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Zero-bias anomalies in topological nanowires have recently captured significant attention, as 

they are possible signatures of Majorana modes. Yet there are many other possible origins of 

zero-bias peaks in nanowires—for example, weak localization, Andreev bound states, or the 

Kondo effect. Here, we discuss observations of differential-conductance peaks at zero-bias 

voltage in non-superconducting electronic transport through a 3D topological insulator 

(Bi1.33Sb0.67)Se3 nanowire. The zero-bias conductance peaks show logarithmic temperature 

dependence and often linear splitting with magnetic fields, both of which are signatures of the 

Kondo effect in quantum dots. We characterize the zero-bias peaks and discuss their origin.  

Introduction 

1 

mailto:sungjae.cho@kaist.ac.kr


  The three dimensional topological insulator (3D TI) is a new class of material having 

metallic surface states inside a bulk band gap1-3. The topological surface states are characterized 

by gapless Dirac dispersions and novel properties such as momentum-spin locking, which were 

confirmed by angle-resolved photoemission spectroscopy (ARPES)4-6, scanning tunneling 

spectroscopy (STS)7-11 and electrical transport measurements12-19. 3D TI nanowires with an 

insulating bulk, which can be described as a hollow metallic cylinder, have shown Aharonov-

Bohm oscillations when a magnetic flux is threaded through the axis20,21 and Coulomb blockade 

behavior when connected to metal electrodes through ultrathin TI tunnel barriers22. Recently, TI 

nanowires in the proximity of s-wave superconductors have been predicted to harbor Majorana 

bound states23,24, a transport signature of which is a zero-bias tunneling-conductance peak. 

Similar proximity-coupled topological nanowire systems of InSb25 and Fe 26  have recently 

demonstrated Majorana-like zero-bias anomalies, leading to a worldwide effort to better 

understand the origin and behavior of zero-bias anomalies in topological wires. Zero-bias 

conductance peaks, not observed yet in 3D TI nanowires, are novel features which may be 

related to various physical origins such as weak antilocalization, Andreev bound states, and 

Kondo effect besides Majorana bound states27-29. Here we report the first observation of zero-

bias anomalies in non-superconducting electronic transport through a 3D TI nanowire contacted 

by two metal electrodes. We also observed logarithmic temperature dependence and linear 

splitting with magnetic fields, both of which imply that the zero-bias peaks result from Kondo-

like effect.  

 

Results  
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We have grown bulk (Bi1.33Sb0.67)Se3 crystals and confirmed existence of the surface 

states inside the bulk band gap by ARPES, as described elsewhere30. Using the “scotch tape 

method”, we obtained naturally cleaved topological insulator nanowires on 300 nm SiO2/highly  

n-doped Si substrates. Subsequently, we characterized and chose nanowires having widths ≤ 100 

nm and thickness > 12nm by atomic force microscope to avoid unwanted wavefunction 

hybridizations of top and bottom surfaces31. Widths of nanowires were measured again, after all 

the electrical measurements were done, by scanning electron microscopy (SEM). Immediately 

after we chose nanowires and identified their locations on a SiO2/Si chip, we spun electron-beam 

resist (Microchem Corp. PMMA 950 A4) double layer at 4000 rpm to avoid possible 

contamination or excessive doping of the nanowire surfaces by long exposure to air32. 

Subsequently, we performed electron beam lithography, developed to remove the resist in the 

regions of source/drain electrodes, and finally deposited Ti/Al (2.5 nm /150 nm) with Au 10 nm 

capping following a brief ion milling at low power. The devices were wire-bonded and cooled-

down in a commercial dilution refrigerator immediately following lift-off in acetone for 1 hour. 

Figure 1a) is a false-colored SEM image of a completed device, where a small section of the 

nanowire having dimensions of width ~ 90 nm, length ~ 90 nm, and thickness ~ 13 nm is 

contacted by a source and a drain electrode.  

Here, we report our two-probe differential conductance measurements made between 

Ti/Al source-drain electrodes driven normal (non-superconducting). To do this, we applied small 

perpendicular magnetic field of 30 ~ 200 mT, which is above the critical field of the Al 

electrodes ~ 12 mT (see Supplementary Info.). Fig 1b) shows that as gate voltage decreased, 

differential conductance (dI/dV) at zero-bias voltage decreased due to decrease in density of 

states,  and finally as gate voltages exceeded Vg = - 80V, the conductance reached its minimum 
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implying the chemical potential tuned near the charge neutrality point and therefore minimum 

density of states.  Due to the low electron doping of our Sb-doped crystals and exfoliated devices 

as reported previously21,30, we are able to tune the chemical potential effectively below the 

bottom of the bulk conduction band using a back-gate through SiO2 in our nanowire device. In all 

range of gate voltages, we observed reproducible conductance fluctuations reminiscent of 

Coulomb charging effect or phase coherent interference effects such as Fabry-Perot and 

universal conductance fluctuations.  

 Fig. 1(c) shows differential conductance spectroscopy, a two-dimensional plot of 

G(Vsd,Vg) measured while varying dc source-drain bias-voltages Vsd at different gate voltages Vg . 

The transport spectroscopy unexpectedly showed enhanced zero-bias conductance persisting 

with gate voltages at large negative gate voltages Vg < -50V where the background conductance 

≤ 5 e2/h. Fig. 1(d) shows differential conductance as a function of bias voltages at Vg = -53.7V. 

We have further performed differential conductance spectroscopy measurements in wider range 

of gate voltages as shown in Fig. 2. Zero-bias conductance peaks having amplitudes ranging 

from 0.05 to 0.7 e2/h were observed in a wide range of gate voltages. Often, zero-bias 

conductance dips appeared in certain regions of gate voltages as shown in Fig 2a) and 2c). In the 

rest of this letter, we discuss the possible origin of the observed zero-bias conductance anomaly.  

Discussions  

Recently, zero-bias peaks observed in 1D topological superconductors, i.e. a strong spin-

orbit coupled semiconducting nanowire in the proximity of superconductors under a parallel 

magnetic field, captured significant attention. The zero-bias anomaly in those systems have been 

explained as a signature of Majorana zero modes23. There have been similar theoretical proposals 
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on producing Majorana zero modes in topological insulator (Bi2Se3) nanowires proximity-

coupled to s-wave superconductors under a parallel magnetic field23,24. However, the absence of 

superconductivity in a magnetic field higher than the critical field of Al electrodes in our setup 

excludes the Majorana zero modes among possible explanations for our zero-bias peaks. Due to 

lack of superconductivity, Andreev states bound to superconductors also does not provide 

explanations for our observed zero-bias conductance peaks.  

To understand the origin of the zero-bias conductance peaks, we have performed the 

transport measurements at different magnetic fields. Fig. 3 shows two different ways in which 

peaks evolve with magnetic fields at fixed gate voltages. Peaks having large amplitude (> 0.4 

e2/h) measured at Vg=-69V split with magnetic fields (Fig. 3(a) and 3(b)). The formation of zero-

bias peaks and the splitting of the peaks with a magnetic field are reminiscent of the Kondo 

effect in quantum dots. A characteristic feature of the Kondo effect in quantum dots is that the 

zero-bias peak splits with magnetic field at V =  ±g μB B (the Zeeman splitting), where μB is the 

Bohr magneton. Assuming the relation of the zero-bias peaks to Kondo effect, we estimate the 

Zeeman g-factor of the surface states in our topological insulator (Bi1.33Sb0.67)Se3 nanowire is ~ 

15 from the blue line in Fig. 3(b), which is roughly half the reported g factor value of the bulk 

states in Bi2Se3
33. On the other hand, peaks of relatively small amplitude (< 0.1 e2/h) observed at 

Vg=-65V switched to conductance dips without splitting as a magnetic field increased (Fig. 3(c)). 

Collapse of the zero-bias peaks having small peak amplitudes (< 0.1 e2/h) with a magnetic field 

without being splitted at large background conductance is most likely to be due to lower Kondo 

temperatures (T~TK) at these gate voltages34.  

To further investigate the observed Kondo-like anomaly at zero-bias voltage, we 

measured temperature dependence of the zero-bias peaks. Fig. 4 shows that conductance of both 
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peaks having small and large amplitudes decreased logarithmically with temperature. Small 

peaks with large background conductance vanished at relatively low temperatures < 1K as shown 

in Fig 4(a), and the large peaks with relatively small conductance background did not vanish up 

to the temperature limit (~ 1.8K) in our dilution refrigerator.  Both logarithmic temperature 

dependence and peak splitting with magnetic field suggest that the zero-bias peaks are Kondo-

like effect in a quantum dot. We obtain rough estimates of the Kondo temperatures, TK, ranging 

from 300 mK to 5 K by equating the full-width at half-maximum of different zero-bias 

conductance peaks at the base temperature to 2kBTK/e35,36.   

The Kondo effect describes the upturn of the resistance of metals at low temperatures 

when magnetic impurities are added37. A similarKondo effect in semiconducting nanostructures 

results from a bound state formed between a local spin in a quantum dot and the electrons in the 

reservoir of source/drain electrodes. We find that the overall background conductance values in 

our experiments are relatively high (3e2/h < G < 5e2/h) compared to the conductance values (G < 

2e2/h) previously reported in quantum dots showing Kondo effect35,36, and that our topological 

insulator nanowire device behaves as an open quantum dot. Coulomb charging is required in 

order for the Kondo effect to be observed in quantum dots; this is usually observed in a system 

having low dot-electrode transmission probabilities and conductance less than 2e2/h. However, 

Coulomb charging effects have often been observed in open quantum dots where 2 e2/h < G < 6 

e2/h 38-40. Therefore, high overall conductance values of 3e2/h < G < 5e2/h does not necessarily 

excludes the possibility of Coulomb charging and Kondo effect in our open quantum dot device. 

The large, oval regions of low-conductance shown in the 2D transport spectroscopy G(Vsd, Vg) of 

Fig. 2(a) at -54 < Vg < -53, -52 < Vg < -51and -50.5 < Vg < -49.5 are consistent with diamond-

shaped Coulomb blockade in the presence of high lead-dot transparency. Although we do not 
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clearly observe the even-odd parity behavior typical for the Kondo effect in quantum dots, 

several experiments of Kondo resonances have reported the absence of even-odd parity 

behavior41-43, due to either the formation of higher spin states (spin-triplet Kondo resonances) or 

correlation effects due to electron-electron interaction dominating over the confinement effect in 

quantum dots.  

We often observe zero-bias peaks that increase with increasing magnetic field (see 

Supplementary Info.). This has previously been explained by singlet-triplet transitions of 

electron spin states in a quantum dot. 27 The magnetic-field-induced zero-bias peaks persist up to 

magnetic fields as large as B = 630mT. We currently do not understand the physical mechanism 

of this magnetic-field-induced zero-bias peak, although it is possible that they are related to the 

unique spin-momentum locking on the surface of topological insulators. In this case, it may be 

more energetically favorable to create a multi-particle triplet state than a single-particle spin-1/2 

state. To our knowledge, no theoretical and experimental research has been reported on the 

subject and further studies are required to understand the physics of possible singlet-triplet 

transitions in topological insulator nanowires. Pikulin et al. pointed out in their simulation 

studies that weak antilocalization by disorder can also be a source of zero-bias conductance 

peaks at non-zero magnetic fields which break time-reversal symmetry29. However, this scenario 

is only possible when the 1D system has particle-hole symmetry resulting from 

superconductivity. Without the particle-hole symmetry, weak antilocalization effect should 

disappear when a magnetic field breaks time-reversal symmetry. The behavior of magnetic-field-

induced zero-bias peaks persisting up to B = 630mT in our device cannot be explained by weak 

antilocalization effect considering the absence of superconductivity. Moreover, lowering 

background conductance by increasing the tunnel barriers between electrodes and nanowires by a 
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gate voltage is expected to suppress the zero-bias peaks originating from weak antilocalization. 

Our observation is opposite to this scenario: zero-bias peaks are absent in the gate voltage 

regions of Vg≥- 40V where conductance is higher, but more prominent as the gate voltage 

reduces to negative direction below -50V and conductance decreases. This observation implies 

that weak antilocalization is not the origin of the zero-bias peaks in our device.  

Conclusion 

In conclusion, we have observed zero-bias conductance peaks in non-superconducting transport 

through a topological insulator nanowire contacted by source-drain electrodes. The logarithmic 

temperature dependence and splitting of the peaks with magnetic fields strongly imply that the 

zero-bias peaks occur from Kondo-like origin in a quantum dot. Additional features different 

from typical Kondo effect in quantum dots such as high background conductance (> 2 e2/h) and 

absence of even-odd parity behavior were observed, which may be consistent with a singlet-

triplet Kondo effect and related to the topological nature of the nanowires.  
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Methods 

Device fabrication and measurement 

Topological insulator nanowires were obtained by mechanical exfoliation (‘scotch tape method’) 

from bulk crystals of Bi1.33Sb0.67Se3, which were grown by a modified floating zone method27. 

After mechanical exfoliations of bulk crystals onto 300nm SiO2/highly n-doped Si substrates, the 

nanowires were found under optical microscope. The dimensions of nanowires were measured 

by Atomic Force Microscopy and Scanning Electron Microscopy. Electron beam lithography and 

metal (Ti/Al/Au=2.5nm/150nm/10nm) deposition were used to pattern two-terminal devices on 

the nanowires. Completed devices were wire-bonded and cooled-down in a commercial dilution 

refrigerator (base temperature = 16mK). The electrical measurements were performed using 

standard ac lock-in techniques.  
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Figure Captions 

Figure 1| Device image and characterization. (a) Fault-colored Scanning Electron Microscope 

image of the two-terminal topological insulator nanowire device. (b) Two-probe differential 

conductance dI/dV as a function of back-gate voltage Vg at B = 50mT and T = 16 mK at zero 

bias-voltage. (c)(d) Two-dimensional plots of G(Vsd,Vg) and G(Vsd) at Vg=-53.7V measured at 

perpendicular mangeitc field B=200mT. 

  

Figure 2| Differential conductance spectroscopy. (a)(d)(f) Two-dimensional plots of G(Vsd,Vg) 

measured with perpendicular mangeitc field B=200mT applied in different gate voltage ranges. 

(b)(c)(e)(g) Differential conductance as a function of bias voltages at fixed gate voltages, (b)-

53.3V, (c)-53.0V, (e)-74.4V, and (g)-131.6V. Each of those gate voltages where the differential 

conductance was plotted are marked with light blue dotted-lines in the two-dimensional plots 

(a)(d)(f). 

Figure 3| Evolution of zero-bias conductance peaks with magnetic fields. (a) Differential 

conductance as a function of bias voltages at a fixed gate Vg=-69V and different magnetic fields. 

(b) two-dimensional plots of (a). blue lines show splitting of the zero-bias conductance peaks 

with magnetic fields. (c) Differential conductance as a function of bias voltages at a fixed gate 

Vg=-65V and different magnetic fields. 

  

Figure 4| Temperature dependence of zero-bias conductance peaks. Temperature 

dependence of zero-bias conductance peaks observed at (a)(b) Vg=-60V, and (c)(d) Vg=-72.7V. 

Conductance of both peaks having small and large amplitudes decreased logarithmically with 

temperature.  
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Figure 2.  
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Figure 3.  
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Figure 4.  
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Supplementary Discussion 

A. Critical magnetic field of aluminum electrodes 

The electrodes of our device consist of Ti(2.5nm)/Al(150nm)/Au(10nm) as described in the 

Method. We found the critical field value of the electrodes to be ~ 12mT by performing 

magneto-resistance measurement. The two-probe resistance measurement as a function of 

perpendicular magnetic field showed sharp transition near B=12mT as shown in Fig. S1 (blue 

arrows). Below this magnetic field we find that electrodes are superconducting. The 

measurement reported in the main manuscript was performed with magnetic field applied above 

this critical field value to ensure that the electrodes are non-superconducting.  

B. Superconducting transport in the topological insulator nanowire device 
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When a magnetic field is below 12mT, the electrodes are superconducting. Therefore we 

observed Josephson supercurrent through the topological insulator nanowire in this magnetic 

field regime. Fig. S2 (a) shows differential resistance (dV/dI) as a function of gate voltages. Our 

nanowire device shows finite supercurrents at Vg>-50V and the critical supercurrents, the 

currents at the boundary between the dark blue region (dV/dI=0) and the region outside the dark 

blue, increase as density of states increases with the gate voltage. The critical current dependence 

on gate voltage is very similar to the reported Josephson effect experiment in 3D topological 

insulator films1.  

C. Magnetic field dependence of zero-bias conductance peaks 

Fig. S3 shows two-dimensional plots of G(Vsd,Vg) at different magnetic fields applied 

perpendicular to the substrate. A pair of sharp resonances crosses zero energy at Vg = -96.5V 

and -96.2V. These sharp resonances most likely originate from Fabry-Perot like interference. Fig. 

S3 shows an interesting magnetic field dependence of the zero-bias conductance anomaly. Some 

peaks (denoted as blue dotted-lines) do not split with magnetic field, and instead collapse to dips. 

The amplitudes and widths of these peaks are usually very small and we ascribe the absence of 

magnetic-field-induced splitting to low Kondo temperature of those peaks. Unexpectedly, we 

find that often conductance dips at low fields (yellow dotted-lines in Fig. S3) changes into 

conductance peaks as a magnetic field increases. These magnetic-field-induced peaks persist up 

to B=630mT. Similar phenomena were observed and explained by singlet-triplet transitions2. No 

theoretical and experimental studies about singlet-triplet transitions in topological insulator 

quantum dots have been reported and such phenomena are not clearly understood.  
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Supplementary Figure Captions 

S1| Critical magnetic field of Ti/Al/Au electrodes. (a)(b) Typical magneto-resistance of 

Ti/Al/Au electrodes in the device as a function of perpendicular magnetic field. (b) is a plot of (a) 

in a smaller range of magnetic field.  

S2| superconducting transport in the topological insulator nanowire. (a)Two-dimensional 

plots of dV/dI versus gate voltage Vg and current I measured at B=0. The dark blue regions show 

the superconducting transport with zero resistance. (b) I-V curve cut from (a) along the yellow 

dotted-line shows typical supercurrent behavior.   

S3| Two-dimensional plots of G(Vsd,Vg) at different magnetic fields. Two-dimensional plots 

of differential conductance measured in the gate voltage ranges -96.0 V < Vg > -95.5 at four 

different perpendicular magnetic fields, (a) B=30m, (b) B=230m, (c) B=430m and (d) B=630m. 

Vertical dotted-lines denotes peak(blue) or dip(yellow) locations at zero-bias voltage at B=30mT.  
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