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Abstract  

1. Spectroscopy has recently emerged as an effective method to accurately

characterize leaf biochemistry in living tissue through the application of

chemometric approaches to foliar optical data, but this approach has not been

widely used for plant secondary metabolites. Here we examine the ability of

reflectance spectroscopy to quantify specific phenolic compounds in trembling aspen

(Populus tremuloides) and paper birch (Betula papyrifera) that play influential roles

in ecosystem functioning related to trophic-level interactions and nutrient cycling.

2. Spectral measurements on live aspen and birch leaves were collected, after which

concentrations of condensed tannins (aspen and birch) and salicinoids (aspen only)

were determined using standard analytical approaches in the lab. Predictive models

were then constructed using jackknifed, partial least-squares regression (PLSR).

Model performance was evaluated using coefficient of determination (R2), root

mean square error (RMSE), and the percent RMSE of the data range (%RMSE).

3. Condensed tannins of aspen and birch were well predicted from both combined

(R2=0.86, RMSE=2.4, %RMSE=7%) and individual species models (aspen: R2=0.86,

RMSE=2.4, %RMSE=6%; birch: R2=0.81, RMSE=1.9, %RMSE=10%). Aspen total

salicinoids were better predicted than individual salicinoids (total: R2=0.76,

RMSE=2.4, %RMSE=8%; salicortin: R2=0.57, RMSE=1.9, %RMSE=11%; tremulacin:

R2=0.72, RMSE=1.1, %RMSE=11%) and spectra collected from dry leaves produced

better models for both aspen tannins (R2=0.92, RMSE=1.7, %RMSE=5%) and

salicinoids (R2=0.84, RMSE=1.4, %RMSE=5%) compared with spectra from fresh

leaves. The decline in prediction performance from total to individual salicinoids and



from dry to fresh measurements was marginal, however, given the increase in 

detailed salicinoid information acquired and the time saved by avoiding drying and 

grinding leaf samples.  

4. Reflectance spectroscopy can successfully characterize specific secondary

metabolites in living plant tissue and provide detailed information on individual

compounds within a constituent group. The ability to simultaneously measure

multiple plant traits is a powerful attribute of reflectance spectroscopy because of its

potential for in situ – in vivo field deployment using portable spectrometers. The

suite of traits currently estimable, however, needs to expand to include specific

secondary metabolites that play influential roles in ecosystem functioning if we are

to advance the integration of chemical, landscape, and ecosystem ecology.

Key words: Condensed tannins, phenolics, phytochemistry, paper birch, plant defense, 
icinoids, salicortin, spectroscopy, trembling aspen, tremulacin. 

Introduction 

Field-based spectroscopy on live foliage has emerged as an effective method to 

estimate specific chemical constituents of plants due to improvements in the sensitivity and 

portability of spectrometers, as well as advances in computation power and chemometric 

modeling methods. To date, a number of foliar biochemical, physiological, structural, and 

morphological properties have been successfully quantified using reflectance spectroscopy 

(Gillon et al., 1999; Petisco et al., 2006; Asner & Martin, 2008; Kleinebecker et al., 2009; 

Asner et al. 2011; Serbin 2012, 2014). However, the application of field-based spectroscopy 

to estimate detailed concentrations of plant secondary metabolites has lagged, especially in 

living tissue.  



Plant secondary metabolites play critical roles in ecosystem functioning and 

contribute greatly to phytochemical diversity. Rapid, non-destructive determination of these 

compounds in vivo and in situ using spectroscopy reduces the need to collect large amounts 

of material in the field, decreases processing time, lessens costly chemical analyses, and 

eliminates sampling that could itself alter experimental conditions (Couture et al. 2013). 

These benefits can thus facilitate the design of larger, more complex experiments with 

greater sample sizes. In addition, this approach can help provide rapid assessments of plant 

function over large geographic regions if scaled to remote sensing collections from air- or 

spaceborne platforms.  

Trembling aspen (Populus tremuloides) and paper birch (Betula papyrifera) are 

broadly distributed tree species in the northern hemisphere, and their foliar chemical 

composition plays an influential role in forest functioning. The secondary metabolites 

mediating ecological interactions in aspen and birch are predominately phenolic products 

from the shikimic acid pathway (Constabel and Lindroth 2010). Two groups of phenolic 

compounds that have been extensively studied for their roles in influencing ecological 

interactions are condensed tannins and salicinoids. Condensed tannins are polymeric 

compounds composed of flavan-3-ol subunits found almost ubiquitously in the plant 

kingdom and play prominent roles in a number of ecosystem processes. For example, 

tannins prevent stress through protection from photodamage (Close and McArthur 2002) 

and alter nutrient cycling by reducing litter decomposition rates, forming protein complexes, 

microbial priming, or directly inhibiting microbial functioning (Hättenschwiler & Vitousek 

2000; Kraus et al. 2003, 2004; Madritch et al. 2007; Schweitzer et al. 2008; Madritch and 

Lindroth 2015). Foliar concentrations of condensed tannins vary considerably among tree 



species and genotypes, and in both aspen and paper birch are influenced by environmental 

variation (Lindroth et al. 2001; Osier and Lindroth 2001; Donaldson and Lindroth 2007). 

Tannins also comprise a significant carbon fraction in plants, behind only structural 

compounds (Hernes & Hedges 2000), and comprise upwards of 35% of foliar dry mass in 

aspen and paper birch. In aspen, simple phenolic compounds, structurally similar to 

icylates (i.e., salicinoids), confer resistance to herbivory and are toxic to most 

lepidopteran herbivore species (Boeckler et al. 2011; Lindroth and St. Clair 2013). Salicinoids 

also constitute a significant proportion of foliar dry mass (1-35%) with two generally-

correlated compounds (salicortin and tremulacin) generally representing greater than 90% 

of total foliar salicinoid concentrations, although other salicinoids are present in smaller 

concentrations (Lindroth et al. 1987; RL, unpublished data).    

Reflectance spectroscopy has been used to estimate concentrations of the major 

groups of secondary compounds, including alkaloids, glucosinolates, terpenoids, and 

phenylpropanoids and related phenolic compounds (Schulz et al. 1999; Ebbers et al. 2002; 

Font et al. 2005; Carvalho et al. 2013; Couture et al. 2013; Rubert-Nason et al. 2013). Of the 

major groups of secondary metabolites, phenolic compounds are a group of secondary 

metabolites universally distributed in the plant kingdom and play influential roles in plant 

physiology and ecosystem functioning. To date, however, few studies have explored the 

capacity of spectroscopy to estimate concentrations of specific phenolic compounds, 

instead focusing on bulk concentrations, a gap we address in this research.  

The estimation of biochemical concentrations from reflectance spectroscopy relies 

on variations in absorption as a consequence of vibrational excitation of molecular bonds, 

primarily C–H, N–H and O–H bonds at specific wavelengths in the visible (400-700 nm), near-



infrared (NIR, 700-1100 nm) and shortwave infrared (SWIR, 1100-2400 nm). In practice, 

spectral measurements of organic material collected in a consistent manner using a uniform 

and stable illumination source provide the foundation for the estimation of the chemical 

composition of a sample (Shenk et al. 1992). Calibration is accomplished by pairing 

reflectance spectra (e.g., across the full range 400-2500 nm) with independent chemical 

measurements, and then modeling chemical concentration as a function of the spectra 

using multivariate (chemometric) methods such as partial least squares regression (PLSR, 

Wold et al. 2001). Models are validated using independent samples, and then applied to 

unknown samples using their spectral reflectance.  

Recent research has shown that condensed tannins in aspen and birch and 

salicinoids in aspen are predictable on dry foliar samples using laboratory-based reflectance 

spectroscopy (Rubert-Nason et al. 2013). Here we test the capacity of reflectance 

spectroscopy to characterize specific metabolites in both fresh and dry plant tissue, focusing 

on phenolic compounds in foliage of trembling aspen and paper birch. Importantly, models 

made using fresh leaves avoid the extra steps of processing collected tissue and provide the 

foundation for using field-based spectroscopy measurements to make real-time estimates 

of secondary metabolite concentrations, non-destructively capturing shifts in plant 

chemistry that influence ecological processes. Specifically, we: 1) utilize reflectance 

spectroscopy to quantify specific secondary metabolites in green and dried leaf material, 2) 

examine the ability of reflectance spectroscopy to quantify individual compounds (i.e., 

salicortin and tremulacin) within a chemical class (i.e., salicinoids), and 3) compare models 

built using dry and fresh leaf material to determine whether predictability is sacrificed when 

moving from dry to fresh leaves.  



Methods 

iar collections 

Accurate and replicable chemometric models require capturing a dynamic range of 

chemical variation, and foliar condensed tannin and salicinoid concentrations exhibit 

considerable variation among genotypes in trembling aspen (Lindroth and St. Clair 2013). As 

such, we collected leaf samples from genotypes having a wide range of biochemical 

variation. In July 2013, we collected leaves from 139 trees of 116 genotypes of aspen, 

originally planted (2010) in a common garden (WisAsp) located at the Arlington Agricultural 

Research Station, near Arlington, WI, USA. From each tree, 5-6 leaves were collected from 

the middle and top levels of the canopy by removing the leaf from the petiole using scissors, 

after which spectra were immediately (< 2 min) collected using a full-range spectrometer 

and leaves were stored on ice in the field. The leaves were flash frozen with liquid N within 2 

hr of sampling, lyophilized, and then ground with a Wiley minimill equipped with a #60 

mesh screen (Swedesboro, NJ, USA).  

Birch leaves used in these analyses were collected from saplings grown from seed 

collected from a single tree in Madison, WI. Seeds were planted in 60 x 30 cm plastic flats in 

MetroMix potting medium #300 in a greenhouse with a constant temperature of 25°C. 

Thirty days after germination 76 individual seedlings were transferred into 3 L pots 

containing the same growing medium. Concentrations of condensed tannins in trees are 

generally responsive to environmental variation, including nitrogen fertilization (Kraus et al. 

2003); to maximize variation in condensed tannin levels in birch, one-half of the plants 

received fertilizer amendments equaling 50 kg ha-2 y-1, simulating a high level of 

anthropogenic nitrogen deposition (Galloway et al. 2004). After scaling this amount of 



fertilizer to the pot size used, we administered weekly additions of 22 and 0 mg of NH4NO3 

to fertilized and unfertilized plants, respectively, for four weeks, six months after transfer to 

individual pots. After the fourth week of fertilization treatments concluded, 3 leaves were 

collected from multiple levels of the saplings and spectral measurements were immediately 

(< 2 min) made. Leaves were stored and processed following the same procedures as 

described above for aspen.   

Spectral collections 

To examine absorption features of specific phenolic compounds, generate 

predictions of these compounds using foliar optical properties, and examine the influence of 

water on prediction performance we collected reflectance of purified aspen and birch 

condensed tannin standards, aspen salicortin and tremulacin standards, and fresh and dry 

leaves using a high-spectral-resolution FieldSpec 3 Full-Range (350–2500 nm) 

spectroradiometer (Analytical Spectral Devices, Boulder, CO, USA). Reflectance 

measurements of standards were collected on 250-300 mg of purified condensed tannins 

from aspen or birch or the aspen salicinoids salicortin and tremulacin using a plant probe 

attached to a Dremel® drill-press to assure constant measurement geometry and pressure 

(Serbin et al. 2014). Standard material was loosely-packed and leveled inside a custom-

machined aluminum, flat matte-black painted, sample cup which fit underneath the 

vertically mounted plant probe. Each sample was compressed uniformly to 2 N m-1 during 

spectral collection through the use of a precision torque wrench (Effetto Mariposa, 

Giustaforza™ Professional) custom machined to act as the handle for the drill press 

assembly. Nine spectral measurements were collected for each sample in three sets of three 



measurements, with the material being mixed and repacked in the sampling cup and the 

sample cup rotated by 90º between each step. These steps were conducted to minimize 

potential bias arising from sample cup orientation or from sensor characteristics. All nine 

spectra were averaged to determine the mean dry material reflectance and converted to 

first-derivative reflectance to highlight spectral absorption features. 

Fresh-leaf measurements were taken from the leaf adaxial surface using a leaf-clip 

assembly attached to the ASD plant probe with an internal halogen light source. Five 

reflectance measurements were collected from three different areas of each green leaf and 

averaged to determine mean leaf reflectance. Dry-leaf measurements were taken from 

lyophilized, ground leaves following the same protocol used for measurements of chemical 

standards, except each sample consisted of approximately 500 mg of tissue and reflectance 

measurements were not first-derivative transformed. Dry leaf spectra collections and 

analyses were restricted to aspen due to insufficient mass of leaf material in birch.  

Chemical analyses 

Condensed tannins of aspen and birch were extracted into acetone:water (7:3) with 

orbic acid (1.8 g L-1). Tannins were quantified colorimetrically following formation of a 

colored adduct by reaction with ferric ammonium sulfate under acidic conditions (Porter et 

al. 1984) using a SpectraMax 340pc spectrophotometer. Condensed tannins, purified from 

aspen and birch following Hagerman and Butler (1980), served as standards.  



Salicinoids were determined using ultra-high performance liquid chromatography 

and negative electrospray ionization single quadrupole mass spectrometry (UHPLC-MS) on a 

Waters integrated Acquity I-Class UPLC® system (Milford, Massachusetts, USA). Pulverized 

plant tissue (20 - 30 mg) was extracted into methanol (containing 10 mg/mL ß-resorcylic 

acid as a control standard) with sonication for 15 min at < 10 °C, followed by centrifugation 

at 3450 g to separate the particulates. Extracts were diluted 1:1 with methanol, spiked with 

an internal standard (d6 salicylic acid) to a concentration of 100 mg/L, filtered on a 0.45 µm 

polytetrafluoroethylene membrane, transferred to a 0.5-mL polypropylene autosampler 

vial, capped, and maintained at -20 °C or 4 °C prior to analysis. Quantification of salicnoids 

was adapted from Abreu et al. (2011). Prepared extracts (2 µL) were separated on a Waters 

Acquity® CSH C-18 (2.1 × 100 mm, 1.7 µm) column over 26 min using a gradient of water 

and acetonitrile (with 0.1% formic acid) at 40 °C and a flow rate of 0.5 mL/min. The mass 

spectrometer was operated in negative ionization mode, with selective ion recording of the 

salicinoid-formate adducts. Operating and data acquisition conditions for the mass 

spectrometer were as follows: cone potential, 35 V; capillary potential, 2500 V; extractor 

potential, 3 V; RF lens potential, 0.1 V; source temperature, 120 °C; desolvation 

temperature, 250 °C; desolvation gas flow, 500 L/h; cone gas flow, 10 L/h; infusion rate, 5 

µL/min; dwell time, 0.025 s. Analytes were quantified as negative ion formate adducts. 

Calibrations were based on internal standardization, using 6-point (15 – 1500 mg/L) 

quadratic models with salicortin and tremulacin, purified following Lindroth et al. (1987), 

serving as standards. Quality assurance was demonstrated in three ways: monitoring the 

peak area of the internal standard, monitoring the peak area of the process control 

standard, and monitoring the salicinoid concentrations in reference samples (consisting of 

extracted P. tremuloides foliage) that were analyzed at intervals of 15-20 samples. 



Model calibration and validation 

We generated models to predict condensed tannin and salicinoid concentrations (% 

dry mass) from fresh and dry, untransformed leaf spectral reflectance characteristics using 

partial least squares regression (PLSR; Wold et al. 1984, 2001). When predictor variables are 

highly correlated, as is the case with spectroscopic data, classical regression techniques can 

produce unreliable coefficients as collinear predictor variables lead to bias in beta 

coefficients and error estimates (Grossman et al. 1996). In contrast with standard regression 

techniques, PLSR reduces a large number of collinear predictor variables into relatively few, 

uncorrelated latent variables, and has become the preferred method for chemometric 

analyses (Bolster et al., 1996; Asner & Martin, 2008; Atzberger et al., 2010; Asner et al., 

2011; Serbin et al., 2014). The number of latent variables used was based on reduction of 

the predicted residual sum of squares (PRESS) statistic (Chen et al., 2004) using leave-one-

out cross validation. The final set of latent variables was then combined into a linear model 

predicting chemical concentrations. Examination of prediction residuals was used to identify 

three outliers that were subsequently removed from the analyses.  

Model performance was evaluated by conducting 500 randomized permutations of 

the dataset using 70% of the data for internal calibration and the remaining 30% for external 

validation. These randomized analyses generated a distribution of fit statistics allowing for 

the assessment of the overall stability of the models as well as uncertainty in model 

predictions. For each permutation, we tracked the model goodness of fit (R2) and root mean 

square error (RMSE) to assess model performance when applied to the validation dataset. 

Here, we report both the RMSE and RMSE as a percentage of the range of data (%RMSE) for 

each dependent variable, with the latter metric being useful to assess likely error within the 



data range. %RMSE as a function of the data range is used because interpretation of RMSE 

related to the mean is highly sensitive to the actual value of the mean. For example, for two 

constituents with very different means but similar ranges, the RMSE as a percentage of the 

mean will overinflate the accuracy on one measure and underinflate the accuracy on the 

lower value, even though the accuracy is essentially the same.  RMSE as a percent of the 

range conveys the average resolving power of the PLS model within the estimation space. 

%RMSE is functionally similar to the classical residual prediction deviation (RPD) statistic for 

assessing model error within the context of the reference data, but avoids the distribution 

assumptions and subjective model classifications associated with RPD. We further 

determined the strength of the contribution of PLSR loadings by individual wavelengths 

using the variable important to the projection (VIP) statistic (Wold et al., 1984, 2001). The 

VIP statistic indicates the importance of individual wavelengths in explaining the variation in 

the response and predictor variables, with larger weightings confer greater value of 

contribution of individual wavelengths to the predictive model (Wold et al., 2001; Chong & 

Jun, 2005). 

Wavelengths between 1100 and 2400 were used in model building for both fresh 

and dry leaves. We focused on the SWIR region because 1) it contains wavelengths known 

to be characteristic of plant phenolics (Shenk et al. 1992; Flinn et al. 1996; Kokaly and 

Skidmore 2015), 2) our previous work showed strong relationships at these wavelengths for 

predictive models of phenolic compounds using dried foliage of the same tree species 

(Rubert-Nason et al. 2013), and 3) it avoids leveraging correlations between phenolics and 

pigments in the visible wavelengths.  



Pearson’s correlation coefficients were used to identify relationships among foliar 

nitrogen, lignin, and water content and the secondary metabolites predicted in the current 

study. Nitrogen and lignin were predicted using spectroscopy using coefficients from Serbin 

(2012) and water content (NDWI) was determined following Gao (1996) and calculated as 

the relative difference between reflectance at wavelengths 857 and 1241 nm. The modeling 

approach and data analyses were performed using the pls package (Mevik and Wehrens 

2007) in R (www.r-project.org) and correlations were conducted in JMP Pro v11 (SAS Institute 

Inc, 2013, Cary, NC, USA). 

Results  

Variation in the reflectance of foliage and of purified standards 

Major reflectance peaks in spectra obtained from purified aspen and birch 

condensed tannin standards had significant overlap with wavelengths known to interact 

with phenolic compounds (Fig. 1a and b; SI Fig. 1). Major reflectance peaks in the spectra of 

purified salicinoid standards (salicortin and tremulacin) also overlapped with wavelengths 

known to interact with phenolics (Fig. 1c and d; SI Fig. 1). Substantial variation existed 

among spectra collected from different aspen genotypes (SI Fig. 2A) and from birch leaves 

from different soil nutrient properties (SI Fig. 2B).  

Prediction of condensed tannins 

Condensed tannin concentrations varied over 12- and 9- fold for aspen and birch, 

respectively, and were accurately predicted using PLSR models from fresh leaves for both 

combined species and individual species (Figs 2 and 3). Fresh-leaf PLSR models including 



both species combined produced a mean R2 of 0.86 (range: 0.63-0.96), RMSE of 2.46 (range: 

1.64-3.45), and %RMSE of 7% for external validation. Fresh leaf models of only aspen leaves 

produced mean R2 of 0.86 (range 0.72-0.95), RMSE of 2.43 (range 1.58-3.27), and %RMSE of 

6% for external validation. The prediction performance metrics of aspen fresh leaf 

condensed tannin models were slightly lower than the models built from dried leaf material 

(Fig. 3). Aspen dry leaf models had a mean R2 of 0.92 (range 0.81- 0.96), RMSE of 1.76 (range 

1.08-2.33), and %RMSE of 5% for external validation. Birch fresh leaf models produced a 

mean R2 of 0.81 (range 0.43-0.95), RMSE of 1.92 (range 1.22-2.89), and %RMSE of 10% for 

external validation. All calibration models showed zero-centered Gaussian bias profiles with 

higher predicted variances in externally validated models (SI Fig. 3). Standardized PLSR 

coefficients and VIP measures for combined species, aspen (fresh and dry leaf) and birch 

(fresh only) models exhibited similar profiles and matched with wavelength regions of 

known phenolic absorption features (Fig. 4a-f).  

Prediction of salicinoids 

Salicinoid levels varied over 14-fold among aspen genotypes and both total and 

individual salicinoids were accurately predicted using PLSR models with fresh (Figs. 5 and 6) 

and dry leaves (Fig. 6, SI Fig. 4). Models predicting total salicinoids, salicortin, and tremulacin 

from fresh aspen leaves had mean R2 of 0.76 (range 0.45-0.92), 0.57 (range 0.20-0.79), and 

0.72 (range 0.49-0.92), mean RMSE of 2.44 (range 1.71-3.20), 1.96 (range 1.35-2.51), and 

1.08 (range 0.81-1.44), and %RMSE of 8, 11, and 11% respectively for external validation 

g. 6). Similar to models for aspen tannins, fresh leaf models predicting salicinoids did not

perform as well as models built from dried leaf material (Fig. 6).  Aspen dry leaf models for 



total salicinoids, salicortin, and tremulacin had mean R2 of 0.84 (range 0.65-0.95), 0.78 

(range 0.45-0.91), and 0.78 (0.49-0.92), mean RMSE of 1.97 (range 1.14-2.80), 1.43 (range 

0.93-1.95), and 0.73 (range 0.54-1.29), and %RMSE of 5, 8, and 7% respectively for external 

validation. Bias for all models followed zero-centered Gaussian profiles and, similar to 

tannin models, became more variable when moving from internally calibrated to externally 

validated models (SI Fig. 3). In addition, examination of residuals revealed that models 

tended to over predict at low and under predict at high salicinoids values (Fig. 5). Similar to 

fresh and dry leaf tannin models, aspen standardized coefficients and VIP values were most 

pronounced near wavelengths with absorption features associated with phenolic 

compounds (Fig. 4g and h).  

Correlations among plant traits 

Tannins were strongly negatively correlated with foliar lignin in birch and exhibited 

statistically significant, yet weak, relationships with nitrogen for both aspen and birch, and 

with lignin in aspen (Table 1). Tannins were not related with foliar water content for either 

tree species (Table 1). Aspen salicinoids were weakly positively related with foliar lignin and 

water, negatively related with aspen tannins, but not correlated with nitrogen levels (Table 

1).    

Discussion 

Ecologically relevant secondary metabolites in living plant tissue can be accurately 

characterized using reflectance spectroscopy. Furthermore, we present a robust 

methodology by which plant traits can be predicted using reflectance spectroscopy and that 



utilizes multiple permutations of the data, providing explicit estimates of model uncertainty 

(i.e., error bars in Figs. 2 and 5). By combining high-fidelity reflectance measurements, 

standard chemical analyses, and robust statistical modeling, we demonstrate the potential 

to expand the prediction capabilities of spectroscopic data for secondary metabolites.  

Important spectral features for purified standards of condensed tannins and 

salicinoids overlapped with regions of wavelengths with known absorption features 

associated with phenolic compounds, including areas close to or in the range of 1400, 1650-

1700, 1900, 2100-2200, 2226-2228, and 2400 nm (Shenk et al. 1992; Curran et al. 1992; 

Rubert-Nason et al. 2013; Bain et al. 2013; Kokaly and Skidmore 2015). Moreover, 

coefficient weightings and VIP statistics from models predicting tannins and salicinoids were 

most pronounced in these literature-reported regions, corroborating the conclusion that the 

bending and stretching of C-H and O-H bonds are important for spectroscopic prediction of 

plant phenolics (Shenk et al. 1992; Kokaly and Skidmore 2015).  

Covariation among plant traits may aid or detract from the ability of spectroscopy to 

predict specific traits (Curran et al. 1992; Soukupova et al. 2002). For example, lignin 

retrievals using reflectance data are positively related with foliar phenolic levels due to 

similar absorption features (Soukupova et al. 2002). We found negative relationships 

between tannins and lignin levels for both aspen and birch, and a nonsignificant relationship 

between salicinoids and lignin, suggesting that models predicting tannins and salicinoids in 

the current study acted independently of the potential positive association of increased 

phenolic absorption features when lignin and tannins co-occur. General trends of 

coefficients and VIP statistics were relatively coordinated for both fresh and dry leaf models 

in aspen, and neither tannin nor salicinoid levels were correlated with foliar water content, 



suggesting that spectral features important for predicting tannins and salicinoids in aspen 

are not strongly obscured by water absorption features.  

Condensed tannins in both aspen and birch were well predicted using either a 

combined-species or individual-species model, indicating that spectroscopic prediction of 

tannins via a generalized multi-species model is achievable. Progress of a generalizable 

spectroscopic model accurately predicting tannins has lagged, largely due to the lack of 

standards across many plant taxa that can be used in chemical analyses to capture the 

qualitative variation in specific condensed tannin profiles. A commonly used approach for 

chemical analysis of tannins is to employ commercially available standards, resulting only in 

measurements relative to that standard for all plant species analyzed, regardless of whether 

or not the specific tannins present in the standard are present in the species being studied. 

This common approach thus misses the qualitative variation in tannins that comprise the full 

tannin profile within a species, in which individual tannins differ in polymer length and 

functional groups (Giner-Chavez et al. 1997; Kraus et al. 2003). The use of a standard not 

purified from closely related taxa in chemical assays likely weights the quantification of 

tannins in favor of those plant taxa whose tannin profiles are more similar to the standard, 

and promotes the potentially erroneous assumption that all tannins in all species have 

similar absorption features. Methods that use commercial standards for estimates across 

unrelated species therefore bias the concentration estimates to those tannins present in the 

standard.  

An alternative approach for tannin analysis is the purification of tannin standards 

directly from the species being measured, as was done in the current study, or from closely 

related species. This approach provides more information about the specific tannin profile 



within a species, but is more labor intensive and can become logistically difficult in speciose 

communities. Purifying standards from individual or closely-related species for use in the 

chemical analyses of reference material used in spectroscopic modelling, however, provides 

the most accurate chemical measurement of the tannin concentration in the leaf and thus 

the most accurate spectroscopic retrieval. In addition, models built using accurate chemical 

analyses can provide more insight into the optical properties of tannins within specific 

species and can subsequently be combined to produce multi-species models. Finally, the 

ability to make ecological inferences about the function of tannins in ecosystems is stronger 

if the tannin profile used as the basis for quantification, either in the lab or from spectral 

retrievals, matches that of the taxa being studied. Because tannin profiles vary across plant 

species, tannin estimates based on the use of standards not related to the taxa of interest 

may not be reliable indicators of the relative roles of the differences in tannin 

concentrations in ecosystem functioning. 

Comparison of the standardized coefficients from the separate aspen and birch 

models predicting tannins in this study reveals a statistically significant positive correlation 

(SI Fig. 5a). The lack of a perfect correlation and differing magnitudes of band-wise model 

coefficients (SI Fig. 5b), however, illustrate the sensitivity of our models to qualitative 

variation in tannin profiles between plant species used in this study (i.e. the two species 

consist of different “varieties” of condensed tannins) and substituting coefficients among 

the models results in poor prediction results (e.g., aspen coefficients for birch predictions 

and vice versa; SI Fig. 5c and d). Nevertheless, a generalized cross-taxa model performed 

well (Fig 3) and common reflectance features (e.g., at 1650-1700, 2150, and 2400 nm) of 

importance were found in the two species-specific models (Fig. 4c-f), suggesting that these 



spectral regions that can be leveraged to yield a robust cross-taxa model. Because of the 

important roles of tannins in ecosystem functioning and their ubiquity among plant taxa, 

developing a generalized model for accurate tannin estimates using reflectance 

spectroscopy is needed to facilitate the integration of chemical, landscape, and ecosystem 

ecology.         

Models predicting aspen tannins and salicinoids from dried, ground leaves were 

more accurate and less variable than models built using spectra of fresh, green leaves. 

Fresh-leaf spectra exhibit confounding factors in water absorption regions (approximately 

1350–1450 nm and 1850–1975 nm) that may mask optical features utilized in models built 

with dry-leaf spectra (Curran et al. 1992; Gao and Goetz 1994; Ramoelo et al. 2011), 

including phenolics (Bian et al. 2013; Kokaly and Skidmore 2015). We found no relationship, 

however, between foliar water content and salicinoid levels. Numerous phenolic absorption 

features are present outside or persist in the presence of water bands in the SWIR region, 

making it possible to predict phenolics in fresh leaves (Bian et al. 2013; Kokaly and Skidmore 

2015). The decrease in model performance from dry- to fresh-leaf spectra was marginal, 

however, given the additional necessary steps of drying and grinding the leaves for analysis. 

Our findings reinforce the idea that prediction of specific phenolic compounds in fresh 

leaves can be a relatively fast and accurate, as well as non-destructive, surrogate for 

standard chemical analyses.       

Total salicinoid concentrations were better predicted than individual salicinoid 

concentrations. This outcome demonstrates the additive effects of co-aligned spectral 

features from multiple, similarly-structured compounds. Specifically, the combination of 

individual compounds increases the probability that a detection threshold of concentration, 



and its subsequent effect on leaf spectra, will be surpassed (Rubert-Nason et al. 2013). We 

found that the prediction of tremulacin in fresh leaves across 500 permutations of the data 

were more stable than those of salicortin. This result may be a product of the additional 

benzoate moiety on tremulacin (Lindroth et al. 1987; Philippe and Bohlman 2007), 

potentially making the signature of tremulacin more pronounced than salicortin. This 

interpretation is supported by the detection of more prominent spectral features in purified 

tremulacin, compared with those of salicortin, in spectral regions of known phenolic 

absorption (Figs 1c and d, see features at 1420, 1650-1700, 1900, and 2140 nm). Although 

prediction performances decreased for individual compared with total salicinoids, the 

prediction of individual constituents represents a substantial gain in valuable biochemical 

information relevant to plant function, within an acceptable range of uncertainty (7-8% for 

individual salicinoids vs 5% for total salicinoids), compared to estimating the bulk 

concentration of salicinoids.        

The capability to repeatedly measure plant secondary metabolites in vivo using 

spectroscopy is an important advancement in our ability to understand numerous aspects of 

plant ecology, including responses to stress, chemodiversity, genetic variation, and 

ecosystem functioning. Recurrent spectral measurements can provide information about 

the responses of plant secondary metabolite responses to damage (Couture et al. 2013) and 

environmental change (Couture et al. 2015). In addition, chemodiversity in plants is 

dependent on secondary metabolites (Weng et al. 2012) and specific constituents within a 

broad category of secondary metabolites can perform vastly different functions. For 

example, within the phenolic groups in aspen, salicinoids are generally regarded to provide 

defense against herbivory (Boeckler et al. 2011; Lindroth and St. Clair 2013), while 



condensed tannins have little influence on insect herbivores, but function as important 

regulators of nutrient cycling (Madritch and Lindroth 2015).  When scaled to landscape 

levels using airborne platforms and hyperspectral remote sensing, our ability to detect intra- 

and interspecific chemical diversity in plants, and how this variation influences ecosystem 

functioning, would be enhanced if specific secondary metabolites were estimated, opposed 

to estimation of broad, general classes.    

Methodologically, our results show that we can potentially use spectroscopy to more 

broadly characterize the spatial and temporal variation in important secondary metabolites. 

Moreover, leaf-level estimates provide the basis for scaling plant traits to canopy- and 

landscape-levels through interpolation or using remote sensing platforms (Singh et al. 

2015). The ability to simultaneously measure multiple plant traits is a powerful attribute of 

reflectance spectroscopy. The suite of traits currently estimable, however, needs to expand 

by including specific secondary metabolites that play influential roles in ecosystem 

functioning if we are to advance the integration of chemical, landscape, and ecosystem 

ecology.   
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Aspen Nitrogen Lignin NDWI Tannins

Lignin -0.29

NDWI -0.34 0.60

Tannins -0.19 -0.35 -0.06

Salicinoids -0.03 0.10 0.11 -0.67 

Birch Nitrogen Lignin NDWI

Lignin -0.34

NDWI -0.10 0.07

Tannins -0.18 -0.72 0.07 



Figure 1 First-derivative reflectanc
tannins and the purified aspen sali
dotted lines represent wavelength
associated with phenolic compoun

ce spectra of purified aspen (a) and birch (b) co
icinoids salicortin (c) and tremulacin (d). Red v

hs reported in the literature having absorption 
nds.   

ondensed 
vertical 

features 



Figure 2 Observed vs predicted co
% dm = % dry mass). Error bars for
generated from the 500 simulated
against observed values (bottom p

ndensed tannin concentrations in fresh leaves
r predicted values represent the standard devi
d models. 1:1 line in dashed black. Residuals pl
panel).  

s (top panel, 
ations 
otted 



Figure 3 Distribution (95% confidence intervals) of internal calibration (Cal.) and external 
validation (Val.) statistics from 500 simulations for models predicting condensed tannins in 
aspen fresh and dry leaves and birch fresh leaves. Each model permutation included 70% of 
the data for internal calibration and the remaining 30% for external validation. Black vertical 

line represents median value; blue vertical line represents mean values.



Figure 4 Standardized coefficients (left column) and variable importance for projection 

values (VIP; right column) for a combined-species model and individual species models 

predicting aspen and birch tannins and aspen salicinoids. For aspen tannins and salicinoids 

black lines represent fresh-leaf model data and red lines represent dry-leaf model data. Red 

vertical dotted lines represent wavelengths reported in the literature having absorption 

features associated with phenolic compounds.     



Figure 5 Observed vs predicted salicinoid concentrations in aspen fresh leaves (top panel, % 
dm = % dry mass). Error bars for predicted values represent the standard deviations 
obtained from the 500 simulated models. 1:1 line in dashed black. Residuals plotted against 
observed values (bottom panel).   



Figure 6 Distribution (95% confidence intervals) of internal calibration (Cal.) and external 
validation (Val.) statistics from 500 simulations for models predicting salicinoids in aspen 
fresh (top panels) and dry (bottom panels) leaves. Each model permutation included 70% of 
the data for internal calibration and the remaining 30% for external validation. Black vertical 
line represents median value; blue vertical line represents mean value. 


