolve will not only de-
pend on its deviation from the equilibrium value, but also
on the non-equilibrium values of other cumulants. As
we shall discuss shortly, these deviations off-equilibrium
have significant phenomenological implications for the
search for a critical point in a beam energy scan. Specif-
ically, in Fig. 2, the dashed vertical lines correspond to
freeze-out trajectories I, II, and III (left to right), which
provide snapshots of the non-equilibrium cumulants that
may be measured in experiments. We shall return to a
more detailed discussion of these in Sec. IV B.

IV. TOWARDS MODELING THE RHIC BEAM
ENERGY SCAN

The results we presented for the non-Gaussian cumu-
lants off-equilibrium potentially strongly impact the in-
terpretation of the results of ongoing and future criti-
cal point searches with the beam energy scan (BES) at
RHIC. To further explore these, we will solve the evolu-
tion equation for fixed-µ trajectories broadly spanning
the critical regime. In our simple model, this would
be the equivalent of varying

√
s. We will then be able

to compute the non-equilibrium cumulants for a given
τrel/τI for every point in the critical regime.

A. Memory effects and the sign of
non-equilibrium skewness and kurtosis

In Figs. 3 and 4 respectively, we present contour plots
for the equilibrium and non-equilibrium skewness S and
kurtosis K. Due to memory effects, the non-equilibrium
contours in the T −µ plane deform from the correspond-
ing equilibrium contours; the deformation is enhanced for
larger relaxation times τrel/τI .

We now focus on the sign of the skewness and kurtosis,
their most prominent feature. We illustrate it by plotting
regime S > 0 (or K > 0) in red and S < 0 (or K < 0)
in blue. In equilibrium, the boundary that separates the
regime where S > 0 and S < 0 is precisely the cross-over
line at T = Tc. In Fig. 3, we fix the sign of the equilib-
rium skewness in such a way that Seq is positive below
the cross-over line; this is suggested by the arguments
presented in Refs. [8, 9] and the observation that the
skewness is positive in the hadron resonance gas model.
Fig. 3 demonstrates that for non-equilibrium skewness S
the boundary where the skewness changes sign deforms
and with increasing τrel/τI becomes negative in a larger
portion of the area below the cross-over line. This is to
be expected as the non-equilibrium cumulants carry more
information at early times when the equilibrium skewness
is negative; a larger relaxation time τrel would give more
weight to early time contributions. Similarly, as Fig. 4
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FIG. 3. (Color online) Contour plot of equilibrium (top) and
non-equilibrium skewness (S) with τ/τI = 0.05 (middle) and
τ/τI = 0.02 (bottom). The S > 0 region is shown in red and
S < 0 region is shown in blue.

shows, the boundary separating the regime K > 0 and
K < 0 also deforms.

With Figs. 3 and 4 in mind, we may ask how the sign
of the non-equilibrium skewness and kurtosis behaves as
a function of µ (or

√
s) on the freeze-out curve of a heavy

ion collision in the T -µ plane. As Fig. 3 illustrates, the
skewness on the freeze-out curves can be either negative

FIG. 4. (Color online) Contour plot of equilibrium (top) and
non-equilibrium kurtosis (K) with τ/τI = 0.05 (middle) and
τ/τI = 0.02 (bottom). The K > 0 region is shown in red and
K < 0 region is shown in blue.

or positive depending on the magnitude of τrel/τI and
the relative position of the freeze-out curves. However,
despite memory effects, the sign of non-equilibrium kur-
tosis will still switch from negative to positive when µ
approaches µc along the direction of cross-over. This
change in sign of the µ dependence of kurtosis is insensi-
tive both to the magnitude of τrel as well as the location
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FIG. 5. A sketch of the cross-over side of the scaling regime in
the T, µ plane. The dotted curves show where the equilibrium
value of the kurtosis K changes sign. The trajectory A (see
text) is shown with the black dashed vertical line. Different
types of freeze-out curves (F.C.) are shown in red (upper ),
blue (middle) and green (lower) dashed curves, corresponding
to type I, II, III respectively (see text).

of the freeze-out curves.

B. Dependence of non-equilibrium cumulants on√
s and freeze-out curves

We shall now illustrate a few possible experimental
outcomes for the behavior of cumulants as a function
of µ (or

√
s) if the cross-over side of critical regime of

QCD phase diagram is scanned. We emphasized pre-
viously that the cumulants of the critical field σ itself
are not directly observable. However the critical field σ
is coupled to the net baryon number density and there-
fore critical fluctuations contribute to the moments of
net baryon number fluctuations that are measured in ex-
periments. Indeed, such contributions are proportional
to the corresponding moments of the σ field itself [8, 17].
We may therefore expect that the µ-dependence of cumu-
lants of the critical fields, as determined in our model, will
capture the qualitative behavior of cumulants of particle
fluctuations.

Consider Fig. 5, where we have now re-plotted Fig. 1
performing the map from r, h variables to T and µ using
Eq. (3.2). In this figure, we have superposed the tra-
jectories corresponding to three freeze-out curves. Each
different choice of a freeze-out curve corresponds to tak-
ing a different snapshot of the evolution of cumulants as
represented by the dashed vertical curves in Fig. 2). Our
results will therefore depend on the relative overlap be-
tween the QCD critical regime and the particular freeze-
out curve in the QCD phase diagram. To describe the
freeze-out curves, we take an empirical parametrization
of the heavy-ion collision data from Ref. [43],

Tf (µ) = a− b µ2
B − c µ4

B , (4.1)

with a = 0.166 GeV, b = 0.139 GeV−1, c = 0.053 GeV−3.

Given the mapping (3.2), the overlap between the crit-
ical regime and the freeze-out curves depends on µc, Tc
as well as ∆T,∆µ. Currently the location of the QCD
critical point and the width of QCD critical regime are
not known. Model calculations [44] and lattice QCD cal-
culations [45] suggest that ∆µ ≈ 0.1 GeV. We therefore
set µc = 0.25 GeV,∆µ = 0.1 GeV,∆T/Tc = 1/8. Conse-
quently, the overlap between a freeze-out curve and QCD
critical regime will depend on Tc. In practice, we shall
take three different values, Tc = 0.165, 0.18, 0.194 GeV,
to represent three freeze-out trajectories overlapping with
the critical regime: I) the freeze-out curve is near the
cross-over line, II) below the cross-over line and III) near
the edge of the critical regime. They are plotted in Fig. 5
and will be labeled I, II, III respectively5

For each constant µ, we will denote the values of the
non-equilibrium cumulants at the point where the tra-
jectory intersects the freeze-out curves by the subscript
“F”. We will then study the dependence of the cumulants
on freeze-out curves as a function of µ. Our results for
ξF (µ), SF (µ),KF (µ) are shown in Figs. 6, 7, 8 respec-
tively. We observe generally that the µ dependence of
the non-equilibrium cumulants can be different from the
equilibrium cumulants (which are represented by dashed
lines). As we anticipated previously, the values of the
non-equilibrium ξ on all the freeze-out curves are consid-
erably amplified for a wide range of τrel/τI . This implies
that even if the freeze-out curve is located at the edge of
the critical regime (as for the freeze-out curve III shown
in Fig. 6 (c)), memory effects ensure that the signature
of critical fluctuations is not necessarily suppressed. Re-
garding skewness, we noted arguments advanced that the
equilibrium skewness is positive below the cross-over line.
Our results in Fig. 7 clear demonstrate that memory ef-
fects can modify the sign of skewness off-equilibrium to
be opposite to that of equilibrium skewness. Similar de-
viations from equilibrium expectations are observed for
kurtosis, as shown in Fig. 8

From Figs. 7 and 8, we observe that the non-Gaussian
cumulants SF (µ) and KF (µ) are sensitive to the relative
positions of freeze-out curves (or Tc) and τrel. We can
go one step further, and given a model for the

√
s de-

pendence of µ, examine how these fluctuations vary as
a function of

√
s. Ref. [43], from fits to data, developed

the parametrization,

µ(
√
s) =

d0

d1
√
s+ 1

, (4.2)

5 A reader might question whether the values of Tc considered
are reasonable given our present knowledge of the QCD phase
diagram. However, for our illustrative purposes, the choice of
Tc is just an easy way to represent the distance of the critical
point from the freeze-out trajectory. Alternative ways of rep-
resenting this relative separation are certainly feasible; for in-
stance, we could have chosen smaller values of Tc and modified
the parametrization of the freeze-out curves.
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FIG. 6. (Color online) The non-equilibrium values of the ef-
fective correlation length ξF on the freeze-curves as a function
of µ. The results corresponding to freeze-out curves of type I,
II, III (as shown in Fig. 5) are (a), (b), (c) respectively. Non-
equilibrium cumulants with τrel/τI = 0.005, 0.02, 0.05, 0.2 are
represented by solid red, dotted blue, single dot dashed green,
double dot dashed orange curves respectively. The dashed
curves plot the corresponding equilibrium values–where not
visible, they fully overlap with the solid red curve. All results
are normalized by the corresponding equilibrium value at the
end point of trajectory A as shown in Fig. 5.

where d0 = 1.308 GeV and d1 = 0.273 GeV−1. Using
this relation, we obtain the results shown in Fig. 9 for
the skewness and kurtosis respectively. In particular, we
demonstrate that very similar curves, as a function of

√
s

can be obtained by different combinations of freeze-out
curves and relaxation times. These results suggest that
great care should be exercised in interpreting trends as
a function of

√
s of measured non-Gaussian cumulants.

While these may signify the onset of critical dynamics,
more needs to be done to model freeze-out conditions and

FIG. 7. (Color online) The non-equilibrium values of the
non-Gaussian cumulant SF on the freeze-curves as a function
of µ. The results corresponding to freeze-out curves of type I,
II, III (as shown in Fig. 5) are (a), (b), (c) respectively. Non-
equilibrium cumulant results for τrel/τI = 0.005, 0.02, 0.05, 0.2
are displayed with solid red, dotted blue, single dot dashed
green, double dot dashed orange curves respectively. The
dashed curves plot the corresponding equilibrium values. All
results are normalized by the corresponding equilibrium value
at the end point trajectory A, as shown in Fig. 5).

constrain τrel before definitive statements can be made
regarding the discovery of a critical point.

V. SUMMARY AND CONCLUSION

We derived in this paper a set of equations Eqs. (2.20)
that describe the evolution of non-equilibrium cumu-
lants of the critical field σ in the QCD critical regime.
In particular, we obtained novel expressions for the
off-equilibrium evolution of non-Gaussian cumulants.
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FIG. 8. (Color online) The non-equilibrium values of the
non-Gaussian cumulant KF on the freeze-curves as a function
of µ. The results corresponding to freeze-out curves of type I,
II, III (as shown in Fig. 5) are (a), (b), (c) respectively. Non-
equilibrium cumulant results for τrel = 0.005, 0.02, 0.05, 0.2τI
are displayed with solid red, dotted blue, single dot dashed
green, double dot dashed orange curves respectively. The
dashes curves plot the corresponding equilibrium values. All
results are normalized by the corresponding equilibrium value
at the end point trajectory A, as shown in Fig. 5).

With equilibrium initial conditions given by the three-
dimensional Ising model (which belongs to the static
universality class of the QCD critical point), we applied
these equations to study the real time dynamics of cu-
mulants along a trajectory passing through the cross-over
side of the critical regime. Since this is a first exploratory
study, our studies were performed in the framework of

FIG. 9. (Color online) The
√
s-dependence (assuming

Eq. (4.2)) of non-equilibrium non-Gaussian cumulants on the
freeze-curves with different choices of the relative position of
freeze-out curves and τrel. (Top) skewness SF vs

√
s; (Bot-

tom) kurtosis KF vs
√
s. The results obtained from the com-

bination, i.e., (F.C. I, τI/τrel = 0.02), (F.C. II, τI/τrel = 0.05),
(F.C. III, τI/τrel = 0.2), are displayed in solid red, dotted
blue, single dot dashed green curves respectively.

a very simple model of expansion dynamics in heavy-
ion collisions. With further data motivated parametriza-
tions of chemical freeze-out in the T − µ plane, we were
able to obtain snapshots of the non-equilibrium cumu-
lants along freeze-out curves that overlapped to differing
extents with the QCD critical region.

Our chief conclusion is that memory effects are respon-
sible for substantial differences in the temporal evolution
of non-equilibrium and equilibrium cumulants. Specifi-
cally we found that the sign of non-equilibrium skewness
in the vicinity of the critical point can be opposite to
the value expected in equilibrium. Similar conclusions
are suggested by our results for non-equilibrium kurto-
sis. Our results are sensitive to the relaxation time τrel

of the critical field σ fluctuations and the location of the
freeze-out curves in the QCD phase diagram relative to
the extent of the QCD critical region. We find that mem-
ory effects are important to such an extent that even tra-
jectories that traverse the edge of the critical regime are
sensitive to its dynamics.

Our treatment of critical fluctuations in the QCD crit-
ical regime was strongly motivated by the description of
similar fluctuations in the three-dimensional Ising model.
In the latter case, cumulants of critical fluctuations are
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expressed in terms of the reduced temperature r and the
rescaled magnetic field h. The map of the description
of critical fluctuations in terms of r and h to T and µ
is non-universal, and is a significant source of system-
atic uncertainty in treatments of critical dynamics in the
QCD critical regime. This uncertainty, coupled with our
ignorance of τrel, provide fundamental obstacles to quan-
titative studies of real time critical dynamics in QCD.

Indeed, because of the importance of non-equilibrium
effects, lattice studies of equilibrium cumulants, while of
fundamental importance, may not be sufficient. These
must be accompanied by progress in non-equilibrium
studies of the QCD critical regime. One promising ap-
proach is the use of classical statistical real time simula-
tions [46, 47] that have also previously been applied to
studying the non-equilibrium dynamics of the very ear-
liest stages of high energy heavy-ion collisions [48, 49].
Detailed dynamical models of the space-time evolution
of heavy-ion collisions as a function of beam energy are
also very important. In particular, models that build in
the transport of conserved charges and reproduce bulk
features of these collisions such as particle spectra can
place strong constraints on the parameter space for the
non-equilibrium evolution of cumulants.

In this work, we have concentrated on critical dynam-
ics on the cross-over side of the critical regime. From the
perspective of a critical point search, this approach is ap-
propriate because it is easier in both experiments and in
lattice gauge theory computations to extend explorations
of the QCD phase diagram starting from the regime of
high temperatures and low baryon chemical potentials.
However, if a critical point is localized, it would be of
great interest to understand non-equilibrium dynamics
on the first-order side of phase diagram. In this regard,
applying the framework discussed here from the cross-
over critical regime to the first-order critical regime of
the QCD phase diagram is a useful extension to be pur-
sued in future studies.
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Appendix A: Parametric representation of
equilibrium cumulants in the Ising critical regime

In this section, we explain the parameterization of the
equilibrium cumulants M eq(r, h), κeq

n (r, h), n = 2, 3, 4, . . .
in the critical regime in terms of the Ising variables r and
h used in this paper. For this purpose, we only need to
know the equilibrium magnetization M eq(r, h) as equilib-

rium cumulants can be computed by taking derivatives
of M eq(r, h) with respect to h at fixed r,

κeq
n+1 =

1

(V4H0)n

(
∂nM eq(r, h)

∂hn

)
r

. n = 1, 2, 3, . . .

(A1)
Here H0 is a dimensionful parameter (of mass dimen-
sion 3) which relates reduced magnetic field h to the un-
reduced magnetic field.

To parametrize M eq(r, h), we use the linear parametric
model [35, 50]. In this parametrization, one introduces
two new variables R, θ which are related to (dimension-
less) Ising variable r, h as

r(R, θ) = R(1− θ2) , h(R, θ) = ∆hRβδ h̃(θ) , (A2)

Following Ref. [11], we will use

h̃(θ) = 3θ

[
1−

(
(δ − 1)(1− 2β)

(δ − 3)

)
θ2

]
. (A3)

Here β, δ are standard critical exponents and we will use
the values obtained from mean field theory, β = 1/3, δ =
5. In these R, θ variables, θ = 0 corresponds to the
crossover line and |θ| =

√
3/2 corresponds to the co-

existence (first order transition) line. The equilibrium
“magnetization” M eq

0 (r, h)(or σ0) is given by

M eq(R, θ) = M0R
βθ , (A4)

where M0 sets the scale of “magnetization”. The
parametrization introduced describes the equation of
state with a precision sufficient for our purpose.

We now compute κeq
n using Eq. (A1) and Eq. (A4).

Explicitly, we have

κeq
2 (R, θ) =

M0

V4H0

1

R4/3(3 + 2θ2)
, (A5)

κeq
3 (R, θ) =

−M0

(V4H0)2

4θ(9 + θ2)

R3(3− θ2)(3 + 2θ2)3
, (A6)

κeq
4 (R, θ) =

−12M0

(V4H0)3

×
(
81− 783θ2 + 105θ4 − 5θ6 + 2θ8

)
R14/3(3− θ2)3(3 + 2θ2)5

.(A7)

Finally, we convert κeq
n (R, θ) into κeq

n (r, h) using
Eq. (A2). We note that M/MA, ξ/ξmin, S/SA,K/KA as
presented in this paper does not depend on the choice of
dimensionful normalization M0, H0.

Appendix B: Detailed derivation of Eqs. (2.20)

We present here a detailed derivation of Eqs. (2.20).
It is convenient to introduce the generating function of
cumulants,

G(λ; τ) = log [Z(λ; τ)] . Z(λ; τ) ≡ 〈eλδσ〉 . (B1)
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where the average 〈. . .〉 and δσ have been defined in
Eq. (2.2) and Eq. (2.3) respectively. The cumulants are
given by

κn =
∂nG(λ)

∂λn

∣∣∣∣
λ=0

, n = 2, 3, 4, . . . . (B2)

We also have ∂λG(λ; τ)|λ=0 = 0 as 〈δσ〉 = 0. Equiva-
lently, one could read κn by Taylor expanding G(λ; τ)
around λ = 0,

G(λ; τ) =

∞∑
n=2

λn

n!
κn(τ) . (B3)

We now take the derivative of G(λ; τ) with respect to
τ ,

∂τG(λ; τ) =
∂τZ(λ; τ)

Z(λ; τ)
=
∞∑
n=2

λn

n!
∂τκn(τ) . (B4)

Therefore the evolution equations for κn can be deter-
mined by evaluating ∂τG(λ; τ). We consider

∂τZ(λ; τ) = ∂τ
[
e−λM 〈eλσ〉

]
= −λZ(λ; τ)(∂τM) + e−λM∂τ 〈eλσ〉 . (B5)

From Eq. (2.11), we have

e−λM∂τ 〈eλσ〉 = − 1

m2
στeff

[
λ〈eλδσΩ′0(σ)〉 − λ2

V4
Z(λ; τ)

]
.

(B6)
We can now substitute Eq. (B6) into Eq. (B5) and then
plug the results into Eq. (B4) to obtain,

∂τG(λ; τ) = −λ∂τM −
λb

ετeff

{
F1(M)

+

[
ε〈δσeλδσ〉

bZ

]
F2(M) +

[
ε2〈δσ2eλδσ〉

b2Z

]
F3(M)

+

[
ε3〈δσ3eλδσ〉

b3Z
F4

]
− λb

}
. (B7)

Now the evolutions equations for M and cumulants
κn, n = 2, 3, 4, . . . can be determined by Taylor expand-
ing both sides of the above equation in powers of λ
and comparing coefficients in front of λn. At order
λn, n = 1, 2, 3, 4, we have, respectively,

∂τM(τ) = −τ−1
eff

(
b

ε

){
F1(M) +

ε2

2

(κ2

b2

)
F3(M)

+
ε4

6

( κ3

εb2

)
F4(M)

}
, (B8a)

∂τκ2(τ) = −2τ−1
eff (b2)

{[(κ2

b2

)
F2(M)− 1

]
+
ε2

2

[( κ3

εb2

)
F3(M) +

(κ2

b2

)2

F4

]
+
ε4

6

( κ4

ε2b4

)
F4

}
, (B8b)

∂τκ3(τ) = −3τ−1
eff (εb3)

{[( κ3

εb2

)
F2(M) +

(
k2

b2

)2

F3(M)

]

+
ε2

2

[( κ4

ε2b4

)
F3(M) + 3

(κ2

b2

)( κ3

εb2

)
F4

]
+
ε4

6

( κ5

ε3b5

)
F4

}
, (B8c)

∂τκ4(τ) = −4τ−1
eff

{[
(
κ4

ε2b4
)F2(M) + 3(

κ2

b2
)(
κ3

εb2
)F3(M)

+ (
k2

b2
)3F4

]
+
ε2

2

[
(
κ5

ε3b5
)F3(M)

+

(
3(
k3

εb3
)3 + 4(

κ2

b2
)(
κ4

ε2b4
)

)
F4

]
+ +

ε4

6

( κ6

ε4b6

)
F4

}
. (B8d)

In deriving these equations, we also used the relations

〈δσeλδσ〉
Z

= ∂λG ,
〈δσ2eλδσ〉

Z
=
[
∂2
λG+ (∂λG)2

]
,

〈δσ3eλδσ〉
Z

=
[
∂3
λG+ 3(∂2

λG)(∂λG) + (∂λG)3
]
, (B9)

and Eq. (B3).
Keeping contributions to leading order in ε in Eq. (B8),

we arrive at Eqs. (2.20).
We note that Eqs. (B8) would still be closed if we

further include ε2 terms in the evolution equations for
M,κ2, κ3 (but neglect ε2 terms in Eq. (B8d)). The re-
sulting equations, which we shall refer as the next to
leading order (NLO) evolution equations, take full sub-
leading contributions in ε2 to the evolutions of M,κ2, κ3

and part of sub-leading contributions in ε2 to the evolu-
tion of κ4 into account, neglecting the term proportional
to κ5. We have checked numerically that the differences
in computing the non-equilibrium cumulants from solu-
tions of the Fokker-Planck master equation Eq. (2.10),
relative to i) solutions of the leading order (LO) evolution
equations Eqs. (2.20) and ii) from NLO evolution equa-
tions become smaller and smaller with decreasing ε2. For
fixed ε, the difference is relatively larger for non-Gaussian
cumulants. In particular, since the sign of non-Gaussian
cumulants κ3, κ4 is in-definite, we observed numerically
that occasionally, κ3, κ4 as determined from Eqs. (2.20)
would oscillate around zero for a short period of τ . In-
deed, such behavior will disappear if one solves NLO evo-
lution equations, which stabilizes the solutions against
these oscillations. For this reason, the results presented
in this paper are determined in practice by solving NLO
evolution equations.
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