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We study the Kondo chain in the regime of high spin concentration where the low energy physics
is dominated by the Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction. As has been recently
shown (A. M. Tsvelik and O. M. Yevtushenko, Phys. Rev. Lett 115, 216402 (2015)), this model
has two phases with drastically different transport properties depending on the anisotropy of the
exchange interaction. In particular, the helical symmetry of the fermions is spontaneously broken
when the anisotropy is of the easy plane type (EP). This leads to a parametrical suppression of the
localization effects. In the present paper we substantially extend the previous theory, in particular,
by analyzing a competition of forward- and backward- scattering, including into the theory short
range electron interactions and calculating spin correlation functions. We discuss applicability of
our theory and possible experiments which could support the theoretical findings.

I. INTRODUCTION

The Kondo chain (KC) is one of the archetypal models for interacting low-dimensional systems which has been
intensively studied during the past two decades [1–11]. It consists of band electrons on a one-dimensional lattice which
interact with localized magnetic moments; electron-electron interactions can also be included in the consideration
[1, 2, 5, 9, 12]. The KC is not exactly solvable, nevertheless, a lot is known about it both from numerical and
analytical studies [1, 6–9]. In particular, ground state properties are known from DMRG for the isotropic point [13].

One possible realization of KC is a cleaved edge overgrowth GaAs quantum wire doped with magnetic ions. Such
quantum wires were manufactured a long time ago [14, 15] and have been successfully used to study one-dimensional
strongly correlated physics (see, for example, [16, 17]). Functionalizing them with dynamical magnetic impurities
could yield an experimental realization of the KC. As another possible platform for KC one may use carbon nanotubes
functionalized with magnetic ions or molecules containing magnetic ions (possible realizations can be found in Refs.
[18–20]). Alternatively one may search for quasi one-dimensional structures with coexisting localized and delocalized
electrons in bulk materials. The theory predicts that in iron-based ladder materials some of the iron d-orbitals are
localized and some are itinerant [21–23]. The issue is to find such crystal structures where the ladders would be
sufficiently isolated from each other to prevent three-dimensional ordering (three-dimensional ordering seems to occur
in BaFe2Se3 [24]).

It has been recently shown by two of us that the KC may display a rather nontrivial physics in the anisotropic
regime away from half-filling in the case of dense spins when the RKKY exchange interaction dominates the Kondo
screening [25]. We considered an anisotropic exchange interaction with the anisotropy of the XXZ-type. Then there
are two phases with different low-energy properties, namely, the Easy Axis phase and the Easy Plane one. In the
Easy Axis phase, all single fermion excitations are gapped. The charge transport is carried by collective excitations
which can be easily pinned by ever present potential disorder. The situation is drastically different in the Easy Plane
phase. The minimum of the ground state energy corresponds to the helical spin configuration with wave vector 2kF
(kF being the Fermi wave vector) which opens a gap in the spectrum of the fermions of a particular helicity while the
electrons having the other (opposite) helicity remain gapless. We remind the readers that the helicity is defined as
sgn(v)sgn(σ), where v and σ the the electron velocity and its spin, respectively. This corresponds to the spontaneous
breaking of the discreet Z2 helical symmetry. If the potential disorder is added to the phase with the broken symmetry
a single-particle backscattering is prohibited either by spin conservation (for electrons with the same helicity) or by
the gap in one of the helical sectors (for electrons with different helicity). This is similar to the absence of the
single-particle back-scattering of edge modes in time-reversal invariant topological insulators [5, 26–32] and results in
suppression of localization effects. The latter can appear only due to collective effects resulting in a parametrically
large localization radius. In other words, ballistic charge transport in the EP phase has a partial symmetry protection
which is removed either in very long samples or if the spin U(1) symmetry is broken. This is also similar to the
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FIG. 1: (color online) The fast (red) and slow (blue) spin trajectories as a function of time. The slow spin is shorter, since it
is the fast spin averaged over some short timescale. The left panel shows the slow modes in the case of a free spin, in the right
panel the spin physics is dominated by the interaction mediated by the backscattering electrons. In the latter case, the slow
mode is orthogonal to the fast trajectory.

symmetry protection of the edge transport in 2d topological insulators: transport is ideal if time-reversal symmetry
and spin U(1) symmetry are present. However, it can be suppressed in a long sample due to spontaneously broken
time-reversal symmetry [33, 34].

In the present paper, we continue to study the KC in the RKKY regime where the low energy physics is governed
by the fermionic gaps. We aim to explain in more details the results of Ref.[25] and to substantially extend the theory,
in particular, by analyzing the role of forward scattering (i.e., of the Kondo physics), by taking into account the short
range electron interactions and by calculating the spin correlation functions.

Similar ideas to those presented here were already pursued in [2], where the emergence of helical order was recognised.
In contrast to [2] we take into account the dynamics of the lattice spins whose presence substantially modifies the
low-energy theory.

The Hamiltonian of the KC on a lattice is

H = H0 +Hint =
∑
i

[
tc†i+1ci +H.c.

]
+
∑
a

∑
j∈M

JaSaj c
†
jσ
acj , a = x, y, z; (1)

where t is the hopping matrix element, c
(†)
i annihilates (creates) an electron at site i, Si is a local spin of magnitude

s, σa is a Pauli matrix, and M constitutes a subset of all lattice sites. J denotes the interaction strength between the
impurities and the electrons. We distinguish Jz and Jx = Jy =: J⊥. Short range interactions between the electrons
will be added later in section IV D. The dynamics of a chain of spins will be added in section II. We will be interested
in the case of dense magnetic impurities, ρs � 1/LK (with the impurity density ρs and the single-impurity Kondo
length LK), when the effects of the electron-induced exchange can take predominance over the Kondo screening.

The paper is organized as follows: We first introduce a convenient representation of the impurity spins in section
II. Necessary conditions for the RKKY regime are then discussed in Section III. The gap is studied in section IV. In
section V we compute the conductance and analyze the effects of spinless disorder. The spin-spin correlation functions
are given in section VI.

II. FORMULATION OF THE LOW ENERGY THEORY

To develop a low energy description of the KC model (1) we have to single out slow modes and integrate over
the fast ones. As the first step, we need to find a convenient representation of the spins such that it will be easy to
separate the low and high energy degrees of freedom.
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FIG. 2: (color online) The parametrization of a spin by the angles θ, ψ, α⊥, α‖.

A. Separation of scales in the spin sector

Consider first a single spin. It is described by the Wess-Zumino term in the action [35]

SWZ = i

∫ 1

0

du

∫ β

0

dτ
s

8π
εµνn · (∂µn× ∂νn), (2)

where n is the direction of the spin, u is an auxiliary coordinate, which together with τ parametrizes a disk. Multiple
spins require a summation over spins and can be described by introducing a (dimensionless) spin density ρs∑

impurities

SWZ → S =

∫
dx
ρs
ξ0
SWZ , (3)

where ξ0 is the underlying lattice constant for the spins.
Usually, two angular variables are used in parametrizing the spin S = s{sin(θ) cos(ψ), sin(θ) sin(ψ), cos(θ)}:

LWZ[θ, ψ] =
isρs
ξ0

cos θ∂τψ , (4)

where we have neglected boundary contributions (topological terms).
The form of the Lagrangian Eq. (4) makes it difficult to separate fast and slow variables, since the angles θ and ψ

contain both fast and slow modes. We need to find a different representation of the spin Berry phase, which will allow
us to separate the fast and the slow modes explicitly. We first observe that the expression Eq. (4) can be obtained
by considering a coordinate system comoving with the spin. Namely, we choose an orthnormal basis {e1, e2, e3} at
time τ = 0 and assume that this coordinate system is comoving with the spin such that sei := (S, ei) is independent
of τ . Then it is easy to check that the following expression reproduces (4):

LWZ[θ, ψ] = − iρs
2ξ0

(S, ei)(ej , ∂τek)εijk. (5)

The check of Eq. (5) can be done by choosing the explicit parametrization

e1 = {− cos(θ) cos(ψ),− cos(θ) sin(ψ), sin(θ)}, (6a)

e2 = {sin(ψ),− cos(ψ), 0}, (6b)

e3 = {sin(θ) cos(ψ), sin(θ) sin(ψ), cos(θ)} = S/s, (6c)

with S ‖ e3 and inserting Eq. (6) into Eq. (5). A specific choice of the basis e2,3 is not important since LWZ in the
form Eq. (5) is manifestly covariant under both a rotation in x, y, z, and a change of basis {ei}.

In path integral quantization, we thus sum over all paths described by θ(x, τ) and ψ(x, τ). The measure is given
by D{Ω} = sin θD{θ}D{ψ}.

Let us now consider two superimposed spin motions: the actual trajectory considered in the path integral, and
its slow component (Fig. 1). We already have the Wess-Zumino term for the actual trajectory. If we want to use



4

Eq. (5) for the slow component, we need to introduce a second set of basis vectors which is comoving with the slow
component. This doubles the number of angles, but we assume a separation of scales: of the four angles, two will be
fast and two will be slow. Thus, there will be no double counting of modes which justifies our approach. A convenient
choice for the slow basis is given by the rotation of the actual trajectory (Fig. 2)

e′1 = − sin(α‖)[cos(α⊥)e1 + sin(α⊥)e2] + cos(α‖)e3, (7a)

e′2 = sin(α⊥)e1 − cos(α⊥)e2, (7b)

e′3 = cos(α‖)[cos(α⊥)e1 + sin(α⊥)e2] + sin(α‖)e3. (7c)

The total path-integral measure now consists of the four angles: D{ΩS ,ΩS′} = cosα‖ sin θD{θ}D{ψ}D{α‖}D{α⊥},
which will be the product of the measures for fast and slow modes.

Now we can describe the dynamics of the slow modes, which is given by the slow Wess-Zumino term: we pick the
bases such that S ‖ e3 and Sslow ‖ e′3. The dynamics of the slow modes are then obtained by using Eq. (5) with the
full spin S and the slow basis e′3:

SslowWZ = = isρsξ
−1
0

∫
dx

∫
dt sin(α‖)[∂τα⊥ + cos(θ)∂τψ]. (8)

The dynamics is that of the basis {e′1, e′2, e′3} (i.e. of the slow spin), whereas the overall scale is that of the actual
trajectory projected onto the slow component. This projection may be viewed as a renormalization of the length of
the spin’s slow component.

B. The interaction between the spins and the fermions

The low-energy fermion modes are obtained by linearizing the spectrum and expanding the operators ĉ in smooth
chiral modes R̂σ, L̂σ

ĉ↑↓(n) = e−ikF ξ0nR̂↑↓(x) + eikF ξ0nL̂↑↓(x), x = nξ0. (9)

The Lagrangian density of the band electrons becomes

Le = Ψ†
[
(Î ⊗ Î)∂τ − i(Î ⊗ τ̂z)vF∂x

]
Ψ. (10)

The first space in the tensor product is the spin one, the Pauli matrices τ̂a act in the chiral space; Î = diag(1, 1);
vF = 2tξ0 sin(kF ξ0) is the Fermi velocity; ΨT = (R↑, R↓, L↑, L↓) is the 4-component fermionic spinor field. If the
electron interaction is taken into account, it is more convenient to use the bosonized Lagrangian density

Le = −
∑
ρ=c,s

{
i

π
∂xΘρ∂τΦρ −

1

2π

[
uρKρ(∂xΘρ)

2 +
uρ
Kρ

(∂xΦρ)
2
]}

, (11)

where Kρ is the Luttinger paramter; uρ the renormalized Fermi velocity; and we have used the bosonization identity

ψrσ =
1√

2πξ0
Uσe−irkF xe

− i√
2

[rΦc−Θc+σ(rΦs−Θs)]. (12)

Φc (Φs) and Θc (Θs) are dual bosonic fields belonging to the charge (spin) sector, r distinguishes right- and left-moving
modes, σ is the spin projection and Uσ are Klein factors. One can introduce spin and charge sources to determine
how the low energy degrees of freedom couple to external perturbations:

Lsource = hc(ρ
R
c + ρLc ) + hs(ρ

R
s − ρLs ) = −

√
2hc
π

∂xΦc +

√
2hs
π

∂xΘs, (13)

here ρ
R/L
c/s = ρ

R/L
↑ ± ρR/L↓ is the charge/spin density of the right-/left-moving electrons. The spin source is included

for purely illustrative purposes. We will combine the fermionic and bosonic description, selecting the one which is
most convenient for the given caculations.

Now consider the electron-spin interactions Hint. We will explicitely distinguish forward and backward scattering
since they give rise to different physics. The slow part of the backscattering term is (c.f. Appendix)

L(sl,bs)
int =

s cos(α‖)ρs

2
R†
{
J⊥

[
eiψ sin2

(
θ

2

)
σ̂−− e−iψ cos2

(
θ

2

)
σ̂+

]
+ 2Jz sin(θ)σ̂z

}
Le−iα +H.c., (14)
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where α = α⊥ − 2kFx and we have introduced the spin-flip operator S± = Sx ± iSy.
For the forward scattering, we obtain

L(sl,fs)
int =

s sin(α‖)ρs

2
R†
{
Jf⊥ sin θ

[
eiψσ− + e−iψσ+

]
+ 2Jfz cos θσz

}
R+ (R→ L) (15)

III. RENORMALIZATION OF FORWARD VS BACKWARD SCATTERING COUPLING CONSTANTS

Eq. (14) and Eq. (15) describe two competing phenomena: forward scattering tends towards Kondo-type physics,
backward scattering opens a gap (c.f. section IV). Both phenomena are distinct and mutually exclusive. If backscat-
tering is dominant, then the emerging gap will cut the RG and suppress forward scattering. If forward scattering
dominates, the formation of Kondo-singlett prevents the gap from opening [7]. We will focus on the physics related
to the gaps. Therefore, we have to identify conditions under which the backscattering terms are more important. To
determine the dominant term, we consider a first loop RG.

Let us consider the bosonized free electrons, Eq. (11). They constitute two Luttinger liquids, describing a spin
density wave (SDW) and a charge density wave (CDW). If there is no electron-electron interaction, then Ks = Kc = 1.
A weak, short range, spin independent repulsion between electrons changes Kc to Kc . 1, but leaves Ks untouched.

The RG equations for the couplings read as (see Appendix B):

∂lJ
f
z = −Jfz , ∂lJ

f
⊥ =

[
1
2 (Ks + 1

Ks
)− 2

]
Jf⊥, (16)

∂lJ
b
z =

[
1
2 (Ks +Kc)− 2

]
Jbz , ∂lJ

b
⊥ =

[
1
2 (Kc + 1

Ks
)− 2

]
Jb⊥, (17)

where l parametrizes an energy cutoff Λ′ via Λ′ = exp(l)Λ. The flow differs from that of single Kondo impurity because
we consider a dense array of impurities. All of these terms are relevant, if Kc and Ks are close to 1. Assuming weak,
short range, spin independent repulsion (i.e. Kc . 1, and Ks = 1), we see that the backward scattering terms flow
faster in the RG-flow from high to low energies than forward scattering ones, i.e. the terms ∼ Jb can dominate.

Let us assume that an impurity scatters anisotropically in spin space (Jz 6= J⊥), but there is no difference between

the electrons’ directions (Jfbare = Jbbare). Then, simple scaling shows that backward scattering becomes relevant prior
to forward scattering. The scattering will remain anisotropic and the strength of the anisotropy is dictated by the
inital conditions (Jz vs. J⊥ at the beginning of the flow).

Weak, short range, spin dependent electron-electron interactions do not change the picture and backscattering
dominates, provided that |Ks − 1| < |Kc − 1|. However, if the spin dependent electron-electron interactions are
attractive (repulsive), they will drive the flow towards dominantly spin-flip (spin-conserving) backscattering.

Thus, we conclude that the gap physics dominates if there is a weak, repulsive, spin-independent electron-electron
interaction. From now on, we consider this regime and neglect Jf . We note that it is well-known that for large
spins the Kondo-temperature is small [36]. Thus, for sufficiently large spins we can conclude without an explicit RG
analysis that the gap physics will dominate.

IV. EFFECTS OF BACKWARD SCATTERING

We now focus on effects generated by backscattering. If the spin configuration is fixed, the backscattering terms
act like mass terms for the fermions. This modifies the dispersion relations, as shown in Fig. 3. The ground state
energy of single component massive fermions with mass m differs from that of gapless fermions by

∆E = − ξ0
2πvF

m2 ln(t/|m|) +O(m2). (18)

To minimize the ground state energy, one thus has to maximize the gaps. Depending on the relative values of Jz and
J⊥ this leads to different ground state spin configurations and different physics.

A. Easy axis anisotropy, Jz � J⊥

Let us consider Jz � J⊥. It is convenient to remove the phases α and ψ from the interaction Eq. (14). This can
be done by the transformation of the fermion fields

R↑ → e−iψ/2−iα/2R↑, R↓ → eiψ/2−iα/2R↓, L↑ → e−iψ/2+iα/2L↑, L↓ → eiψ/2+iα/2L↓, (19)
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FIG. 3: (color online) The dispersion of helical modes. Blue and green lines correspond to particles and holes of the first helical
sector. For helical particles the direction is in one-to-one correspondes with their spin. Upon opening a gap ∆, the dispersion
changes to the red curve.

which is anomalous. The anomaly is the well-known Tomonaga-Luttinger anomaly; its contribution to the Lagrangian
is [37] ∑

√
2Φ=α,ψ

LTL[Φ, vF ] =
∑

√
2Φ=α,ψ

1

2πvF

[
(∂τΦ)2 + (vF∂xΦ)2

]
. (20)

This result may also be obtained from Abelian bosonization [38] (see the Appendix C) [46]. We have neglected
coupling between the charge (spin) density and the field α (ψ). This mixing is generically of the form

Lmixing ∼ i∂τα(ρL − ρR)c + u∂xα(ρL + ρR)c + i∂τψ(ρL + ρR)s + u∂xψ(ρL − ρR)s, (21)

where ρr stands for a density of left-/right-moving (r = L and r = R) electrons and u is their velocity. Once the
electrons become gapped, the low-energy degrees of freedom cannot excite density fluctuations. With this accuracy,
in the low energy theory we can neglect derivatives of the electron densities.

The full Lagrangian is thus

L(sl) ' Le + L(sl)
int|α,ψ=0 +

∑
√

2Φ=α,ψ

LTL(Φ, vF ) + LWZ; (22)

Here L(sl)
int is only the backward scattering part L(sl,bs)

int , Eq. (14). After the transformation Eq. (19), the sources now
couple to the phases Φc and Θs and the angles

Lsource = −hc
π
∂xα−

hs
π
∂xψ −

√
2hc
π

∂xΦc +

√
2hs
π

∂xΘs. (23)

L(sl)
int in Eq. (22) is a mass term. The masses for fixed spin variables are given by

m2
± =

(s cosα‖ρs)
2

4

(√
(Jb⊥)2 cos2 θ + (Jbz)2 sin2 θ ± Jb⊥

)2

. (24)

In the case of Jz � J⊥ the gap is always large (of order Jz) and it is maximized for θ = π/2 and α‖ = 0.
Since all fermions are gapped we may neglect their coupling to external sources, provided we restrict ourselves to

energies below the gap. We now integrate out the fermions under this assumption, i.e. we will consider correlation



7

functions on length scales larger than the coherence length vF /m. Since the original normalization of the path integral
was with respect to gapless fermions, the effective Lagrangian is now changed by the fermionic ground state energy
Eq. (18). The total Lagrangian reads as

L(sl) ' −∆E

ξ0
+

∑
√

2Φ=α,ψ

LTL(Φ, vF ) + LWZ, (25)

where we also have assumed that fluctations of the angles θ and α‖ are small, such that the angles are close to their
ground state values. ∆E is a function of the angles, see equations (18) and (24). Expanding Eq. (25) in θ′ = θ− π/2
and α‖, we obtain

L(sl)
(ea) =

∑
√

2Φ=α,ψ

LTL(Φ, vF ) + a
{[

(Jbz)2 − (Jb⊥)2
]

(θ′)2 +
[
(Jbz)2 + (Jb⊥)2

]
(α‖)

2
}︸ ︷︷ ︸

Lgs

+isρsξ
−1
0 α‖(∂τα), (26)

where a = log(t/J)(sρs)
2/4πvF , and we do not distinguish between the J ’s in the log. We will further assume for

now that ∂τψ is small, such that the cross-term α‖θ
′∂τψ is a higher order contribution. This will be verified below.

Lgs in Eq. (26) is the mass term for θ′ and α‖, which shows that the assumption of small θ′ and α‖ is consistent.
Now we perform the integrals over α‖ and θ′ and obtain

L(sl)
(ea) =

∑
√

2Φ=α,ψ

LTL(Φ, vF ) +
(sρsξ

−1
0 )2

4a((Jbz)2 + (Jb⊥)2)
(∂τα)2 (27)

Note that ψ and α remain gapless, justifying the previous approximation of small ∂τψ. Thus, two angular modes are
fast (θ and α‖) and two are slow (α and ψ), as we expected.

Eq. (27) is the action of two U(1)-symmetric Luttinger liquids with a charge mode, α, and a spin mode, ψ.

Lea =
1

2
LTL(ψ, vF ) +

1

Kα
LTL(α, vα) . (28)

The two phases couple to different sources: α to charges and ψ to spins. The slow mode α has a renormalized velocity
and Luttinger parameter

vα
vF

=
Kα

2
' ξ0

√
J2
z + J2

⊥
πvF

√
log(t/J)� 1, (29)

where we used that the band width is the largest energy scale (i.e. vF /ξ0 � J) in the last inequality. This severly
affects the charge transport, which is mediated by α.

B. Breaking the Z2 symmetry

We have demonstrated that for Jz � J⊥, all fermionic modes have approximately the same gap ∼ Jz. Approaching
the SU(2) symmtric point, the mass m− shrinks until it would reach zero at Jz = J⊥. In terms of the easy axis
(EA) picture, some fermions (two helical modes) become light and their contribution encompasses large fluctuations
on top of their ground state energy. We explicitely assumed that the fluctuations around the ground state are small.
Therefore, our approach is no longer valid for m− → 0.

For now, let us consider the other limit Jz � J⊥. We will see that this parameter regime behaves in a way
qualitatively different to Jz � J⊥. The order parameter distinguishing the phases is discussed in section VI. The
vanishing of the gap for Jz → J⊥, the spontaneous symmetry breaking for Jz � J⊥ and the presence of an order
parameter all strongly suggest the presence of a quantum phase transition, although its theoretical description is
missing.

C. Easy plane anisotropy, Jz � J⊥

Let us put for simplicity Jz → 0. Then, it is convenient to express Eq. (14) through helical modes

L(h1)
bs = s cosα‖ρs

[
J⊥R

†
↑ cos2 (θ/2) e−i(ψ+α)L↓ +H.c.

]
, (30)

L(h2)
bs = −s cosα‖ρs

[
J⊥R

†
↓ sin2 (θ/2) ei(ψ−α)L↑ +H.c.

]
. (31)
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Clearly, the interesting points are θ = 0, π and θ = π/2. If θ = π/2, then the effective J⊥ is reduced by a factor of
cos2 π/4 = sin2 π/4 = 1

2 relative to the effective J⊥ of a single gapped helical sector at θ = 0, π. Since the ground
state energy Eq. (18) of a helical sectors with the gap mi is

∆Ehel = − ξ0
2πvF

m2
i ln(t/|mi|) +O(m2

i ), mi ∼ J⊥, (32)

the ground state of a single gapped sector of twice the mass has a lower energy than that of two equally gapped helical
sectors. Thus, it is energetically favorable to spontaneously break the Z2 symmetry between different helical sectors.
The two ground states are labelled by θ = 0 and θ = π.

Let us choose θ = 0. Then, the first helical sector Eq. (30) becomes gapped, while the second sector Eq. (31) is
gapless. Now, the angle α − ψ does not enter the action if fluctuations of θ are set to zero. It enters (in the leading
order in θ) only via the combination

L ⊃ −s cosα‖ρsJ⊥
θ2

4
e−i(α−ψ)R†↓L↑ +H.c.︸ ︷︷ ︸
L(H2)

bs

+ isρsξ
−1
0 sin(α‖)

θ2

2
∂τα︸ ︷︷ ︸

LslowWZ

. (33)

The last summand is (for α‖ ≈ 0) beyond our accuracy and will be neglected. The influence of the first two summands
may be estimated by integrating over R↓ and L↑. The resulting expression is

L ⊃ Tr log

[(
iω + vF k 0

0 iω − vF k

)−1
(

iω + vF k s cosα‖ρsJ⊥
θ2

4 e−i(α−ψ)

s cosα‖ρsJ⊥
θ2

4 ei(α−ψ) iω − vF k

)]
. (34)

The off-diagonal parts will enter only starting at the second order of the expansion of the log, thus α− ψ only enters
with a prefactor of J2

⊥θ
4, which is smaller than our accuracy and has to be neglected. Under this assumption, the

angle α can be shifted to α−ψ, thus eliminating one angular variable, as the Wess-Zumino term Eq. (8) also depends
only on α+ψ to leading order in θ and α‖. It is easiest to eliminate α by bosonizing the modes coupled to the spins,
and shifting [47]

Θs → Θs −
√

2α/4, Φc → Φc +
√

2α/4. (35)

The shift needs to be in both spin and charge sectors such that all charge conserving fermionic bilinears of the gapless
sector remain unaffected. This is a consequence of the helical nature of the sectors and means that α will couple to
both spin and charge sources:

Lsource ⊃ −
hc
2π
∂xα−

hs
2π
∂xα, (36)

where we did not write the coupling of the sources to the fermions. Next, we integrate out the gapped helical sector.
The ground state energy contribution from this is

∆E = − ξ0
2πvF

m2 ln(t/|m|) +O(m2), (37)

where m2 = 1
2

(
sρs cosα‖ cos θ2J⊥

)2
. The ground state energy Eq. (37) is minimized for α‖ = 0 (we remind that

θ ≈ 0). We expand ∆E to second order in α‖ and θ and obtain

∆E ≈ −(sρs)
2 ξ0

4πvF
log(t/J⊥)J2

⊥[(θ/2)2 + (α‖)
2] (38)

Thus, θ and α‖ are high-energy modes, which confirms the consistency of our approach in the EP phase. We can
integrate out the fast variables and obtain

Lep = R†↓G
−1
R R↓ + L†↑G

−1
L L↑ +

1

K ′α
LTL(α, v′α), (39)

where

v′α
vF

=
K ′α
4

=
ξ0J⊥
2πvF

√
log(t/J⊥)� 1, (40)



9

and G−1
R/L = ∂τ ∓ ivF∂x is the inverse Green’s function of free helical fermions. Upon bosonization, the gapless helical

fermions become a helical Luttinger liquid:

L = LTL(ΦH1, vF ) +
1

K ′α
LTL(α, vα). (41)

Thus, the low energy physics is described by two U(1) Luttinger liquids, just as in the EA case. However, the Luttinger
liquids are now helical modes and they differ from the EA case in the way they couple to external sources (c.f. Eq.
(36)).

D. The effects of electron interactions

In the discussion of the EA and EP cases, we have neglected the effects of electron interactions. However, we used
interactions to find the regime where the gap physics dominates Kondo physics. To fill this gap, we investigate the
effects of interactions on the results of sections IV A and IV C.

In the presence of interactions, Ks and/or Kc acquire values different from one. This changes the effect of the
transformation Eq. (19) in the EA case. These transformations now induce terms of the form

L ⊃ 1

2
√

2π

(
uc
Kc

∂xα∂xΦc − usKs∂xψ∂xΘs

)
. (42)

Since all the fermions become massive, these terms may be dropped (c.f. discussion following Eq. (21)). The other
effect of interactions is a renormalization of the gap m (Eq. (24)). This is simply a renormalization of the parameters
appearing in Eq. (26), which we will neglect for now.

In the EP case, the situation is different, because one helical branch remains gapless. If Ks 6= 1/Kc, the Luttinger
parameter and the velocity of a helical sector (e.g. R↓ and L↑ as one sector) are changed to

K̃ =

√
ucKc + us

Ks
uc
Kc

+ usKs
, ũ =

1

2

√
u2
c + u2

s + ucusKcKs +
ucus
KcKs

, (43)

yielding the free part of the Lagrangian

Lhi = − i

π
∂xΘhi∂τΦhi +

1

2π

(
ũK̃(∂xΘhi)

2 +
ũ

K̃
(∂xΦhi)

2

)
. (44)

Here, Φhi is the bosonic field belonging to a given helical sector. The helical sectors h1 (consisting of R↑ and L↓) and
h2 (consisting of R↓ and L↑) couple as

Lh−h =
1

2π

{(
ucKc −

us
Ks

)
(∂xΘh2

∂xΘh1
) +

(
uc
Kc
− usKs

)
(∂xΦh2

∂xΦh1
)

}
(45)

The transformation Eq. (35) thus adds to the Lagrangian the new part

δL =
1

4π

(
uc
Kc
− usKs

)
(∂xΦh2

∂xα) +O(∂α∂Φh1
, ∂α∂Θh1

) (46)

where Φh2 is the bosonic field belonging to the gapless (helical) fermionic modes. Dropping once more couplings of
the derivative of the density of a gapped fermion (from the first helical sector) to gapless modes, the total low-energy
Lagrangian Lep from Eq. (39) is modified only by δL in Eq. (46) [48]:

Lintep = Lh2
+

1

K ′α
LTL(α, v′α) + δL (47)

This expression can be analyzed by rediagonalizing it in field space. To do so, first integrate out Θh2
. This yields

Lintep =
1

2π

1

ũK̃
(∂τΦh2

)2 +
1

2π

ũ

K̃
(∂xΦh2

)2 +
1

2π

(
1

K ′α
(∂τα)2 +

1

K ′α
(v′α∂xα)2

)
+

1

4π

(
uc
Kc
− usKs

)
∂xα∂xΦh2

. (48)
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Next, we redefine the fields α and Φh2
such that the temporal derivatives have the same prefactor:

α→
√
K ′αα, Φh2 →

√
ũK̃Φh2 . (49)

This leads to

Lintep =
1

2π
(∂τΦh2

)2 +
1

2π
ũ2(∂xΦh2

)2 +
1

2π
(∂τα)2 +

1

2π
(v′α∂xα)2 + δ∂xα∂xΦh2

, (50)

where we have defined δ = 1
2π

√
ũK̃K ′α

(
uc
Kc
− usKs

)
. Diagonalizing this leads to two new gapless particles with

dispersion

ω2 = 1
2

(
ũ2 + v2

α ±
√

(ũ2 + v2
α)2 + 4δ2

)
k2. (51)

Note that the remaining two degrees of freedom remain gapless. Interactions thus destroy the purely helical nature
of low-energy excitations, but they cannot gap these exctiations.

E. Suppression of forward scattering

We have seen that dominant backscattering leads to a vacuum structure where α‖ ≈ 0. The forward scattering
terms however are proportional to sinα‖, Eq. (15). This confirms the suppression of their contribution once the gap
is opened and examplifies our previous claim that Kondo physics and the gap physics are mutually exclusive.

V. DENSITY-DENSITY CORRELATION FUNCTIONS AND DISORDER

A. Density-density correlation functions

We have shown that both the cases of EA and EP anistropy are described by two U(1) Lutttinger liquids. However,
the fields have different physical meaning as evinced by their coupling to external source. Their difference can be seen
from various correlation functions. Let us at first consider the density-density correlation function

C = 〈ρc(1)ρc(2)〉 =
δ2 logZ[hc]

δhc(1)δhc(2)
|hc=0, (52)

where ρc is the electron density and Z[hc] is the generating functional in the presence of the source hc. In general,
there are several contributions to C, including those from gapped and gapless excitations. Even if the fermionic modes
become gapped, there still is a contribution from collective electron and spin modes to long range density-density
correlation functions. This can be seen from the fact that some low energy degrees of freedom (EA: α; EP α and one
helical fermion) couple to hc. In Fourier space, the correlation functions are

Cea(ω, q) =
( q
π

)2

〈α∗α〉 , (53)

Cep(ω, q) =
( q
π

)2

(〈Φ∗HΦH〉+ 〈α∗α〉 /4) . (54)

Using the corresponding low energy effective actions Eq. (28) and Eq. (39), this yields

Cea(ω, q) =
q2Kαv

2
αξ
−2
0

π(ω2 + (vαq)2)
, (55)

Cep(ω, q) =
q2

π

(
v2
F ξ
−2
0

ω2 + (vF q)2
+

1

4

K ′αv
′
α

2
ξ−2
0

ω2 + (v′αq)
2

)
. (56)

Equations (55) and (56) correspond to ideal metallic transport. The small Luttinger parameter of the bosonic modes
(Kα, K

′
α � 1) reflects the coupling of the spin waves to the gapped fermions and leads to a reduced Drude weight

[33].
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B. The role of potential disorder

Let us investigate how potential disorder affects charge transport. We add a weak random potential

Vdis = g(x)Ψ†(I ⊗ τ+)Ψ +H.c., (57)

where g(x) is the smooth 2kF component of the scalar random potential. Note that we have dropped quickly oscillating
modes, just as for the spin impurities. If the disorder itself is distributed according to the Gaussion orthogonal ensemble
(GOE), then its 2kF component has a Gaussian unitary distribution. Thus the function g is drawn from a Gaussian
unitary ensemble (GUE). We use 〈g(x)〉 = 0 and 〈g∗(x)g(y)〉 = 2Dδ(x− y). We assume that the potential disorder is
sufficiently weak, such that it does not influence the high energy physics. The precise meaning of this statement will
be specified later.

As first step, we integrate the disorder exactly by using the replica trick. Upon disorder-averaging we obtain

Sdis =
∑
i,j

∫
dx

∫
d{τ1,2}D

[(
R†↑iL↑i + (↑↔↓)

)
(x, τ1)

(
L†↑jR↑j + (↑↔↓)

)
(x, τ2)

]
, (58)

where i, j are replica indices. The remainder of the action is diagonal in replica space.
To understand the effect of Sdis on transport we now have to integrate out the massive modes. Recall that this

involves first a shift of the fermionic fields (Eq. (19)) [49]:

Sdis =

∫
dx

∫
d{τ1,2}D

[(
R†↑iL↑ie

iαi + (↑↔↓)
)

(x, τ1)
(
L†↑jR↑je

−iαj + (↑↔↓)
)

(x, τ2)
]
, (59)

where the gapped and gapless modes now are cleanly separated in the rest of the action (with our accuracy). Thus,
it is easy to integrate out the gapped modes. We treat Sdis perturbatively, obtaining an expansion in the parameter
D
vFm

� 1 (weak disorder).
In the EA case, all fermions are gapped and the only gapless mode appearing in Ldis is the charge mode α. In

the EP case only the fermions with a given helicity (e.g. R↑ and L↓) become gapped and the disorder mixes the
two helical Luttinger liquids (α and the fermions of the non-gapped helicity). It is convenient to treat EA and EP
separately.

1. Easy axis

We start with the EA case, and put J⊥ = 0. For transparency, we choose the fermionic spin-dependent mass
mea(↑ / ↓) = ±m. The matrix Green’s function for the fermions with a given spin reads:

Ĝm(σ) =
(

(G
(0)
R )−1(G

(0)
L )−1 −mea(σ)2

)−1


(
G

(0)
L

)−1

−mea(σ)

−mea(σ)
(
G

(0)
R

)−1

 ; (60)

where G
(0)
R,L are the Green’s functions of free chiral particles. It is important that Ĝm is short ranged and it decays

beyond the time scale 1/mea (or beyond the coherence length ξea ≡ vf/mea). This implies in particular that two slow
operators connected by a massive propagator form a single local operator on length- and timescales large compared
to the inverse gap.

Leading terms are given by 〈Sdis〉m where brackets mean that the massive fermions are integrated out. The
corresponding diagrams are shown in Fig.4. It is easy to check that the diagrams from Fig.4-a cancel out after
summation over spin indices because mea(↑) = −mea(↓). The diagrams from Fig.4-b are trivial since Ĝm is diagonal
in the replica space and the spin phase α is smooth on the scale 1/mea; therefore,

eiα[1]e−iα[2] ' eiα[1]−iα[1] = 1 , (61)

with some small gradient corrections which are unable to yield pinning. Here we denoted α[j] := α(x1, τ1).

Sub-leading terms of the order of D2

vFm
are given by 〈SdisSdis〉. To be explicit, we need to compute

〈SdisSdis〉EA = D2
〈∫

d{x, x′; τ1,2, τ ′1,2}
[(
R†↑iL↑ie

iαi + (↑↔↓)
)

(x, τ1)
(
L†↑jR↑je

−iαj + (↑↔↓)
)

(x, τ2)
]

[(
R†↑kL↑keiαk + (↑↔↓)

)
(x′, τ ′1)

(
L†↑lR↑le

−iαl + (↑↔↓)
)

(x′, τ ′2)
] 〉

EA
. (62)
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FIG. 4: First order diagrams O(D1) for the EA phase. Red (green) triangles denote eiα/2 ( e−iα/2 ) with arguments of either
the 1st or the 2nd vertex; dashed lines are the disorder correlation functions, solid lines stand for Green’s functions of the
massive fermions.

In order to pin the CDW (the field α), an operator evaluating α at different times (i.e. times further apart than
1/mea) has to survive. The correlation function 〈SdisSdis〉EA contains various possible contractions, most of which are
unable to generate pinning:

(i) Contractions involving two fermionic creation or annihilation operators: They vanish due to the structure of the
fermionic Green’s function, which does not allow for propagation of Cooper pairs.

(ii) Contractions which simplify to two copies of the first order contribution (c.f. Fig. 5 a, b): They do not generate
backscattering, as shown above.

(iii) Contractions of fermions at (x, τ1) with fermions at (x′, τ ′2) and of fermions at (x, τ2) with fermions at (x′, τ ′1),
with no contractions between (x, τ1) and (x′, τ ′1) (Fig. 5 c): In these contractions - due to the short range nature

of the fermions’ Green’s functions - eiα fuses with e−iα at the same position and time (at an accuracy of 1/m),
and thus generate only derivatives of α, which are unable to pin the CDW.

(iv) Contractions of fermions at (x, τ1) with fermions at (x′, τ ′1) and of fermions at (x, τ2) with fermions at (x′, τ ′2),
with no contractions between (x, τ1) and (x′, τ ′2) (Fig. 5 d): These contractions all give the same result and are
able to generate pinning.

(v) Contractions between all positions and times (Fig. 5 e): This sets all positions and times (and replica indices)
of the CDW equal to each other (with accuracy 1/m), such that again only derivatives of the field α survive.

We calculate only one typical diagram which survives after all summations and is able to generate pinning [type
(iv)]. An example of such a diagram is shown in Fig.5d. All other diagrams of class (iv) yield identical results. The
sign of the mass does not matter as there is an even number of propagators for each species.

FIG. 5: A relevant subset of the EA diagrams. Notations are explained in the caption of Fig. 4. a) and b) Class (ii),
diconnected contributions. c) Class (iii), red and green triangles are merged through a massive propagator. d) Class (iv), we
omit the diagram with crossed disorder lines. e) Class (v), we omit the diagram with non-crossed disorder lines. Note that
green and red triangles are connected by a massive propagator.

Neglecting unimportant numerical factors, the analytical expression for the diagram from Fig. 5d reads as:

D(2)
ea ∝ D2

∑
i,j

∫
d{x, x′; τ1,2, τ ′1,2}e2i(αi[1]−αj [2])

[
Ĝm(1,1′)

]
1,2

[
Ĝm(1′,1)

]
1,2

[
Ĝm(2,2′)

]
1,2

[
Ĝm(2′,2)

]
1,2

. (63)

Here, we have taken into account that the diagonal structure of Ĝm results in i = k; j = l and fused together slow spin
phases, for instance: α[1] + α[1′] ' 2α[1]. Now we note that Ĝm(1,1′) = Ĝm(1− 1′) and integrate over all primed
variables:

D(2)
ea ∝

D̃0

ξ2
ea

∑
i,j

∫
d{x; τ1,2}ei(αi[1]−αj [2]) ; D̃0 ≡ D

(
D

vFmea

)
. (64)
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The structure of Eq. (64) corresponds to the non-local Sine-Gordon model which appears in the theory of the usual

disordered TLL [39]. The effective disorder strength D̃ is renormalized and obeys the well-known RG equation [40]:

EA : ∂log log(D̃) = 3− 2Kα ' 3 , D̃(ξea) = D̃0 ; (65)

the second equality of Eq.(65) has been obtained by using Eq.(29).
Note that the effective strength of the disorder is suppressed compared to free fermions by an additional factor of

D/(vFm). However, the operator is more relevant than for free fermions, as K
(EA)
α � 1.

2. Easy Plane

Let us now turn to the EP case. We start again from the leading diagrams generated by 〈Sdis〉. The principal
difference of the EP phase from the EA one is that the matrix Green’s function, Eq.(60), corresponds now to the
massive fermions with a given helicity. This changes the structure of the first order diagram, see Fig.6. All these
diagrams correspond to forward-scattering of the massless helical fermions and they contain only small gradients of
the phase α, cf. Eq.(61) and its explanation. Thus, the leading diagrams are trivial and they cannot yield localization,
the sub-leading diagrams must be considered.

FIG. 6: Two typical examples of first order diagrams O(D1) for the EP phase. Red (green) arrows denote the product of

smooth fields L, R with eiα/2 ( e−iα/2 ). The smooth fields L, R are taken from the non-gapped helical sector.

There are several categories of sub-leading diagrams:

(i) Contractions involving two creation or annihilation operators: They are identically zero.

(ii) Contractions which correspond to two copies of the leading diagrams (Fig. 7 a): They do not lead to backscat-
tering and cannot pin the charge transport.

(iii) Contractions of fermions at (x, τ1) with fermions at (x′, τ ′2) and of fermions at (x, τ2) with fermions at (x′, τ ′1),
with no contractions between (x, τ1) and (x′, τ ′1) (the second part - excluding certain contractions - is trivial, as
there is only one massive fermion at each vertex) (Fig. 7 b): These contractions - due to the short range nature

of the fermions’ Green’s function - combine eiα with e−iα at the same position and time (at an accuracy of 1/m),
and thus generate only derivatives of α, which are unable to pin the CDW.

(iv) Contractions of fermions at (x, τ1) with fermions at (x′, τ ′1) and of fermions at (x, τ2) with fermions at (x′, τ ′2),
with no contractions between (x, τ1) and (x′, τ ′2) (the second condition is again trivially satisifed) (Fig. 7 c).
These contractions all give the same result and are able to generate pinning.

The only relevant diagrams are those of class (iv), which all yield the same result. We will compute one of these
diagrams (Fig. 7c). Neglecting unimportant numerical factors, the analytical expression for the diagram from Fig.7c
reads as:

D(2)
ep ∝ D2

∑
i,j

∫
d{x, x′; τ1,2, τ ′1,2}ei(αi[1]−αj [2]) L†↓j [2]R†↑i[1]L↓i[1]R↑j [2]

[
Ĝm(1,1′)

]
1,2

[
Ĝm(2,2′)

]
1,2

; (66)

see explanations after Eq.(63) and note the m must be substituted for mea(σ) in Ĝm. Calculating integrals over all
primed variables, we find:

D(2)
ep ∝ D̄0

∑
i,j

∫
d{x; τ1,2}ei(αi[1]−αj [2]) L†↓j [2]R†↑i[1]L↓i[1]R↑j [2] , D̄0 ≡ D

(
D
vFm

)
. (67)

This equation also can be reduced to the form of Eq.(64) if remaining fermions are bosonized and we explicitly single
out new charge- and spin- density waves. However, the RG equation for D̄ can be obtained without such a complicated



14

FIG. 7: A relevant subset of the EP diagrams. Notations are explained in the caption of Fig. 6. a) Class (ii), diconnected
contributions. b) Class (iii), red and green arrows are merged through a massive propagator. We omit the diagram with crossed
disorder lines. Note that green and red arrows are connected by a massive propagator. c) Class (iv), we omit the diagram with
crossed disorder lines.

procedure with the help of the power counting. Firstly we note that the scaling dimension of each back-scattering

term in Eq.(67), L†R and R†L, is 1. The anomalous dimension of each exponential, e±iα, is K ′α � 1. The normal
dimension in Eq.(67) is 3 which comes from three-fold integral. Combining these dimensions together and neglecting
small K ′α, we find

EP : ∂log log(D̄) = 3− 2× 1 +O(Kα) ' 1 ; D̄(ξep) = D̄0 , ξep = vF /m . (68)

Note that while the scaling of the disorder strength is the same as for free fermions, but the effective strength (the
starting value of the flow) is reduced parametrically by a factor of D/(vFm)� 1.

3. Localization Radius

We now can find the localization radius for both phases, EA and EP. The solution of the RG equations, Eqs.(65,68),
reads as

D̃(x) = D̃0

(
x

ξea

)3

, D̄(x) = D̄0
x

ξep
; (69)

with ξep = vF /m. The localization radius is defined as a scale on which the renormalized disorder becomes of the
order of the cut-off:

D̃
(
L(loc)

ea

)
= Kαv

2
α/ξea ∼ K3

αv
2
F /ξea ; D̄

(
L(loc)

ep

)
= v2

F /ξep . (70)

The additional small factor Kα in the equation for L
(loc)
ea can be justified with the help of the standard optimization

procedure [39] where L(loc) is defined as a spatial scale on which the typical potential energy of the disorder becomes
equal to the energy governed by the term ∝ (∂xα)2 in the Lagrangian Lea, Eq.(28).

Definitions Eq.(70) result in

L(loc)
ea ∼ ξeaKα

(
v2
F

ξeaD̃0

)1/3

∼ ξeaKα

(vFmea

D

)2/3

; L(loc)
ep ∼ v2

F

D̄0
∼ ξep

(vFm
D

)2

. (71)

Assuming ξea ∼ ξep and mea ∼ m, we obtain

L
(loc)
ea

L
(loc)
ep

∼ Kα

(
D
vFm

)4/3

� 1 . (72)

This demonstrates that the strong suppression of localization can occur in the EP phase where the helical symmetry
is broken.

We note that the scaling exponent of D̄(x) is the same as in the case of non-interacting 1d fermions but suppression
of localization in the EP phase is reflected by the additional large factor vFm/D in the expression for the localization

radius L
(loc)
ep . We further note that unlike for free fermions our flow starts at the correlation length vF /m, not at the

lattice constant ξ0. However, for characteristic length scales ξ0 < l < ξea/ep, the mass is not relevant and the flow of
our system mimics that of free fermions in the absence spinful impurities. The flow only begins to differ at l ≈ ξea/ep,
such that we should compare to free fermions with a cutoff ξea/ep.
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4. Alternative approach to disorder

In this section we present an alternative approach which confirms the previous results on disorder. The main idea
is to integrate out the massive modes before averaging over disorder. We will focus on the main steps and neglect
unimportant prefactors. Let us start again at Eq. (57). In the EA case, we perform a shift Φc → Φc − α/

√
2. This

shift leads to

V ea
dis = g(x)eiαΨ†(I ⊗ τ+)Ψ +H.c., (73)

such that the field α couples to the potential disorder. Let us integrate out the massive fermions. The leading term
(in powers of the disorder) in the Lagrangian is then

Ldis ∼
1

ξ0

∫
dx
[
geff(x)ei2α +H.c.

]
, (74)

where we introduced the non-Gaussian effective disorder

geff(x) ∼ 1

2vF

∫
dyg(x+ y/2)g(x− y/2)e−m|y|/vF ; (75)

the exponential stems from real space Green’s function of fermions with mass m [50]. Eq. (75) is valid for large
distances y � vF /m.

In the EP case, before integrating out the massive fermions, we shift their phase Φc by
√

2α/4:

V epdis =

∫
dx
[
g(x)eiα/2R†↑L↑ + g(x)eiα/2R†↓L↓ +H.c.

]
. (76)

Each term describes a coupling of a gapped fermion from the first helical sector with a gapless one from the second
helical sector and with a low-energy angle α. Upon integrating out the gapped fermions, the disorder generates the
following contribution to the low energy effective Lagrangian:

L(H2)
dis ⊃

∫
dx
[
geff(x)R†↓e

iαL↑ +H.c.
]
, (77)

where geff(x) is of the form of Eq. (75). [51]
Thus, both in EA and EP, we obtain gapless particles coupled to an effective disorder.
To order D

vFm
, only the first and second moment of the distribution function of geff contribute (see Appendix

E). This is equivalent to the statement that the non-Gaussianities of the distribution of geff are irrelevant in our
approximation.

The leading order contributions of the effective disorder to the localization may then be estimated similarly to the
diagrammatic approach. Upon integrating over the disorder (and assuming it’s a Gaussian distribution), we obtain

Sdis ∼
∑
i,j

∫
dτdτ ′dx

D2

vFm
Oi(x, τ)O†j(x, τ

′), (78)

where the operator O is given by

EA : Oi(x, τ) =
1

ξ0
ei2αi(x,τ), (79)

EP : Oi(x, τ) = eiαiR†i,↓Li,↑. (80)

This yields the same scaling and, thus, the same localization radius Eq. (71) as in the diagrammatic approach.
The advantage of this approach is that the order of approximations follows the ordering of the relevant energy

scales. We first eliminate the highest energy (m) and only then approach the much smaller pinning energy. The
price is the non-Gaussianity of the effective disorder. However, since higher moments of the effective disorder are
suppressed by additional factors of D

vFm
, the non-Gaussianities only enter in higher orders that we do not consider

here.



16

0
2

4
6

−1
0

1
−1

0

1

Position/(2/k
F
)

S
x
/s

S
y/s

0
2

4
6

−1
0

1
−1

0

1

Position/(2/k
F
)

S
x
/s

S
y/s

FIG. 8: (color online) A travelling spin wave in the EA (left) and EP (right) setup. Since Sx and Sy in the EA case are
uncorrelated to leading order, we only show one contribution.

VI. SPIN CORRELATION FUNCTIONS AND ORDER PARAMETER

Let us consider the spin correlators
〈
Sa(1)Sb(2)

〉
and see which correlation function reflects the broken Z2 symmetry.

Before computing the correlators, we note the following: The low energy physics of both phases is captured by two
uncorrelated U(1) Luttinger liquids and by a set of fast angles. The slow component of the spins (in the basis where
Sslow ‖ e′3) depends on the angles via

Sx/s = − cosα‖ cosα⊥ cos θ cosψ + cosα‖ sinα⊥ sinψ + sinα‖ sin θ cosψ; (81a)

Sy/s = − cosα‖ cosα⊥ cos θ sinψ − cosα‖ sinα⊥ cosψ + sinα‖ sin θ sinψ; (81b)

Sz/s = cosα‖ cosα⊥ sin θ + sinα‖ cos θ. (81c)

The effective low energy physics is generated at α‖ ≈ 0. Therefore, Eq. (81) simplifies to

Sx/s = − cosα⊥ cos θ cosψ + sinα⊥ sinψ; (82a)

Sy/s = − cosα⊥ cos θ sinψ − sinα⊥ cosψ; (82b)

Sz/s = cosα⊥ sin θ; (82c)

where we neglect fast fluctuations of α‖ around its ground state value. We will also need the correlation functions
(for large distances) in a Luttinger liquid described by the field ρ with Luttinger parameter K and velocity v:

〈sin(ρ(x1)± ρ(x2))〉 = 0; 〈cos(ρ(x1) + ρ(x2))〉 = 0; 〈sin(ρ(x1)) cos(ρ(x2))〉 = 0; (83a)

〈sin(ρ(x1)) sin(ρ(x2))〉 = 〈cos(ρ(x1)) cos(ρ(x2))〉 = 1
2 〈cos(ρ(x1)− ρ(x2))〉 =

ξ
K/2
0

[(vτ + ξ0)2 + x2]K/4
. (83b)

Here, 〈cos(ρ(x1) + ρ(x2))〉 = 0 due to ”electroneutrality” [39].

A. Spin correlation functions; easy axis

In the case of the EA anisotropy, the physics at energies smaller that Jz − J⊥ is governed by θ ≈ π/2 (fast
fluctuations are again neglected). At these energies the spin components become

Sx/s = sinα⊥ sinψ, Sy/s = − sinα⊥ cosψ, Sz/s = cosα⊥. (84)

Then the transverse spin correlators are given by

〈Sx(1)Sx(2)〉 /s2 = 〈Sy(1)Sy(2)〉 /s2 = 〈(sinα⊥ sinψ)(1)(sinα⊥ sinψ)(2)〉+O(θ − π/2, α‖), (85)

where (j) denotes (τj , xj). Since ψ and α are not correlated, the correlation function factorizes. The correlation
function of the α⊥ component can be written as

〈sinα⊥(1) sinα⊥(2)〉 = − 1
2 [〈cos(2kF (x1 + x2) + α(1) + α(2))〉 − 〈cos(2kF (x1 − x2) + α(1)− α(2))〉] . (86)
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Combining Eq. (86) and Eq. (83) leads to

〈Sx(1)Sx(2)〉 /s2 = 1
4 cos[2kF (x1 − x2)] 〈cos(α(1)− α(2))〉 〈cos(ψ(1)− ψ(2))〉

= cos(2kFx)

(
ξ0√

(τvα)2 + x2

)Kα
2
(

ξ0√
(τvF )2 + x2

) 1
2

, (87)

where we introduced x = x1 − x2 and τ = τ1 − τ2. The transverse spin correlation function of x and y components is

〈Sx(1)Sy(2)〉 /s2 ∼ f(α⊥) 〈sinψ(1) cosψ(2)〉 = 0. (88)

Eq. (88) shows that there is no spin rotation in xy-plane, see Fig. 8. In particular, this implies that the Fourier-
transform of the dynamical in-plane spin susceptibility〈

S+(1)S−(2)
〉
/s2 = 2 〈Sx(1)Sx(2)〉 /s2, (89)

has peaks both at 2kF and −2kF .
The correlators of Sz spin components are given by

〈Sz(1)Sz(2)〉 /s2 = 〈(cosα⊥)(1)(cosα⊥)(2)〉+O(θ − π/2, α‖)

= cos(2kFx)

(
ξ0√

(τv)2 + x2

)Kα
2

. (90)

They decay more slowly than the transverse spin correlator Eq. (88) because the Sz component couples more strongly
to the localized electrons. The correlation function between the axis and the plane 〈SzSx〉 vanishes. Thus, all
cross-correlation functions are zero in the EA case.

B. Spin correlation functions; easy plane

In the case of the EP, the asymptotics of the spin correlation functions are determined by θ ≈ 0, or θ ≈ π. Let us
choose θ = 0. Then the spin operators become

Sx/s = − cosα⊥ cosψ + sinα⊥ sinψ = − cos(α⊥ + ψ); (91)

Sy/s = − cosα⊥ sinψ − sinα⊥ cosψ = − sin(α⊥ + ψ); (92)

Sz/s = 0. (93)

In our notations: α⊥ = 2kFx+α and α→ α−ψ in the EP case. Thus, the transverse spin correlation function reads
as

〈Sx(1)Sx(2)〉 /s2 = 〈[cos(2kFx+ α)](1)[cos(2kFx+ α)](2)〉

= cos(2kFx)

(
ξ0√

(τv′α)2 + x2

)K′
α/2

. (94)

Due to SO(2)-symmetry in the x-y-plane, this is the same as the 〈SySy〉 correlation function. The transverse spin
rotation correlation function is

〈Sx(1)Sy(2)〉 /s2 = sin(2kFx)

(
ξ0√

(τv′α)2 + x2

)K′
α/2

. (95)

Eq. (95) reveals the spin rotation (helical configuration) in the EP case, see Fig. 8. Contrary to the EA case, the
Fourier transform of the dynamical in-plane spin susceptibility

〈
S+(1)S−(2)

〉
/s2 = 2 (〈Sx(1)Sx(2)〉 − i 〈SxSy〉) /s2 = exp(−i2kFx)

(
ξ0√

(τv′α)2 + x2

)K′
α/2

(96)

has a peak only at 2kF . The longitudinal spin correlator 〈SzSz〉 is zero in our accuracy (at fixed θ = 0, α‖ = 0).
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C. Order parameter

We have shown that the low energy spin excitations of the EA case are planar spin oscillations, whereas in the EP
case the spins form a helix, see Fig. 8.

The transverse spin correlation function 〈Sx(1)Sy(2)〉, which reflects rotations of the spins, is zero in the non-helical
phase (EA), but nonvanishing in the helical one (EP). Thus we suggest to use it as an order parameter. In analogy
with antiferromagnetic ordering [41], we define the two-point order parameter

Ac = εabc
〈
Sa(1)Sb(1 + ξ0)

〉
, (97)

which is non-vanishing only in the helical phase, where there is a low-energy helical mode propagating within the
dense chain of the magnetic impurities.

VII. CONCLUSION

Low-energy properties of an anisotropic Kondo chain away from half-filling are governed either by the Kondo screen-
ing or by the RKKY interaction generated by the backscattering of electrons on the spins. The latter process becomes
dominant when the concentration of the spins is sufficiently large and when the repulsive electron-electron interac-
tions are sufficiently strong. Then the RKKY interaction opens a gap in the quasiparticle spectrum, Eq. (24), which
further suppresses the Kondo screening. Depending on the anisotropy of the exchange interaction, the backscattering
processes may either lead to a formation of the charge and the spin density waves (EA anisotropy), Eq. (28), or
generate the helical low energy modes (EP anisotropy), Eq. (41). The appearence of such modes is related to sponta-
neous breking of the Z2(helical)-symmetry. We have shown that the order parameter characterizing the corresponding
quantum phase transition is the average of the vector product of neighboring spins Ac = εabc

〈
Sa(1)Sb(1 + ξ0)

〉
. The

helical nature of the modes is also manifest in the assymetry between the +2kF and −2kF peaks in the in-plane spin
susceptibility 〈S+S−〉, Eq. (96). The ideal charge transport supported by the gapless helical modes is robust: it
remains ballistic even if a weak random potential of static impurities is present. This protection requires the spin
the U(1) symmetry and exists up to the parametrically large scale, see Eq. (71). We have shown that short-range
electron-electron interactions mix the two helical sectors, but cannot gap out any low-energy modes, such that for
weak interactions the qualitative description in terms of the helical modes remains valid.

Even though the helical modes may be reminiscent of the edge modes of topological insulators, we emphasize that,
in our case, they are generated by the many-body interactions in one spacial dimension. Experimentally, the helical
modes could be detected in samples exhibiting one-dimensional structure with spin impurities. As we have discussed
in Introduction, promising candidates are ladder-type Fe-selenides, where almost completely filled bands of electrons
might serve as spin impurities [21], or single-wall carbon nanotubes functionalized by magnetic ions [18]. Since the
advent of the cleaved edge overgrowth method [42], quantum wires on the edge of GaAs heterostructures are also
viable candidates.

Usually, one cannot control the anisotropy of real materials. Therefore, one needs an experimental evidence that
the charge transport in a given system with the dense array of the Kondo impurities is supported by modes with
a broken helical symmetry. The cleanest signature could be provided by the local spin susceptibility (Eqs. (89)
and (96)), which clearly provides a smoking gun signature for the helical order. The local spin susceptibility may
be experimentally accessible through nitrogen-vacancy based STM measurements if the Kondo array is made as a
one-dimensional wire [43].

Another experimental signature of the helical phase is frequency-resolved charge transport. We remind the readers
that in our model the charge is carried either by the collective mode α (EA), or by the collective mode α and the
helical fermion (EP) with the velocity of the α-excitations being always small (Eqs. (29) and (40)). If a sufficiently
clean sample of a finite size is adiabatically connected to leads, its dc conductance remains ideal, 2e2/h [44]. However,

the frequency resolved conductance is expected to show a substantial decrease at ωc ∼ 1/t
(α)
Th ; where t

(α)
Th ∼ L/vα is

the Thouless time associated with the mode α. Since the α-modes are very slow ωc is small. For frequencies larger
than ωc, the slow collective modes cannot contribute and the conductance drops either to zero (EA) or to e2/h (EP).
The latter jump would confirm that the system is in the helical phase which is robust against localization effects.

A similar transition could also be detected at ω = 0 in the temperature dependence of the conductance. We expect
that at finite temperature domains of different helicity develop. At temperatures above the energy of a domain-
wall (T > Edomain wall) the quasiparticles do not contribute to the dc transport any longer and a crossover of the
conductance from 2e2/h to e2/h is expected with increasing T . Hence, the T -dependence of the conductance at very
small temperatures (possibly less than 5 mK reached in [45]) should be studied.

In order to check that the reduction of the conductance is related to the presence of the localized spins, one may
repeating the measurements on samples where the magnetic atoms are not present. If the spin-spin interaction is
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important the presence or absence of the additional localized spins will have a strong influence on the conductance.
Finally, we have shown that the helical transport is partially protected from localization effects. This means that the
conductance will not change even if the sample length becomes longer than the mean-free path of the material.

The theory of the frequency and temperature dependent conductance of the Kondo chain requires further theoretical
work.
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Appendix A: Derivation of the low-energy Lagrangian

In this section we give a short derivation of the form of the electron-spin interactions in terms of the fast and slow
angular variables (α‖, α⊥, θ, and ψ). Thus, consider the interaction term

Hint =
∑
m

Ja ĉ
†
m σ̂

aŜa(m) ĉm. (A1)

Using the representation of the fermions in terms of left- and rightmovers, Eq. (9), this term splits into forward and
backward scattering contributions

Hint = Hforward +Hbackward, (A2)

Hforward =
∑
m

Jfa R̂
†
m σ̂

aŜa(m) R̂m +
∑
m

Jfa L̂
†
m σ̂

aŜa(m) L̂m (A3)

Hbackward = +
∑
m

Jbae2ikF x R̂†m σ̂
aŜa(m) L̂m +

∑
m

Jbae−2ikF x L̂†m σ̂
aŜa(m) R̂m, (A4)

where the superscript f (b) denotes forward (backward) scattering contributions. Using the low-energy spin SLE ‖ e′3
and taking the dense impurity limit, we obtain

L(bs)
int = sρse

2ikF xR†
{Jb⊥

2 [ +eiψ(− cosα‖ cosα⊥ cos θ − i cosα‖ sinα⊥ + sinα‖ sin θ)σ̂−

+e−iψ(− cosα‖ cosα⊥ cos θ + i cosα‖ sinα⊥ + sinα‖ sin θ)σ̂+
]

+Jbz σ̂z(sinα‖ cos θ + cosα‖ cosα⊥ sin θ)
}
L+H.c.. (A5)

This expresses the back-scattering part of the electron-spin interaction in terms of the angular variables and the
fermions. To obtain the low-energy part, we first shift α⊥ → α(x) + 2kFx. Then, neglecting all quickly oscillating

terms (∼ e4ikF x), Eq. (A5) reduces to

L(sl)(bs)
int =

s cos(α‖)ρs

2
R†
{
J⊥

[
eiψ sin2

(
θ

2

)
σ̂−− e−iψ cos2

(
θ

2

)
σ̂+

]
+Jz sin(θ)σ̂z

}
Le−iα+H.c.; s̃ ≡ s cos(α‖) (A6)

The forward-scattering part of the action is obtained by following the same procedure with Hforward:

L(sl)(fs)
int =

s sin(α‖)ρs

2
R†
{
Jf⊥ sin θ[eiψσ− + e−iψσ+] + 2Jfz cos θσz

}
R+ (R→ L) (A7)
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Appendix B: Bosonization and the RG equations

Here we briefly remind readers of the bosonization identity used throughout, and the derivation of the RG equations.
We only derive one RG equation explicitely, but the other RG equations may be obtained by the same procedure.

The bosonization formula is

Ψrσ =
1√
2πα

Uσe−irkF xe
− 1√

2
i[rΦc−Θc+σ(rΦs−Θs)], (B1)

where Φc (Φs) and Θc (Θs) are dual fields belonging to the charge (spin) density wave, r distinguishes right- and
left-moving and σ is the spin. The Klein factors Uσ are real coordinate independent fermionic operators obeying the
anticommutation relations {Uσ, Uσ′} = δσ,σ′ .

After bosonization Eq. (B1), the electron-spin interaction contains the terms

Lfz := Jfz Sz(R
†σzR+ L†σzL) =−

√
2Sz

Jfz
π
∂xΦs

Lf− := Jf⊥S−(R†σ+R+ L†σ+L) =S−
Jf⊥
πξ0

exp(−
√

2iΘs)
(

exp(
√

2iΦs) + exp(−
√

2iΦs)
)

Lf+ := Jf⊥S+(R†σ−R+ L†σ−L) =S+
Jf⊥
πξ0

exp(
√

2iΘs)
(

exp(−
√

2iΦs) + exp(
√

2iΦs)
)

Lbz := JbzSz(R
†σzL+ L†σzR) =Sz

Jfz
2πξ0

exp(−2ikFx) exp(
√

2iΦc)
(

exp(
√

2iΦs)− exp(−
√

2iΦs)
)

+H.c.

Lb− := Jb⊥(S−R
†σ+L+ S+L

†σ−R) =S−
Jf⊥
πξ0

exp(−2ikFx) exp
(√

2i(Φc −Θs)
)

+H.c.

Lb+ := Jb⊥(S+R
†σ−L+ S−L

†σ+R) =S+
Jf⊥
πξ0

exp(−2ikFx) exp
(√

2i(Φc + Θs)
)

+H.c. (B2)

The flow of the coupling constants is obtained by integrating out high energy modes. To do so, one must split Φα,
Θα and Sβ into fast (superscript >) and slow (superscript <) modes:

Φα = Φ<α + Φ>α , Θα = Θ<
α + Θ>

α , Sβ = S<β + S>β . (B3)

The measure of the path integral splits into fast and slow modes as well. We then perform the integral over the fast
modes in a perturbative series in J and reexponentiate the result. The first order in J leads to the one-loop RG
equations. As in the bosonization treatment of the Kondo impurity, we will treat the spins as constant during the
RG flow. Thus, we need to compute∫

D{Φ,Θ} exp

(
−SLL[Φ,Θ]−

∫
dτdxJaSafa(Φ,Θ)

)
, (B4)

where SLL is the Luttinger liquid action for Φ and Θ and fa is a function which can be read off from (B2). Note that
there is space-time UV cutoff ξ0 (or equivalently an energy-momentum cutoff Λ). Let us consider as an example the
term proportional to Jbz :∫

D{Φ>,Θ>} exp
(
−SLL[Φ>,Θ>]

) ∫
dτdxJbzS

<
z f

b
z

(
Φ> + Φ<,Θ> + Θ<

)
=

∫
dτdxJbzS

<
z

∫
D{Φ>,Θ>} exp

(
−SLL[Φ>,Θ>]

) 1

2πξ0
exp(−2ikFx) exp

(√
2i(Φ>c + Φ<c )

)
×
(

exp
(√

2i(Φ>s + Φ<s )
)
− exp

(
−
√

2i(Φ>s + Φ<s )
))

+H.c. (B5)

The components Φ> (Θ>) and Φ< (Θ<) are of high and low energy, such that the energy of Φ> (Θ>) lies in the

interval [Λ′,Λ]. Using the equalities
〈

e
√

2iΦ>s
〉
>

= (Λ′/Λ)Ks/2 and
〈

e
√

2iΘ>s
〉
>

= (Λ′/Λ)1/(2Ks), we can perform the

average over fast modes. This yields∫
D{Φ>,Θ>} exp

(
−SLL[Φ>,Θ>]

) ∫
dτdxJbzS

<
z f

b
z

(
Φ> + Φ<,Θ> + Θ<

)
=

∫
dτdxJbzS

<
z

(
Λ′

Λ

) 1
2 (Ks+Kc)

f bz (Φ<,Θ<) (B6)
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Since the cutoff was changed from Λ′ to Λ, we need to rescale x and τ to recover the original expression. Reexponen-
tiating (B6) yields

Jbz(Λ′) = Jbz(Λ)

(
Λ′

Λ

) 1
2 (Ks+Kc)−2

(B7)

The RG equation is obtained expressing Eq. (B7) as a differential equation in the parametrization Λ′ = Λe−l−dl,
where dl is an infinitesimal number:

∂lJ
b
z =

[
1
2 (Ks +Kc)− 2

]
Jbz . (B8)

Appendix C: The shift of the angles in the easy axis case

We present a short, alternative derivation of the action after the shift eliminiating the angles α and ψ from the
interaction vertices, Eq. (22). This proof is based on abelian bosonization. Upon bosonization, Eq. (B1), the free
part of the Lagrangian are a spin and charge Tomonaga-Luttinger liquid:

L = LTL,dual[Φc,Θc] + LTL,dual[Φs,Θs], (C1)

with

LTL,dual[Φa,Θa] = − i

π
∂xΘa∂τΦa +

1

2π

(
uK(∂xΘa)2 +

u

K
(∂xΦa)2

)
. (C2)

We use a description in terms of fields Φ and their duals Θ. The shift Eq. (19) is in bosonic language

Φc → Φc + α/
√

2, Θs → Θs − ψ/
√

2. (C3)

Performing this shift also in the Tomonaga-Luttinger liquid Eq. (C1), we obtain the new terms of the form

Lmixing ∼ −i∂τα∂xΘc − ∂xα∂xΦc − i∂τψ∂xΦx − ∂xψ∂xΘs. (C4)

and terms of the type

LTL,dual[α/
√

2,Θc] + LTL,dual[Φs, ψ/
√

2]. (C5)

Since after bosonization spatial derivatives of Φc/s (Θc/s) correspond to the charge/spin density (current), Eq. (C4)
contains precisely the terms of Eq. (21), and may be neglected by the same arguments. After averaging over the dual
fields Θc and Φs, Eq. (C5) is the same as the Tomonaga-Luttinger anomaly Eq. (20). We thus have obtained the
same expression as in the main text, without explicitely using the Tomonaga-Luttinger anomaly.

Appendix D: Accounting for interactions

In this section we show how to obtain Eq. (47). We start from the bosonized Lagrangian of interacting electrons

L = − i

π
∂xΘc∂τΦc +

1

2π

(
ucKc (∂xΘc)

2
+
uc
Kc

(∂xΦc)
2

)
− i

π
∂xΘs∂τΦs +

1

2π

(
usKs (∂xΘs)

2
+
us
Ks

(∂xΦs)
2

)
(D1)

In order to rewrite Eq. (D1) in terms of helical fields, we define

Φh1
= 1√

2
(Φc −Θs), Θh1

= 1√
2
(Θc − Φs) (D2a)

Φh2 = 1√
2
(Φc + Θs), Θh2 = 1√

2
(Θc + Φs). (D2b)

This choice stems from the identities

ρR↓ =

√
2

π
∂x(Θc − Φc − (Θs − Φs))

ρL↑ =

√
2

π
∂x(−Θc − Φc −Θs − Φs). (D3)



22

If there are no particles of one specific helical sector (e.g. R↓ and L↑), then both of these densities should vanish.
This is guaranteed if there are no fluctuations in Φh2 and Θh2. Thus, the fields Φh2 and Θh2 correspond to the helical
sector containing R↓ and L↑.

Inserting Eq. (D2a) into Eq. (D1), we obtain

2L = − i
π∂x(Θh1

+ Θh2
)∂τ (Φh1

+ Φh2
) + 1

2π

(
ucKc (∂x(Θh1

+ Θh2
))

2
+ uc

Kc
(∂x(Φh1

+ Φh2
))

2
)

− i
π∂x(−Φh1

+ Φh2
)∂τ (−Θh1

+ Θh2
) + 1

2π

(
usKs(∂x (−Φh1

+ Φh2
))2 + us

Ks
(∂x(−Θh1

+ Θh2
))

2
)

(D4)

= −2 i
π∂x(Θh1

)∂τ (Φh1
) + 1

2π

((
ucKc + us

Ks

)
(∂xΘh1

)2 +
(
uc
Kc

+ usKs

)
(∂xΦh1

)2
)

−2 i
π∂x(Θh2

)∂τ (Φh2
) + 1

2π

((
ucKc + us

Ks

)
(∂xΘh2

)2 +
(
uc
Kc

+ usKs

)
(∂xΦh2

)2
)

+ 1
2π

(
2
(
ucKc − us

Ks

)
∂xΘh2

∂xΘh1
+ 2

(
uc
Kc
− usKs

)
∂xΦh2

∂xΦh1

)
(D5)

The shift Eq. (35), which keeps the second helical sector invariant, corresponds to Φh1 → Φh1 +α/2. After neglecting
couplings between gapless modes and derivatives of the first helical sector, we find in addition to the free part LTL of
α

L = − i
π∂xΘh1∂τΦh1 + 1

4π

((
ucKc + us

Ks

)
(∂xΘh1)2 +

(
uc
Kc

+ usKs

)
(∂xΦh1)2

)
− i
π∂xΘh2∂τΦh2 + 1

4π

((
ucKc + us

Ks

)
(∂xΘh2)2 +

(
uc
Kc

+ usKs

)
(∂xΦh2)2

)
+ 1

2π

(
uc
Kc
− usKs

)
∂xΦh2∂xα. (D6)

Introducing

K̃ =

√
ucKc + us

Ks
uc
Kc

+ usKs
, ũ =

1

4

√
u2
c + u2

s + ucusKcKs +
ucus
KcKs

, (D7)

Eq. (D6) may be written as

L = − i
π∂xΘh1

∂τΦh1
+ 1

2π

(
ũK̃(∂xΘh1

)2 + ũ 1
K̃

(∂xΦh1
)2
)

− i
π∂xΘh2

∂τΦh2
+ 1

2π

(
ũK̃(∂xΘh2

)2 + ũ 1
K̃

(∂xΦh2
)2
)

+ 1
2π ( ucKc − usKs)∂xΦh2

∂xα. (D8)

Appendix E: Non-Gaussianities in the effective disorder

In this Appendix, we demonstrate that the higher moments of the effective disorder geff distribution function in the
alternative approach to disorder are of higher order in D

vFm
� 1. Thus, in our accuracy, we may safely neglect the

non-Gaussianities of the effective disorder.
We have assumed that the distribution of the 2kF Fourier components of the original disorder potential is Gaussian,

however the distribution of geff(x) is not Gaussian. To investigate the effect of the non-Gaussianity of the distribution
function of the effective disorder geff , we consider its moments. The first moment is zero:

〈geff(x)〉dis ∼
〈

1

vF

∫
dyg(x+ y/2)g(x− y/2)e−m|y|/vF

〉
dis

= 0, (E1)

because g is distributed according to the GUE. The second moment is given by

〈geff(x)geff(x′)〉dis ∼
〈

1

v2
F

∫
dydỹg(x+ y/2)g(x− y/2)g(x′ + ỹ/2)g(x′ − ỹ/2)e−m(|y|+|ỹ|)/vF

〉
dis

= 0, (E2)
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and

〈geff(x)g∗eff(x′)〉dis ∼
1
v2F

〈∫
dydỹ g(x+ y/2)g(x− y/2)g∗(x′ + ỹ/2)g∗(x′ − ỹ/2)e−m(|y|+|ỹ|)/vF

〉
dis

∼ D2

v2F

∫
dydỹ (δ(x+ y/2− x′ + ỹ/2)δ(x− y/2− x′ − ỹ/2)

+δ(x+ y/2− x′ − ỹ/2)δ(x− y/2− x′ + ỹ/2))e−m(|y|+|ỹ|)/vF

∼ D2

vFm
δ(x− x′). (E3)

Higher moments contain additional contractions, reflecting the non-Gaussianity of the distribution of geff . As an
example, consider the fourth moment

〈geff(x)geff(y)g∗eff(z)g∗eff(w)〉dis ∼
1
v4F

〈∫
dx′dy′dz′dw′ g(x+ x′/2)g(x− x′/2)g(y + y′/2)g(y − y′/2)

g∗(z + z′/2)g∗(z − z′/2)g∗(w + w′/2)g∗(w − w′/2)

e−m(|x′|+|y′|+|z′|+|w′|)/vF
〉

dis
. (E4)

There are two distinct kinds of contractions: Gaussian ones (contracting e.g. 〈g(x + x′/2)g∗(z + z′/2)〉, 〈g(x −
x′/2)g∗(z− z′/2)〉, 〈g(y+y′/2)g∗(w+w′/2)〉, and 〈g(y−y′/2)g∗(w−w′/2)〉) and non-Gaussian ones, e.g. contracting
〈g(x− x′/2)g∗(z − z′/2)〉, 〈g(x+ x′/2)g∗(w + w′/2)〉, 〈g(y + y′/2)g∗(z + z′/2)〉, and 〈g(y − y′/2)g∗(w − w′/2)〉. The
latter yields:

〈geff(x)geff(y)g∗eff(z)g∗eff(w)〉dis ⊃
D4

v4F

∫
dx′dy′dz′dw′ δ(x− x′/2− z + z′/2)δ(x+ x′/2− w − w′/2)

δ(y + y′/2− z − z′/2)δ(y − y′/2− w + w′/2)

e−m(|x′|+|y′|+|z′|+|w′|)/vF

∼ D4

v4F

∫
dx′dy′dz′dw′ δ(z′ − y + x− y′/2− x′/2)δ(w′ − x+ y − y′/2− x′/2)

δ(x′ − 2w + 2z − y′)δ(z + w − x− y)

e−m(|x′|+|y′|+|z′|+|w′|)/vF

∼ D4

v4F
δ(z + w − x− y)

∫
dy′ e−m(|2w−2z+y′|+|y′|+|y′−2z+2y|+|2w−2y+y′|)/vF . (E5)

In addition to the phase space factor of vF /m, we obtain an exponential suppression of lengths (w−z) etc. larger than
vF /m. The leading order for large distances may be extracted by formally taking the limit m→∞. The exponential
may then be approximated by a δ-function: δ(x) = limm→∞(m/vF ) exp(−m|x|/vF ). Note that in the case of multiple
terms in the exponent some of them might be spurious, i.e. exp(−m(|x| + |x|)/vF ) ∼ (vF /m)δ(x). Taking this into
account the large-distance limit of Eq. (E5) leads to

〈geff(x)geff(y)g∗eff(z)g∗eff(w)〉dis ∼
D4

v4
F

δ(z + w − x− y)
v3
F

m3
δ(z − w)δ(y − w) (E6)

Higher moments are suppressed in a similar fashion. Thus, we have proven that the non-Gaussian contributions

are supressed by at least the factor D2

(vFm)2 .
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