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Abstract
A new computational model for brittle fracture and fragmentation has been developed based
on finite element analysis of non-linear elasticity equations. The proposed model propagates
the cracks by splitting the mesh nodes alongside the most over-strained edges based on the
principal direction of strain tensor. To prevent elements from overlapping and folding under
large deformations, robust geometrical constraints using the method of Lagrange multipliers
have been incorporated. The model has been applied to 2D simulations of the formation and
propagation of cracks in brittle materials, and the fracture and fragmentation of stretched and
compressed materials.

Keywords: brittle fracture, fragmentation, collision detection, finite elements method, nonlinear elas-

ticity

1 Introduction

Computational study of brittle fracture networks are of great interest to engineers who work
with material that breaks before it can undergo plastic deformation. This can occur when the
material is in a “pre-stressed” configuration, where small deformations and strains can lead the
material to surpass its internal critical stress. Of great importance to engineers is the prediction
of crack nucleation and overall dependence of the resulting crack pattern on material properties.

Computational methods are of growing importance in modeling brittle fracture in materials.
Due to the complex nature of fracture mechanics, several phenomenological methods have been
proposed. Such methods include generalized and extended finite element methods (X-FEM)
[8, 11], cohesive element (CE) models [2], and spring models [9].

The extended FEM (X-FEM) [11] and the generalized FEM (GFEM) [12], which are closely
related and both belong to the partition of unity methods (PUM) [8], enrich the traditional
FEM function space with families of discontinuous shape functions, which can model the dis-
placements of either the crack tip or opposite sides of the crack plane. The main advantage lies
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in the fact that the interface can be studied within each individual element without having to
constantly remesh near the crack tip. The types of enrichment functions can model a variety
of engineering problems the crack tip including branching [6], material interfaces, and soft dis-
continuities. More recently, a phantom node method, which is a variant of the extended FEM
was developed in [?].

Cohesive zone models (CZM) were first introduced by Barenblatt [2] and have been incor-
porated into commercial FEM codes. The CZM is intriguing because it explicitly avoids the
creation of stress singularities by modeling inter-element traction-displacement relationships.
Elements become separated when their tractions exceed a critical threshold, and the location
of the “cohesive elements” (CE) can generate complex fracture networks. Cohesive elements
have been used in traditional finite element codes by Xu and Needleman [16] and Ortiz and Ca-
macho [5]. Additionally, cohesive zone models have been incorporated into other finite element
frameworks such as X/G-FEM [11], meshless methods [1], and isogeometric analysis [13]. While
CZMs may provide complex fracture structures, it was noted in [7] that CZMs are dependent
on aspects of the mesh.

Spring models were introduced in [4, 10] and have the advantage of very simple implemen-
tation of solid mechanics and fracture mechanics. For example, Meakin [10] modeled fracture
using a two-dimensional network of springs with a critical tension parameter. Over-strained
springs were removed to simulate the propagation of fracture. Beale added random defects and
perturbations to a spring model to investigate their effects on the propagation of the crack sur-
face [4]. However, both of these models implemented fracture mechanisms by removing springs;
thereby losing mass conservation and “obliterating” material under compression.

Recently, Wei et al. [9] investigated the use of mass conservative spring models, and were
able to reproduce complex fracture networks in two and three dimensions. The method used
nonlinear optimization of the global energy functional and split vertices adjacent to springs that
were strained past a pre-defined threshold. The advantage of this method was that it conserved
mass and produced rich crack networks throughout the material. The work demonstrated
complex fracture patterns, which qualitatively change due to variations in material properties.

The spring network model of [9] is difficult to integrate into pre-existing finite element
software. The intent of this paper is to apply the fracture mechanisms of [9] to existing finite
element codes. In this work, we describe the fracture mechanism incorporated into a finite
element solid mechanics code as well as collision detection algorithms to prevent inter-element
penetration.

The remainder of the paper is divided as follows. In Section 2, the principles of continuum
mechanics and their implementation within the finite element method are briefly discussed.
In Section 3, the fracture mechanism is described, and particular emphasis is placed on the
detection of intersecting elements and their resolution through the introduction of Lagrange
multipliers. In Section 4, we present some verification of our FEM code and simulation results
with our fracture model. Finally, we present concluding remarks in Section 5.

2 Finite Element Based Brittle Fracture Model

Finite element analysis is an important tool in the study of solid mechanics and fracture me-
chanics in particular. Linear elastic fracture mechanics (LEFM) has been well-studied using
methods such as X-FEM and CZM. However, the range of applications of LEFM is limited by
the assumptions of linear elasticity, which is valid for small displacements and small strains.
In many applications involving brittle fracture, large displacements and rotations may occur
while the strain exhibited within a material may still be in the elastic regime. Therefore, it is
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important to take into account these geometric nonlinearities in the continuum formulation. In
particular, we use a quasi-static updated Lagrangian description of the physical system following
that in [3].

For any solid body of some material, denoted at time τ as τV , the material is in energetic
equilibrium when the principle of virtual work is satisfied, namely that the body is in a minimum
energy configuration. The principle of virtual work for a body at some future time t+ ∆t can
be written as [3] ∫

t+∆tV

t+∆tτijδt+∆teij
t+∆tdv = t+∆tR, (1)

where t+∆tτij is the Cauchy stress tensor of the material, δt+∆teij is the linear variation of
linear strain tensor at time t + ∆t, and t+∆tR is the total sum external virtual work due to
surface tractions and body forces.

Since the configuration of the body at time t+ ∆t is unknown, (1) cannot be solved directly
and instead must be rewritten in term of some previously known configuration. In the updated
Lagrangian formulation, (1) may be rewritten in terms of the material body in its current
configuration at time t,∫

tV
tCijrs tεrsδ tεij

tdv +

∫
tV

tτijδtηij
tdv = t+∆tR −

∫
tV

tτijδteij
tdv, (2)

which is a nonlinear equation in the incremental nodal displacements ui.

The nonlinear equation (2) can be solved using an iterative method. We choose to use
the modified Newton-Raphson scheme of [3] to iteratively determine the solution of (2). In
particular, the stiffness matrix associated with (2) is computed only once and is held con-
stant throughout the Newton-Raphson iteratin. Lagrange multipliers are used to accommodate
several types of (linear) Dirichlet boundary conditions on the vertex displacement degrees of
freedom, ui. We solve (2) iteratively by solving for several incremental displacements of the
form [

tK GT

G 0

] [
∆u(k)

λ

]
=

[
t+∆tR − t+∆t

t+∆tF
(k−1)

b(k−1)

]
, (3)

where tK is the tangent stiffness matrix of the body in configuration tV , t+∆t
t+∆tF

(k−1) is the

internal virtual work of the deformed body in configuration t+∆tV (k−1). Within each step of
the Newton-Raphson iteration, the nodal displacements are updated as

t+∆tu
(k+1)
i = t+∆tu

(k)
i + ∆u

(k+1)
i , (4)

t+∆tu
(0)
i = tui. (5)

The vector of Dirichlet conditions, b(k−1), is updated within each iteration to ensure that
each incremental displacements enforce the correct boundary conditions at each increment. The
update is computed via

b(k−1) = b−G t+∆tu(k−1). (6)

As the nodal displacements t+∆tu
(k−1)
i are updated, the internal virtual work of the current

updated configuration, t+∆t
t+∆tF

(k−1), is updated and subtracted from the external virtual work.

At each increment, (3) is solved using an incomplete LU-preconditioned GMRES solver,
which is available in MATLAB and PETSc. The iteration stops once the vector of incremental
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nodal displacements is within a predefined tolerance∥∥∆u(k)
∥∥

2∥∥∆u(0)
∥∥

2

< tol. (7)

3 Crack Formation and Propagation Algorithm

The cracks form and propagate when some part of the brittle material exceeds its critical strain.
In the network based model, the overstrained bonds are split [9]. In the FEM based approach,
we split overstrained nodes and generate new edges to introduce cracks. In order to determine
the overstrained nodes, we calculate the nodal strain tensor by averaging the value of strains
from the neighboring elements. The principal strain is the largest eigenvalue of the strain
tensor, and its eigenvector is the maximum strain direction. We collect a set of overstrained
nodes by comparing their principal strains with the fracture critical strain threshold. For each
overstrained node, we split edges that are most orthogonal to the maximum strain direction.
Depending on the location of the node, we propose some rules:

1. If a node u1 is an interior node, we split two edges with minimum angles to the orthogonal
direction of the maximum strain. u1 is the splitting end of the two edges.

(a) If the two edges belong to the same element, we will discard one with a larger angle
and pick a different edge.

(b) If the other end of a chosen edge, vertex u2, is on the boundary or crack surface,
u2 will also be a splitting end. This is to prevent the case where two chunks are
connected by a single vertex.

2. If a node v1 is a boundary node, we select one edge with the minimum angle to the
orthogonal direction of the maximum strain.

(a) If the chosen edge is an interior edge, v1 will be the splitting end. Otherwise, no
edge will be split.

(b) Similar to case 1 if the other end of the chosen edge, vertex v2, is on the boundary
or crack surface, v2 will also be a splitting end.

After each node is processed, we update the element connectivity list and other related data
structures, as is shown in Figure 1.

3.1 Collision Detection

When cracks form and the mesh breaks into fragments, the mesh may fold and the fragments
may overlap, creating unphysical states. Introduction of proper constraints resolves this issue.
It provides a physics-based interaction model between fragments and the cracked material and
leads to the propagation of cracks.

Before elimination, the overlapping and folding should be detected first. A standard way
is to do pairwise triangles collision detection, in which triangles have at least one edge on
crack surface. In order to reduce the number of pairwise comparison, the computational field is
divided into coarse grids, and elements are assigned to each grid based on where the coordinates
of their center fall into.

4
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max strain

u1
u1

u′1
max strain

u1

(a) Case 1a

max strain

u1
u1

u′1

u2 u2
u′2

(b) Case 1b

v1 v1
v′1

max strain

(c) Case 2a

v1 v1
v′1

v2 v2v′2

max strain

(d) Case 2b

Figure 1: Illustrations of the mesh splitting process.

The detection process sweeps from upper left corner grid block towards lower right corner
grid block, and only elements in right, lower or right lower diagonal adjacent grid would be
detected pairwise for each grid block.

For each pair of triangles, first of all, every vertex of each element is examined if it is inside
of the other one. This step checks 6 vertices using relative coordinates within each triangle,
and would preclude succeeding examinations in most overlapping situations. However, there
are cases that triangles are just intersecting each other by edges, thus, we need to check edge-
to-edge intersections pair-wisely, and this line segments intersection checking happens between
9 pairs.

In cases of stiff material, both the deformation and the overlapped parts are very small. The
round-off error makes it difficult to assert whether these elements are overlapped. Presetting a
“threshold” value helps to resolve this problem. By adding this controlling parameter to the
algorithm, we adjust the precision of the overlap detection. This is crucial for the simulation
because adding too few constraints would impair the correct physical system we would like
to obtain, while adding too many constraints would result in an over-determined state of the
system, eventually leading to a failure.

3.2 Contact Constraints

For frictionless contact problems, the contact condition, known as a Kuhn-Tucker condition,
can be written as

gN ≤ 0, pN ≤ 0 on Γc, gNpN = 0, (8)

where gN is the normal component of the gap function, and pN is the normal component of
contact stress.

We adopt the method of Lagrangian multipliers to resolve the contact problem. The contact
contribution and its variation can be written as:

Πc =

∫
Γc

λNgN dA, Cc =

∫
Γc

(λNδgN + δλNgN ) dA, , (9)

where λN denotes the Lagrangian multiplier which can be identified as the contact pressure pN ,
and δgN is the variation of the normal contact gap function [14]. The Lagrangian multipliers
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add constraints contribution to the weak formulation of the solids in contact, and prevent
further penetration between overlapping elements and push already overlapped triangles back
to separated status.

Equation (9) can be generally discretized by introducing discretization for the gap function
in each contact area Γic, that

giN = Ci
Tu, C = [C1|C2|...|Cns ], Λ = (λ1, λ2, ..., λns), (10)

which C depends on the choice of discretization, thus∫
Γc

λNgN dA → ΛTCTu,

∫
Γc

λNδgN dA → δuTCΛ,

∫
Γc

δλNgN dA → δΛTCu, (11)

The constraints can be arranged into the KKT matrix as (t+∆t
tKL + t+∆t

tKNL

)
GT CT

G 0 0
C 0 0

 u
λD
λc

 =

 R − t
tF

b
gc

 , (12)

There are several different approaches to discretize the gap function (10) along contact sur-
faces. For example, one could use node-to-node contact, node-to-segment contact, or segment-
to-segment contact [15], as is shown in Figure 2.

(a) Node-to-node. (b) Segment-to-segment. (c) Node-to-segment.

Figure 2: Different contact constraint discretizations.

In the situation for brittle material, the crack surfaces are complicated, thus searching for
all contact constraints on surfaces becomes a difficult task. In order to enhance time efficiency,
we utilize features of half-edge to detect pairwise collision between elements, and collect contact
constraint between each pair. Due to possible variety of collision scenarios, we adopt node-to-
segment contact relation exclusively to adapt to different situations.

To obtain the smallest yet effective set of node-to-segment constraints, we propose the
following rules for choosing master segment and slave node, as is shown in Figure 3:

1. Each pair of overlapped elements could have no more than 2 node-to-segment contact
constraints; each element could have no more than 1 contact constraints in which it acts
as master segment or slave node.

2. The master segment must be a boundary edge. The slave node must have the smallest
distance towards the opposite element among all feasible nodes, and that distance must
not exceeds the preset detection precision threshold, where the distance is negative in
case of penetration.

3. If there are more than one feasible contact constraint pair, we compare the angle between
the master segment and two outgoing edges of slave node, and choose the pair of node-
segment with the smallest angle, and the angle must not exceed the preset threshold.

6
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4. If all above rules does not satisfy, there will be no constraints subscribed for the given
pair of overlapped elements.

(a) 2 constraints per pair. (b) Choose the smallest gap. (c) Choose the smallest angle.

Figure 3: Rules on choosing contact.

The Lagrangian Multipliers are obtained in a predict-and-correct manner, which use pre-
dicted position without contact constraints for both node xb and segment (xa, xc) to calculate
the surface norm n and the gap function gN , which are calculated in the following steps:

1. Project slave node xb on the master edge (xa, xc) as x′b and calculate ξ

x′b = ξxa + (1− ξ)xc, (x′b − xb) · (xa − xc) = 0. (13)

2. Calculate the normal gap distance as a linear relation for displacement ua, ub, uc

gN = (ξ(xa + ua) + (1− ξ)(xc + uc)− (xb + ub)) · nd. (14)

3. Assemble the coefficient of u into C and constant into gc in (12).

As is shown in Figure 4, this node-to-segment contact will reduce to a node-to-node contact
if ξ is 0 or 1 in some cases.

gN

xb;ub

xa;ua

xc;uc

x′
b

Figure 4: Contact constraint calculation.

eA

eB

eC

Figure 5: Redundant constraints.

Even if we apply these rules to how contact constraints are added, there could still be
numerous duplicate or redundant contact constraints. For example, a duplicate constraint
occurs when adding degenerated node-to-segment contact, which is essentially a node-to-node
contact, that the slave node is exactly the same vertex sharing by adjacent elements. Redundant
constraints occur when the mesh breaks up totally at one vertex, when 3 or more elements are
in node-to-node contact with one another, and vertices constraints between va and vc may be
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derived from constraints between va and vb, and constraints between vb and vc, as shown in
Figure 5

Redundant constraints would result in a singular or badly conditioned KKT system. To
resolve the problem, we firstly collect all contact constraints and apply QR factorization to
extract the largest linear independent rows from the contact constraints matrix. After that, we
add the deducted contact constraint matrix C to the KKT system.

4 Numerical Results

In this section, we present several numerical results with the proposed finite-element fracture
model. We start with a verification of the FEM code for linear elasticity, and then present
results for the fracture model.

4.1 Verification of the Finite Element Code

We verify our finite element code using a method of manufactured solution applied to an L-
shaped body, as shown in Figure6(a). The displacement field is prescribed in polar coordinates
as

ur(r, θ) =
1

2µ
rα [− (α+ 1) cos ((α+ 1)θ) + (C2 − (α+ 1))C1 cos ((α− 1)θ)] ,

uθ(r, θ) =
1

2µ
rα [(α+ 1) sin((α+ 1)θ) + (C2 + α− 1)C1 sin((α− 1)θ)] .

(15)

where α ≈ 0.544483737 is the solution to the equation α sin (2ω)+sin (2ωα) = 0 with ω = 3π/4,
C1 = − (cos((α+ 1)ω)) / (cos((α− 1)ω)), and C2 = (2(λ+ 2µ)) / (λ+ µ) [?]. This test case
contains a strain/stress singularity at the reentrant corner located at (0, 0), and hence is useful
for testing the initiation of fractures.

(a) (b)

Figure 6: (a) The initial material configuration for the L-shaped structure. This particular
discretization contains 1003 vertices and 1878 elements. (b) Convergence plot of the L-shape
displacements compared to number of vertices.

Figure 6(b) shows the linear convergence of relative L2 displacement error for several levels
of mesh refinement. The linear convergence is indicative of the strain singularity, which appears
in the reentrant corner at (0, 0), as seen in Figure 7.
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Figure 7: Close up view of reentrant corner and the Frobenius norm of the linear strain tensor
for various levels of refinement.

4.2 2D Simulation of Fracture

To test the finite element fracture code, we simulate a square plate made of a brittle material
(ceramic or glass), which has small defects on the top and bottom sides (see Figure 8). Exerting
increasing deformation along the x direction on the left and right sides, we observe the formation
and growth of cracks around the defects. In this simulation, the deformation displacement dx
is varied based on the number of cracks at each step. If the number of cracks is larger than 2,
we reduce the displacement dx. Otherwise, if there is no crack occurring in a series of steps,
we increase the displacement dx. The physical parameters for this simulation are as follows:
Young’s Modulus is 5 GPa, the Poisson ratio is 0.18, and the critical breakdown strain is
1.3817 × 10−4. We use a mesh whose minimum triangle area is 0.0005 and minimum triangle
angle is π/6. The boundary conditions are gliding boundary conditions on the left and right
along the y direction, which is a fixed dx for the x component while the y component is free, and
the free boundary condition everywhere else. At each simulation step, we modify the gliding
Dirichlet boundary condition for increased displacements on the left and right sides of the mesh.
We then solve the updated-Lagrangian formulation for the nonlinear elasticity problem using
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the quasi- Newton method. A crack processing routine is applied to the mesh to open cracks
around overstrained nodes, based on the principal direction of the stress tensor of the node,
while the stress is an averaged value from the vertex’s surrounding elements. To ensure the
system’s finite element discretized virtual work plus Lagrangian multiplier matrix to be non-
singular or not badly scaled, we add extra boundary conditions for isolated elements. In our
current case, because of lacking contact constraint of elements touching each other, we only
placed two fixed points for each isolated piece of glass. In the end, we check if the crack number
exceeds the maximum number of cracks prescribed. If so, we reduce the displacements dx at
one step and re-run the procedure using the old data; otherwise we keep the deformation to be
unchanged and run step 2 and 3 for a release of energy through crack formation until there are
no more cracks occurring. Figure 8 shows some sample results of the fracture of a brittle plate
under tension.

To test the robustness of the model, we simulate a brittle disk that has a hole in the center.
The hole is in contact with an expanding softer material core, which is not displayed; see Figures
9. While exerting increasing expansion on the inner core, which is passed by contact condition
towards the outer disk, cracks begin to form around the hole. The applied deformation of the
inner core is such that the inner part of the disk completely disintegrates into grains, forming
the so-called comminuted zone, while the outer part of the disk remains intact.

Under increased deformation of the inner core, the disk undergoes complete disintegration

Figure 8: Fracture of brittle plate under tension.

10
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Figure 9: Fracture of brittle disk under core expansion.

into disjoint fragment (see Figures 10). This simulation, performed using a coarse initial mesh,
gives results that qualitatively agree with previously published data. The robustness of the
algorithm for the selection of constraints still need some improvements for for highly refined
meshes.

Figure 10: Complete disintegration of brittle disk under core expansion.

5 Conclusions

A numerical method for brittle fracture based on a nonlinear finite element approach has been
developed, implemented, and tested. The method incorporates ideas from spring network mod-
els into the finite element framework. Geometric considerations, such as collision detection
and the boundary conditions required to resolve them, are also discussed in depth. The frac-
ture mechanism behaves independently of the underlying finite element function spaces used.
The model has been applied to 2D simulations of the formation and propagation of cracks in
brittle materials, and the fracture and fragmentation of stretched and compressed materials.
Future investigations will concentrate on extending the algorithm to three dimensional solids
and two-dimensional surfaces in three-dimensional space.
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