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Abstract 

The accumulation and extrusion of Ca2+ in the pre- and postsynaptic compartments play 

a critical role in initiating plastic changes in biological synapses. To emulate this 

fundamental process in electronic devices, we developed diffusive Ag-in-oxide memristors 

with a temporal response during and after stimulation similar to that of the synaptic Ca2+ 

dynamics. In situ high-resolution transmission electron microscopy and nanoparticle 

dynamics simulations both demonstrate that Ag atoms disperse under electrical bias and 

regroup spontaneously under zero bias because of interfacial energy minimization, 
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closely resembling synaptic influx and extrusion of Ca2+, respectively. The diffusive 

memristor and its dynamics enable a direct emulation of both short- and long-term 

plasticity of biological synapses and represent a major advancement in hardware 

implementation of neuromorphic functionalities. 

 

CMOS circuits have been employed to mimic synaptic Ca2+ dynamics, but three-terminal 

devices bear limited resemblance to bio-counterparts at the mechanism level and require 

significant numbers and complex circuits to simulate synaptic behavior1-3. A substantial 

reduction in footprint, complexity and energy consumption can be achieved by building a two-

terminal circuit element, such as a memristor directly incorporating Ca2+-like dynamics. 

Various types of memristors based on ionic drift (drift-type memristor)4-8 have recently been 

utilized for this purpose in neuromorphic architectures9-15. Although qualitative synaptic 

functionality has been demonstrated, the fast switching and non-volatility of drift memristors 

optimized for memory applications do not faithfully replicate the nature of plasticity. Similar 

issues also exist in MOS-based memristor emulators16-18, although they are capable of 

simulating a variety of synaptic functions including spike-timing-dependent plasticity (STDP). 

Recently, Lu’s group  adopted second-order drift memristors to approximate the Ca2+ dynamics 

of chemical synapses by utilizing thermal dissipation19 or mobility decay20, which successfully 

demonstrated STDP with non-overlapping spikes and other synaptic functions, representing a 

significant step towards bio-realistic synaptic devices. This approach features repeatability and 

simplicity, but the significant differences of the dynamical response from actual synapses limit 

the fidelity and variety of desired synaptic functions. A device with similar physical behavior 

as the biological Ca2+ dynamics would enable improved emulation of synaptic function and 

broad applications to neuromorphic computing. Here we report such an emulator, which is a   

memristor based on metal atom diffusion and spontaneous nanoparticle formation, as 
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determined by in situ high-resolution transmission electron microscopy (HRTEM) and 

nanoparticle dynamics simulations. The dynamical properties of the diffusive memristors were 

confirmed to be functionally equivalent to Ca2+ in bio-synapses, and their operating 

characteristics were experimentally verified by demonstrating both short- and long-term 

plasticity, including mechanisms that have not been unambiguously demonstrated previously. 

 

The diffusive memristor illustrated in Figure 1a consists of two Au electrodes sandwiching a 

switching layer of a dielectric film with embedded Ag nanoclusters (Methods).  X-ray 

photoelectron spectroscopy (XPS) revealed that the Ag was metallic, which was further 

confirmed by HRTEM micrographs showing Ag nanocrystals in SiOxNy:Ag (Supplementary 

Fig. S1-S2). These devices are similar to electrochemical metallization memory (ECM)21-26 

cells in terms of utilizing mobile species of noble metals, but they differ substantially in terms 

of the structural symmetry and operating voltage polarities, metal concentration and profile, 

and transient switching behaviour. An applied voltage above an apparent threshold abruptly 

switched the device to a conductance state limited by an external compliance current (Fig. 1b). 

To demonstrate that the device spontaneously relaxed back to an insulating configuration upon 

removing the bias (without applying an opposite polarity voltage), repeatable I-V loops with 

only positive applied voltages were used in collecting the data in Fig. 1b. Symmetric hysteresis 

loops were observed with the opposite polarity bias (Supplementary Fig. S3), showing that the 

threshold switching is unipolar in nature and significantly different from non-volatile drift-type 

memristors, especially in the OFF-switching process. The micro-devices represented by Fig. 

1a have an area of 10µm×10µm and nano-devices with an area of 100nm×100nm exhibited 

similar switching behaviours (Supplementary Fig. S4). The resistance ratio between the 

conducting and insulating states was 5-orders of magnitude in SiOxNy:Ag and over 10-orders 

in  HfOx:Ag devices, the highest reported in threshold switching devices so far27-30. The volatile 
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switching had sharp turn-on slopes of ~10mV/decade in MgOx:Ag and SiOxNy:Ag, and an 

extraordinary ~1mV/decade in HfOx:Ag, the sharpest demonstrated to date27-30. The high 

current capability and large resistance ratio enable diffusive memristors to be utilized as 

selectors for mitigating sneak current paths in crossbar arrays27-30.  In Fig. 1c, each 500ns/1.5V 

switching pulse was followed by a 500ns/0.2V reading pulse to verify that the device had 

relaxed back to the insulating state under zero bias within 5µs after switching to the high 

conductance state.  Repeatable and symmetric switching was demonstrated using wider bipolar 

voltage pulses with over a million switching cycles in Fig. 1d. 

 

To examine the switching mechanism, especially the spontaneous relaxation to the insulating 

state upon ceasing power, a planar Au/SiOxNy:Ag/Au device with a nano-junction was 

fabricated for in-situ HRTEM characterizations (Supplementary Fig. S5a). Reliable threshold 

switching was observed under a 100nA compliance in ambient conditions with a typical 

relaxation time constant of ~11ms (Supplementary Fig. S5b-c). In the time sequence of 

HRTEM images in Fig. 2 (Supplementary Videos), the gap between the Au electrodes first 

experienced a constant voltage (20V) with an 100nA compliance from 0s to 5s, after which the 

power was turned off. We observed a delay time of ~2s during which the measured current was 

<5nA and Ag nanoparticles formed in the gap region (indicated by the orange and blue arrows 

at time 0.1s), followed by an abrupt current jump to the compliance level as nanoparticles grew 

further to bridge the gap between the electrodes (indicated by the red arrow at 2.5s). At 4.6s, 

the cluster reached a diameter of ~4.2nm. 

 

Up to this point, the behaviour of Ag nanoparticles in SiOxNy is similar to previous 

observations, which have been interpreted as electrochemical reactions at effectively bipolar 

electrodes21-26. We next turned off the power at 5.0s to observe the spontaneous relaxation, 
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which is critical for understanding the dynamics of these devices, but has not been previously 

reported to the best of our knowledge. The elongated cluster of nanoparticles that had likely 

formed the conductive bridge rapidly contracted from a length of 14.8nm to a circular profile 

with a diameter of 7.6nm by 5.7s, indicating Ostwald ripening31. These observations 

demonstrated that minimizing the interfacial energy between the Ag nanoparticles and the 

dielectric served as the driving force for the relaxation dynamics of these diffusive memristors. 

The material systems exhibiting a substantial relaxation were those with large wetting contact 

angles32, such as MgOx:Ag, SiOxNy:Ag, and HfOx:Ag in Fig. 1b, consistent with the reported 

psudoelasticity of silver nanoparticles33 and the hypothesis that interfacial energy facilitates 

filament rupture in volatile switching34-36. 

 

The dynamical properties of diffusive memristors were further studied by applying voltage 

pulses and measuring resulting currents. Under an applied pulse, the device exhibited threshold 

switching to a low resistance state after an incubation period τd, as shown in Fig. 3a. This τd is 

related to the growth and clustering of silver nanoparticles to eventually form conduction 

channels. Upon channel formation, the current jumped abruptly by several orders of magnitude, 

and then slowly increased further under bias as the channel thickened. As the voltage pulse 

ended, the device relaxed back to its original high resistance state over a characteristic time τr. 

As shown in Fig. 3b, τr decreased as the ambient temperature increased, consistent with a 

diffusion activation energy of 0.27eV (inset of Fig. 3b), and the characteristic time was on the 

same order as the response of bio-synapses, i.e., tens of ms. In addition to the temperature, τd 

and τr were also functions of the voltage pulse parameters, operation history, Ag concentration, 

host lattice, device geometry, humidity, and other factors37-40, which alone or combined could 

be used to tune the desired dynamics for neuromorphic systems (Supplementary Fig. S6). 
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To better understand the switching mechanism, we performed simulations using a generalized 

model similar to the one utilized for non-volatile switching and current noise in TaOx 

memristors41. This model links electrical, nano-mechanical and thermal degrees of freedom 

(Methods). The model results here did not include redox reactions, although they can be added 

in order to more closely resemble the electrochemical models proposed previously21-26. 

 

In our simulations, two large clusters of metallic nanoparticles are located near each terminal 

of the device (Fig. 4a1). When a voltage pulse is applied (Fig. 4a), the local temperature 

increases due to Joule heating and the potential is tilted by electric forces acting on particles 

with induced charge, both of which cause larger clusters to break up. As the nanoparticles 

become more uniformly distributed in the gap, the resistance drops, the current and temperature 

increase, and a positive feedback results in the formation of a conductive channel (Fig. 4a2). 

As soon as the power is turned off, the temperature drops, and the nanoparticles start to coalesce 

(Fig. 4a3), i.e. particles slowly diffuse to their minimum energy positions near the device 

terminals. Eventually, most of the nanoparticles have merged into larger clusters to minimize 

interfacial energy, and the high resistance state is re-established along with the original particle 

distribution almost restored (compare Fig. 4a1 and Fig. 4a4), leading to the observed volatility 

in Fig. 2. The model predicts interesting conductance evolution similar to synaptic behavior 

when a train of pulses is applied (Fig. 4b). First, when the initial voltage pulse is applied, 

electric field-assisted diffusion pumps some of the Ag-particles out of the ‘left’ cluster and they 

start to bridge terminals. However, a single short pulse cannot excite enough particles to form 

a complete conducting path between the two terminals (Fig 4b2). If a subsequent pulse arrives 

before particles are re-absorbed, i.e., if the time between pulses is shorter than the diffusion 

relaxation time, more particles are pushed into the gap between terminals resulting in a gradual 

increase in device conductance, similar to the paired-pulse facilitation (PPF) phenomenon in 
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bio-synapses. The result is that when high frequency pulses are applied, the device conductance 

increases with the number of pulses (Fig. 4b) until a conducting bridge is formed (Fig. 4b1-b4). 

Second, as the electric field pumps more and more particles towards one of the device terminals, 

the number of particles at the other terminal decreases (Fig 4b4-4b5, where the distribution 

peak at the left terminal decreases as more and more pulses arrive). As a result, the number of 

particles in the gap decreases (Fig 4b5-4b6) and the device conductance starts to decay. This 

results in an inflection of the device conductance due to excessive stimulation, capturing 

another synaptic behaviour, i.e., PPF followed by PPD (paired pulse depression). Third, 

sequential high voltage pulses with a long enough interval (low frequency) may form a 

conducting bridge first, but before the next pulse arrives the bridge breaks and the particles are 

re-absorbed at the terminals. Due to the electric field, the Ag particles gradually deplete at one 

terminal and accumulate at the other. Consequently, the conductance of the device starts to 

decrease from the initial state without showing facilitation first (PPD). (Supplementary Fig. 

S7c). 

 

The simulations for Ag in dielectric agreed well with the experimental HRTEM observations.  

In addition, significant similarities exist between the Ag dynamics and that of synaptic Ca2+, 

not only in the diffusion mechanism but also in their dynamical balance of concentration and 

regulating roles in their respective systems. Ca2+ dynamics is responsible for initiating both 

short- and long-term plasticity of synapses, forming the basis of memory and learning42-44. In 

chemical synapses, the dynamical balance of the Ca2+ concentration is shaped by both influx 

via voltage-sensitive calcium channels (VSCC) and N-methyl-D-aspartate receptors 

(NMDAR)42,43, and extrusion via the plasma membrane Ca2+-ATPase (PMCA) and Na+/Ca2+ 

exchanger (NCE)43,44 that restores [Ca2+]i to the basal concentration. The Ca2+ dynamics 

naturally leads to short-term plasticity in which residual elevation of presynaptic [Ca2+]i 
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directly correlates to the enhancement of synaptic transmission43-45. The calcium inside the 

postsynaptic membrane also plays important regulating roles in long-term potentiation and 

depression where Ca2+ accumulation is necessary to regulate enzymes, i.e. Ca2+/calmodulin-

dependent protein kinase II (CaMKII), calcineurin, and protein phosphatase 142,43,46,47, which 

in turn triggers rapid and persistent modification of synaptic strengths by changing the number 

and/or conductance of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors 

(AMPAR)43,46,47. The Ag diffusion into the gap region between Ag nanoclusters with field 

assistance (Fig. 2 and Fig. 4), resembles the influx processes of Ca2+. The clearance of bridging 

Ag nanoparticles from the gap region by Ostwald ripening when electrical stimulus is removed 

replicates the extrusion processes of Ca2+. Thus, the Ag dynamics of the diffusive memristor is 

a functional emulation of bio-synapses (Fig. 5a). An expected characteristic of diffusive 

memristors is short-term plasticity, where application of paired pulses to synapses can induce 

an increase or decrease in postsynaptic responses, depending on the frequency of applied pulses. 

As shown in Fig. 5b, when the time interval between pulses (tzero) is short (high frequency), the 

device conductance increases (PPF) from its initial conductance (steady state of the diffusive 

memristor) as the number of pulses increases. In contrast, a long tzero (low frequency) leads to 

a reduced rate of increment or even a decrease in conductance (PPD) from the same initial 

conductance (Inset of Fig. 5b and Supplementary Fig. S7a-b)45,48. Moreover, it has also been 

shown in bio-synapses that prolonged or excessive stimulations with high-frequency (short tzero) 

pulses will eventually lead to an inflection from facilitation to depression, an effect solely 

induced by an increased number of stimulation pulses at the same frequency45. This important 

feature of bio-synapses, which has not been clearly demonstrated previously on two terminal 

devices, was predicted in Fig. 4b and observed experimentally in Fig. 5c. The device in its 

steady state shows PPD upon low frequency (196Hz) stimulation and experiences an increase 

in current (facilitation) once the stimulation frequency is raised (5000Hz). The facilitation turns 
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into depression (current decrease) with more pulses having identical frequency (5000Hz) due 

to the gradual depletion of silver at one electrode and accumulation at the other. The depression 

continues with the low-frequency (196Hz) pulses, which eventually bring the device back to a 

state close to its initial steady state, implying the potential for autonomic computing48,49. 

 

The above PPF and PPD demonstrations were realized with diffusive memristors only, 

resembling short-term plasticity45 in synapses because any conductance change from the OFF 

state of diffusive memristors will vanish over time. When combined with a non-volatile 

element, i.e., a drift-type memristor, long-term plasticity50 following the spike-rate-dependent 

plasticity and STDP47,50 learning rules can be realized. For demonstration purposes, we created 

a combined circuit element using a diffusive memristor in series with a Pt/TaOx/Ta/Pt drift 

memristor (Supplementary Fig. S8). This combined element was connected to pulsed voltage 

sources similar to a synapse between pre- and post-synaptic neurons (Fig. 6a). The spike-rate-

dependent potentiation demonstration is illustrated in Fig. 6b, where the drift memristor weight 

(conductance) change is a function of the frequency of the applied pulses. Similar to Fig. 5b, a 

shorter tzero resulted in a greater increase in the conductance of the diffusive memristor and thus 

a larger voltage drop across the drift memristor, which thereby switched due to the voltage 

divider effect. A longer tzero resulted in a smaller increase in the diffusive memristor 

conductance and thus a smaller voltage drop across the drift memristor, leading to a smaller or 

non-detectable resistance change in the drift memristor. 

 

To demonstrate STDP learning rules with non-overlapping spikes, pre and post-synaptic spikes 

(Fig. 6c) were applied to the combined element. The two spikes were separated by a time 

difference ∆t, which determined how much conductance change was programed in the drift 

memristor. Each spike consisted of two parts, a high voltage short pulse and a low voltage long 
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pulse. The pre-spike and post-spike were equal in magnitude but opposite in voltage polarity 

(Fig. 6c). In the combined element, the resistance of the diffusive memristor in its OFF state is 

much larger than that of the drift memristor, while the resistance of its ON state is much smaller 

than that of the drift memristor. Because the diffusive memristor has a finite delay time, the 

short high voltage pulse will not turn it ON. In contrast, the long voltage pulse with a lower 

amplitude will turn ON the diffusive memristor.  The drift memristor is not switched by the 

first spike, because the majority of the voltage drops across the diffusive memristor and turns 

it ON first. After the spike ends, the resistance of the diffusive memristor gradually increases 

from its ON state over time, regulated by the diffusive dynamics. The second spike occurs at a 

time ∆t from the end of the first spike, and it may or may not switch the drift memristor 

depending on how much voltage drops on the drift memristor, which is determined by the 

conductance of the diffusive memristor at that moment, a function of ∆t. A smaller ∆t 

corresponds to a smaller diffusive memristor resistance and results in a greater resistance 

change in the drift memristor and vice versa (Fig. 6d). If the pre-spike appears before the post-

spike, the drift memristor conductance increases (potentiation). If the pre-spike follows the 

post-spike, depression occurs. (Supplementary Fig. S9)  Because the dynamics of the diffusive 

memristor provides an intrinsic timing mechanism for the combined element, the spike-rate-

dependent plasticity and STDP do not require complex pulse engineering or spike overlapping. 

This substantially reduces the complexity of both circuit and algorithm design and enables low-

energy operations. In addition, depending on the application, any non-volatile memristor 

(low/high retention, analog/digital) can be used along with the diffusive memristor, allowing a 

significantly broader choice of materials rather than relying on the properties of the drift 

memristor when used alone. (See Supplementary Fig. S10 for STDP demonstration with a 

Pt/HfOx/TiN drift memristor) 
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In conclusion, we have constructed and demonstrated a new class of memristors as synaptic 

emulators that function primarily based on diffusion (rather than drift) dynamics. The 

microscopic nature of both the threshold switching and relaxation of the diffusive memristor is 

revealed for the first time by in situ HRTEM and explained by nanoparticle dynamics 

simulation. The Ag dynamics of the diffusive memristors functionally resemble the synaptic 

Ca2+ behavior in chemical synapses and lead to a direct and natural emulation of multiple 

synaptic functions for both short-term and long-term plasticity, such as PPF, PPD, PPD 

following PPF, SRDP and STDP. In addition to providing a synapse emulator, the diffusive 

memristor can also serve as a selector with a large transient nonlinearity that is critical for the 

operation of a large crossbar array as a neural network. The results here provide an encouraging 

pathway toward synaptic emulation using diffusive memristors for neuromorphic computing. 

 

Methods 

Preparation of crossbar samples. The diffusive memristor devices were grown on p-type 

(100) Si wafer with 100nm thermal oxide. The bottom electrodes were patterned by 

photolithography followed by evaporation and liftoff of a ~20nm thick Pt(Au) layer. The 

~15nm thick doped dielectric was deposited at room temperature by reactively co-sputtering 

MgO or HfO2 (99.99%, Kurt Lesker) and Ag (99.99%, Kurt Lesker) in an ambient of mixed 

Ar and O2, or co-sputtering Si (99.99%, Kurt Lesker) and Ag in Ar, N2, and O2. The ~30nm 

Pt(Au) top electrodes were subsequently patterned by photolithography followed by 

evaporation and liftoff processes. Electrical contact pads of the bottom electrodes were first 

patterned by photolithography and then subjected to reactive ion etching with mixed CHF3 and 

O2 gases. 

The drift memristor devices used the same substrates and bottom electrodes as the diffusive 

memristor devices. The switching layer was grown by sputtering Ta2O5 (HfO2) for a thickness 
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of ~10(5)nm in Ar gas followed by photolithography. Top electrodes were deposited by 

evaporating Ta(5nm)/Pt(20nm) (sputtering TiN(50nm)/Pd(30nm)) and liftoff. 

Electrical Measurements. Electrical measurements were performed with the Keysight 

B1500A semiconductor device analyser using two of its modules: DC measurements were 

carried out using the source and measure units (B1517A) and the B1530A waveform 

generator/fast measurement unit (WGFMU) was used to perform the pulse measurements. 

Using a two-probe (W tips) configuration, we applied DC and pulse voltages between the top 

and bottom electrodes of the device and measured current through one of the measurement 

units. The same units were used to perform measurements at different temperatures on the 

Variable Temperature Micro Probe System (MMR technologies, K2000 Digital Temperature 

Controller) in ambient atmosphere. We performed the rate-dependent plasticity and the STDP 

experiments with the diffusive memristor in series with a Pt/TaOx/Ta/Pt drift memristor. The 

B1530A WGFMU was used for applying the pre and spike-post-synaptic voltage spikes. The 

conductance of the drift memristor was read using a small DC voltage between each 

programming operation to determine the change in its weight. For each data point of the spike-

rate-dependent plasticity measurement, the drift memristor was first initialized to its high 

resistance state, and then we applied 15 voltage pulses across the combined series memristors 

with the same pulse amplitude (2.5V), duration (40µs) and a particular tzero value, and 

finallyread the drift memristor to determine the change in its state induced by the train of 15 

pulses. 

Preparation of planar samples for TEM. The specimen for in situ HRTEM was grown on 

the Aduro E-chip with pre-built Au connections (Model E-AEL00-LN, Protochip). Au 

electrodes are patterned by electron beam lithography followed by evaporation and liftoff of a 

~20nm thick Au layer. The doped dielectric layer of SiOxNy:Ag was deposited by reactively 
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co-sputtering of both Si and Ag targets in an ambient of Ar, N2, and O2 at room temperature 

with a thickness of ~30nm. 

in situ TEM. The in situ HRTEM was performed at Brookhaven National Laboratory with the 

FEI Titan 80-300 operating at 300keV. The sample was grown on a Aduro E-chip (Model E-

AEL00-LN, Protochip) which was mounted on a corresponding Aduro TEM holder for FEI 

(Protochip). Current was monitored in real-time on a Keithley 2602B System SourceMeter 

which exerted electrical bias. 

Diffusive memristor dynamical simulations.  

The diffusive memristor model links electrical, nano-mechanical and heat degrees of freedom: 

(a) the growth, shape change and decay of clusters of nanoparticles identified by their positions 

xi inside a device (i is the nanoparticle label), (b) the electric current through the device 

governed by a sequence of tunnelling resistances between nanoparticles, and (c) the local 

temperature controlling the nanoparticle diffusion, determined by Joule heating and the thermal 

conductivity of the memristor. 

The mathematical definition for a generic memristor4 has two components, the quasi-static 

conduction equation relating voltage v and current i, or Ohm’s law for the element 

𝑣𝑣 = 𝑖𝑖𝑖𝑖(𝒙𝒙) ,      (1) 

where R is the state-dependent resistance and x represents one or more state variables that 

define the physical properties of the memristor, and the dynamical equation(s) that define the 

evolution of the state variables with time in the presence of a current and affected by local 

temperature T: 

𝑑𝑑𝒙𝒙
𝑑𝑑𝑑𝑑

= 𝑓𝑓(𝒙𝒙; 𝑖𝑖,𝑇𝑇),      (2) 

For the state-dependent resistance we assume sequential electron tunnelling: first from the 

input terminal to the nearest metallic nanoparticle, and then from this nanoparticle to the next 
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one and so on with the last tunnelling event to the output terminal. The total resistance of the 

memristor is the sum of tunnelling resistances between N-1 adjacent nanoparticles/islands: 

𝑖𝑖𝑀𝑀 = �R𝑡𝑡exp[(𝑥𝑥𝑖𝑖+1 − 𝑥𝑥𝑖𝑖)/𝜆𝜆]
𝑁𝑁

0

,      (3) 

with λ the effective tunnelling length, R𝑡𝑡 the tunneling resistance amplitude (assumed the same 

for all islands), 𝑥𝑥0 and 𝑥𝑥𝑁𝑁 the spatial coordinates of the input and output terminals, respectively, 

and we order the island positions as 𝑥𝑥0 < 𝑥𝑥1 < 𝑥𝑥2 <. . . < 𝑥𝑥𝑁𝑁−1 < 𝑥𝑥𝑁𝑁. The minimum resistance 

can be estimated as 𝑖𝑖𝑚𝑚𝑖𝑖𝑚𝑚 = min𝑖𝑖𝑀𝑀 = 𝑁𝑁R𝑡𝑡exp[2/𝑁𝑁𝜆𝜆]. 

To describe the nanoparticle diffusion, and thus the memristor dynamics, we employed an over-

damped Langevin equation for each mobile metallic nanoparticle trapped by a potential 𝑈𝑈 and 

subject to a random force 𝜉𝜉𝑖𝑖 , the magnitude of which is determined by the device local 

temperature 𝑇𝑇, 

𝜂𝜂
𝑑𝑑𝑥𝑥𝑖𝑖
𝑑𝑑𝑑𝑑

= −
𝜕𝜕𝑈𝑈(𝑥𝑥𝑖𝑖)
𝜕𝜕𝑥𝑥𝑖𝑖

+ 𝛼𝛼
𝑉𝑉(𝑑𝑑)
𝐿𝐿

+ �2𝜂𝜂𝑘𝑘𝐵𝐵𝑇𝑇 𝜉𝜉𝑖𝑖,      (4) 

In the equation (4) the friction term (left hand side), proportional to the particle velocity and 

viscosity 𝜂𝜂, is balanced by all other forces acting on nanoparticles. The first term on the right 

hand side of Eq. 4 forces the nanoparticle to approach the minimum potential energy with a 

speed that is proportional to minus the local gradient of the potential energy. The drift term 

𝛼𝛼𝑉𝑉(𝑑𝑑)/𝐿𝐿 represents a bias in the electric filed E = 𝑉𝑉(𝑑𝑑)/𝐿𝐿 affecting nanoparticle with induced 

charge 𝛼𝛼 when the voltage is on. The electrical bias together with diffusion is responsible for 

switching to a high conducting state and depletion of nanoparticles at one of the device 

terminals. The random force, �2𝜂𝜂𝑘𝑘𝐵𝐵𝑇𝑇 𝜉𝜉𝑖𝑖, which is driven by the instantaneous temperature, 

describes diffusion of the nanoparticles that occurs both when voltage is on and when the 

system relaxes with no bias toward the potential minimum after the power to the device is off 

and the local temperature cools. In other words, since T is nonzero, there will always be some 



15 
 

diffusion of the nanoparticles modelled by adding random thermal fluctuations ξi, which are δ-

correlated white noise characterized by 〈𝜉𝜉〉 = 0 and  〈𝜉𝜉(0)𝜉𝜉(𝑑𝑑)〉 = 𝛿𝛿(𝑑𝑑). 

The potential 𝑈𝑈 = 𝑈𝑈𝐼𝐼 + 𝑈𝑈𝑝𝑝 has two energy scales – the interfacial energy 𝑈𝑈𝐼𝐼 responsible for 

formation of large metallic clusters near the device terminals and a weaker nanoparticle-

pinning energy 𝑈𝑈𝑝𝑝 with many smaller wells between the electrodes. Pinning can occur through 

interactions of the nanoparticles with impurities, the substrate and/or the ionic lattice41.  For 

our simulations we used 𝑈𝑈𝐼𝐼 = −𝑤𝑤𝐼𝐼 �exp �− (𝑥𝑥𝑖𝑖+𝑥𝑥0)2

𝑅𝑅𝐼𝐼
2 � + exp �− (𝑥𝑥𝑖𝑖−𝑥𝑥0)2

𝑅𝑅𝐼𝐼
2 �� and 𝑈𝑈𝑝𝑝 =

𝑤𝑤𝑝𝑝
2

sin �2𝜋𝜋 𝑥𝑥
𝑅𝑅𝑝𝑝
�, with the interfacial energy barrier  𝑤𝑤𝐼𝐼 and the amplitude 𝑤𝑤𝑝𝑝of the pinning 

potential.  The particular shape of neither the interfacial potential nor the pinning energy profile 

are essential; the only property that matters is that the potential 𝑈𝑈 has two different energy 

scales and the weaker pinning potential has many wells (for example it can be random with 

fluctuating 𝑤𝑤𝑝𝑝  and 𝑖𝑖𝑝𝑝 ). At high enough temperature during a voltage pulse, the increased 

diffusion assisted by the electrical force breaks up the large nanoparticle clusters and populates 

the pinning sites. At lower temperatures after the power is off and the potential bias disappears, 

the nanoparticles re-aggregate to form clusters at the electrodes. Moreover, a qualitatively 

similar result (although requiring considerably more computational resources) has been 

obtained when we modelled the interfacial energy as an interaction between particles41. 

The temperature dynamics are determined by Newton's law of cooling: 

𝑑𝑑𝑇𝑇
𝑑𝑑𝑑𝑑

= 𝐶𝐶𝑇𝑇𝑄𝑄 − 𝜅𝜅(𝑇𝑇 − 𝑇𝑇0),      (5) 

with the Joule heating power 𝑄𝑄 = 𝑉𝑉2/𝑖𝑖𝑀𝑀 increasing the temperature of the system and thermal 

conductivity acting as a damping factor by removing energy from the system. Here, 𝜅𝜅 and 𝐶𝐶𝑇𝑇 

are the heat transfer coefficient and heat capacitance respectively, while the background 

temperature is 𝑇𝑇0. Equations (4) and (5) are sufficient to describe the memristor dynamics 
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subject to the current through the device, which is controlled by the electric circuit in which it 

is embedded. Thus, the model described above enables the simulation of a complex system 

consisting of both volatile and non-volatile memristors. 

There are two time scales in the model, the diffusion time scale and the characteristic scale of 

temperature relaxation. The first one depends on temperature, potential profile, and electric 

drift, thus, this time scale changes depending on voltage pulse intensity and temperature. For 

this reason, we measure all time in the simulations in units of the temperature relaxation time 

1/κ. As one can see from Fig. 4, the relaxation occurs on time scales of the order 10-20 1/κ, 

thus, the simulated system is clearly governed by diffusion rather than the temperature 

relaxation19. There are two conductance states with low and high conductance. We used the 

conductance 1/𝑖𝑖𝑚𝑚𝑖𝑖𝑚𝑚in the high conductance state as a normalization factor. The normalization 

enabled the simulated conductance to be plotted as a percentage of its maximum conductance 

after each applied pulse, for instance, from Fig 4b we conclude that the conductance reached 

25% of the maximum after 4 pulses and about 75% after 7 pulses. To provide a better link to 

the experimental data, we normalized the voltages to the threshold voltage 𝑉𝑉𝑡𝑡ℎ, which was 

assumed to be the voltage where the conductance reached 10% of its maximum value.  These 

quantities can be easily obtained from both simulations (averaged over 30 realizations) and 

experimental I-V hysteresis loops, thus directly linking the units in the simulations and the 

experiments.  For the sake of consistency, we normalized all voltages to 𝑉𝑉𝑡𝑡ℎ at the highest 

simulated temperature, 𝑘𝑘𝐵𝐵𝑇𝑇
𝑤𝑤𝑝𝑝

= 0.45.  The temperature 𝑘𝑘𝐵𝐵𝑇𝑇
𝑤𝑤𝑝𝑝

 in the simulations was varied from 

0.3 to 0.45 (i.e, the same relative range as in Fig. 3b). In this range the characteristic single 

hopping time scale 𝑒𝑒𝑤𝑤𝑝𝑝/𝑘𝑘𝐵𝐵𝑇𝑇 changed from about 2/κ to 6/κ and the diffusion relaxation time 

(estimated as a characteristic jump time multiplied by the number of jumps to reach the 

interfacial minimum near the device terminal) was about 20/κ to 60/κ. The ratio of interfacial 

and pinning potentials 𝑤𝑤𝐼𝐼 𝑤𝑤𝑝𝑝⁄  was assumed to be 4.5 in the simulations to ensure that the 
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interfacial potential was strong enough to re-trap the Ag nanoparticles after the voltage was 

switched off and the thermal fluctuations were too weak to destroy the large clusters near the 

terminals in the absence of excess heating.   Conversely, the electric force (𝛼𝛼𝑉𝑉𝑡𝑡ℎ𝑖𝑖𝑝𝑝 𝑤𝑤𝐼𝐼⁄ = 0.3 

in the simulations) was used to suppress the interfacial barrier 𝑘𝑘𝐵𝐵𝑤𝑤𝐼𝐼 𝑇𝑇⁄  to about 3.6, which 

enabled the enhanced thermal fluctuations induced by Joule heating to activate the positive 

thermal feedback.  The stronger fluctuations support larger Joule heating and vice versa, 

breaking up the large Ag clusters to form a string of smaller nanoparticles and thus a conductive 

path between the terminals, as observed experimentally in the HRTEM studies.  Note that we 

also linked some model parameters with experimentally measurable ones, e.g., 𝐶𝐶𝑇𝑇 ≈

 𝜅𝜅𝑤𝑤𝑝𝑝𝑖𝑖𝑡𝑡/𝑉𝑉𝑡𝑡ℎ2 𝑘𝑘𝐵𝐵, 𝜂𝜂 ≈ 𝑤𝑤𝑝𝑝/𝜅𝜅𝐿𝐿2, and 𝛼𝛼 ≈ 𝜂𝜂𝜅𝜅𝐿𝐿2/𝑉𝑉𝑡𝑡ℎ. 

  



18 
 

References 

1 Diorio, C., Hasler, P., Minch, B. A. & Mead, C. A. A single-transistor silicon synapse. 
IEEE Trans. Electron Dev. 43, 1972-1980, (1996). 

2 Indiveri, G., Chicca, E. & Douglas, R. A VLSI array of low-power spiking neurons and 
bistable synapses with spike-timing dependent plasticity. IEEE Trans. Neu. Net. 17, 
211-221, (2006). 

3 Bartolozzi, C. & Indiveri, G. Synaptic Dynamics in Analog VLSI. Neural Comput. 19, 
2581-2603, (2007). 

4 Chua, L. Memristor-The missing circuit element. IEEE Trans. Circuit Theory 18, 507-
519, (1971). 

5 Terabe, K., Hasegawa, T., Nakayama, T. & Aono, M. Quantized conductance atomic 
switch. Nature 433, 47-50, (2005). 

6 Waser, R. & Aono, M. Nanoionics-based resistive switching memories. Nat. Mater. 6, 
833-840, (2007). 

7 Kwon, D.-H. et al. Atomic structure of conducting nanofilaments in TiO2 resistive 
switching memory. Nat. Nanotechnol. 5, 148-153, (2010). 

8 Wedig, A. et al. Nanoscale cation motion in TaOx, HfOx and TiOx memristive systems. 
Nat. Nanotechnol. 11, 67-74, (2016). 

9 Jo, S. H. et al. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. 
Nano Lett. 10, 1297-1301, (2010). 

10 Yu, S., Wu, Y., Jeyasingh, R., Kuzum, D. & Wong, H. S. P. An Electronic Synapse 
Device Based on Metal Oxide Resistive Switching Memory for Neuromorphic 
Computation. IEEE Trans. Electron Devices 58, 2729-2737, (2011). 

11 Ohno, T. et al. Short-term plasticity and long-term potentiation mimicked in single 
inorganic synapses. Nat. Mater. 10, 591-595, (2011). 

12 Wang, Z. Q. et al. Synaptic Learning and Memory Functions Achieved Using Oxygen 
Ion Migration/Diffusion in an Amorphous InGaZnO Memristor. Adv. Funct. Mater. 22, 
2759-2765, (2012). 

13 Lim, H., Kim, I., Kim, J. S., Hwang, C. S. & Jeong, D. S. Short-term memory of TiO2-
based electrochemical capacitors: empirical analysis with adoption of a sliding 
threshold. Nanotechnology 24, 384005, (2013). 

14 La Barbera, S., Vuillaume, D. & Alibart, F. Filamentary Switching: Synaptic Plasticity 
through Device Volatility. ACS Nano 9, 941-949, (2015). 

15 Prezioso, M. et al. Training and operation of an integrated neuromorphic network based 
on metal-oxide memristors. Nature 521, 61-64, (2015). 

16 Pershin, Y. V. & Di Ventra, M. Experimental demonstration of associative memory 
with memristive neural networks. Neural Netw. 23, 881-886, (2010). 

17 Pershin, Y. V. & Di Ventra, M. Practical Approach to Programmable Analog Circuits 
With Memristors. IEEE Trans. Circuits Syst. I 57, 1857-1864, (2010). 

18 Pershin, Y. V. & Di Ventra, M. Memristive circuits simulate memcapacitors and 
meminductors. Electron. Lett. 46, 517-518, (2010). 

19 Kim, S. et al. Experimental Demonstration of a Second-Order Memristor and Its Ability 
to Biorealistically Implement Synaptic Plasticity. Nano Lett. 15, 2203-2211, (2015). 

20 Du, C., Ma, W., Chang, T., Sheridan, P. & Lu, W. D. Biorealistic Implementation of 
Synaptic Functions with Oxide Memristors through Internal Ionic Dynamics. Adv. 
Funct. Mater. 25, 4290-4299, (2015). 



19 
 

21 Xu, Z., Bando, Y., Wang, W., Bai, X. & Golberg, D. Real-Time In Situ HRTEM-
Resolved Resistance Switching of Ag2S Nanoscale Ionic Conductor. ACS Nano 4, 
2515-2522, (2010). 

22 Liu, Q. et al. Real-time observation on dynamic growth/dissolution of conductive 
filaments in oxide-electrolyte-based ReRAM. Adv. Mater. 24, 1844-1849, (2012). 

23 Yang, Y. et al. Observation of conducting filament growth in nanoscale resistive 
memories. Nat. Commun. 3, 732, (2012). 

24 Yang, Y. et al. Electrochemical dynamics of nanoscale metallic inclusions in dielectrics. 
Nat. Commun. 5, 4232, (2014). 

25 Tian, X. et al. Bipolar electrochemical mechanism for mass transfer in nanoionic 
resistive memories. Adv. Mater. 26, 3649-3654, (2014). 

26 Hubbard, W. A. et al. Nanofilament Formation and Regeneration During Cu/Al2O3 
Resistive Memory Switching. Nano Lett. 15, 3983-3987, (2015). 

27 Jo, S. H., Kumar, T., Narayanan, S., Lu, W. D. & Nazarian, H. in Electron Devices 
Meeting (IEDM), 2014 IEEE International.  6.7.1-6.7.4. 

28 Song, J., Woo, J., Prakash, A., Lee, D. & Hwang, H. Threshold Selector with High 
Selectivity and Steep Slope for Cross-Point Memory Array. IEEE Electron Device Lett. 
36, 681-683, (2015). 

29 Yang, H. et al. in VLSI Technology (VLSI Technology), 2015 Symposium on.  T130-
T131. 

30 Luo, Q. et al. in Electron Devices Meeting (IEDM), 2015 IEEE International    
10.14.11-10.14.14 (2015). 

31 Voorhees, P. W. The theory of Ostwald ripening. J. Stat. Phys. 38, 231-252, (1985). 
32 Stoneham, A. M. Systematics of metal-insulator interfacial energies: A new rule for 

wetting and strong catalyst-support interactions. Appl. Surf. Sci. 14, 249-259, (1983). 
33 Sun, J. et al. Liquid-like pseudoelasticity of sub-10-nm crystalline silver particles. Nat. 

Mater. 13, 1007-1012, (2014). 
34 Valov, I. & Staikov, G. Nucleation and growth phenomena in nanosized 

electrochemical systems for resistive switching memories. J. Solid State Electrochem. 
17, 365-371, (2012). 

35 van den Hurk, J., Linn, E., Zhang, H., Waser, R. & Valov, I. Volatile resistance states 
in electrochemical metallization cells enabling non-destructive readout of 
complementary resistive switches. Nanotechnology 25, 425202, (2014). 

36 Guzman, D. M., Onofrio, N. & Strachan, A. Stability and migration of small copper 
clusters in amorphous dielectrics. J. Appl. Phys. 117, 195702, (2015). 

37 Hasegawa, T., Terabe, K., Tsuruoka, T. & Aono, M. Atomic switch: atom/ion 
movement controlled devices for beyond von-Neumann computers. Adv. Mater. 24, 
252-267, (2012). 

38 Valov, I. et al. Atomically controlled electrochemical nucleation at superionic solid 
electrolyte surfaces. Nat. Mater. 11, 530-535, (2012). 

39 Tsuruoka, T. et al. Effects of Moisture on the Switching Characteristics of Oxide-Based, 
Gapless-Type Atomic Switches. Adv. Funct. Mater. 22, 70-77, (2012). 

40 Valov, I. & Lu, W. D. Nanoscale electrochemistry using dielectric thin films as solid 
electrolytes. Nanoscale, (2016). 

41 Yi, W. et al. Quantized conductance coincides with state instability and excess noise in 
tantalum oxide memristors. Nat. Commun. 7, 11142, (2016). 

42 Burgoyne, R. D. Neuronal calcium sensor proteins: generating diversity in neuronal 
Ca2+ signalling. Nat. Rev. Neurosci. 8, 182-193, (2007). 

43 Clapham, D. E. Calcium signaling. Cell 131, 1047-1058, (2007). 



20 
 

44 Catterall, W. A. & Few, A. P. Calcium channel regulation and presynaptic plasticity. 
Neuron 59, 882-901, (2008). 

45 Zucker, R. S. & Regehr, W. G. Short-Term Synaptic Plasticity. Annu. Rev. Physiol. 64, 
355-405, (2002). 

46 Malenka, R. C. & Bear, M. F. LTP and LTD: An Embarrassment of Riches. Neuron 44, 
5-21, (2004). 

47 Caporale, N. & Dan, Y. Spike timing-dependent plasticity: a Hebbian learning rule. 
Annu Rev Neurosci 31, 25-46, (2008). 

48 Feng, L., Molnár, P. & Nadler, J. V. Short-Term Frequency-Dependent Plasticity at 
Recurrent Mossy Fiber Synapses of the Epileptic Brain. J. Neurosci. 23, 5381-5390, 
(2003). 

49 Mulkey, R., Herron, C. & Malenka, R. An essential role for protein phosphatases in 
hippocampal long-term depression. Science 261, 1051-1055, (1993). 

50 Bi, G.-q. & Poo, M.-m. Synaptic Modifications in Cultured Hippocampal Neurons: 
Dependence on Spike Timing, Synaptic Strength, and Postsynaptic Cell Type. J. 
Neurosci. 18, 10464-10472, (1998). 

 

  



21 
 

Acknowledgements 

This work was supported in part by the U.S. Air Force Research Laboratory (AFRL) (Grant 

No. FA8750-15-2-0044), the Intelligence Advanced Research Projects Activity (IARPA) 

(contract 2014-14080800008), U.S. Air Force Office for Scientific Research (AFOSR) (Grant 

No. FA9550-12-1-0038), and the National Science Foundation (NSF) (ECCS-1253073). Any 

opinions, findings and conclusions or recommendations expressed in this material are those of 

the authors and do not necessarily reflect the views of AFRL. Part of the device fabrication 

was conducted in the clean room of the Center for Hierarchical Manufacturing (CHM), an NSF 

Nanoscale Science and Engineering Center (NSEC) located at the University of Massachusetts 

Amherst. The TEM work used resources of the Center for Functional Nanomaterials, which is 

a U.S. DOE Office of Science Facility, at Brookhaven National Laboratory under Contract No. 

DE-SC0012704.  The authors thank Mark McLean for useful discussions on computing. 

 

Author contributions: 

J.J.Y. conceived the concept. J.J.Y., Q.X., Z.W. and S.J. designed the experiments. Z.W. 

fabricated the devices and S.J. performed electrical measurements. S.E.S. performed the 

simulation. H.L.X. carried out the in-situ TEM characterizations. H.J., R.M., P.L., M.H., N.G., 

J.P.S., Z.L., Q.W., M.B., G.-L.L., and R.S.W. helped with experiments and data analysis. J.J.Y., 

Q.X., Z.W., S.J., S.E.S., and R.S.W. wrote the paper. All authors discussed the results and 

implications and commented on the manuscript at all stages. 

 

Additional information 



22 
 

Supplementary information is available in the online version of the paper. Reprints and 

permissions information is available online at www.nature.com/reprints. Correspondence and 

requests for materials should be addressed to J.J.Y. 

 

Competing financial interests 

The authors declare no competing financial interests. 

 

Figure Captions 

Figure 1 Highly non-linear, fast, and repeatable threshold switching behaviours of diffusive 

memristors (a) Pseudo-colour scanning electron micrograph of a crossbar device. Top 

electrodes are depicted by the red dashed line and bottom contacts by the blue dashed line. 

Biasing is applied on the top electrode with the bottom electrode grounded. The inset shows an 

atomic force microscopy (AFM) image of the junction. (b) Repeatable highly non-linear 

threshold switching I-V loops for devices with different host lattices doped with silver. (c) 

High-speed switching characteristics of the SiOxNy:Ag device at an elevated temperature of 

600K. The programming pulse width is 500 ns and the voltage is 1.5V. (d) Endurance-cycling 

performance test of the SiOxNy:Ag device for 1 million cycles at room temperature. The inset 

shows the shape of the applied voltage pulse, which consists of four segments: a 1.4V/200µs 

programming voltage and a 0.14V/200µs read voltage, followed by a -1.4V/200µs 

programming voltage and a -0.14V/200µs read voltage. We sampled one voltage and one 

current data point from each of the four segments of the pulse. The voltage samples are shown 

in red, while the purple dots and green dots correspond to device current due to positive and 

negative programming pulses, respectively. The read current for both positive and negative 

http://www.nature.com/reprints
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programming is at the instrument noise level (<100nA) for the current measurement range used. 

The device did not fail during the measurement, demonstrating high robustness. 

Figure 2 In situ TEM observation of the threshold switching process suggesting the relaxation 

is a diffusion process driven by interfacial energy minimization. External electric field is 

exerted at the point of time zero. Ag migration is observed at time 0.1s when two nanocrystals 

started to form. A clear arc-shaped filament is visible at 2.5s. When the external biasing is 

removed at 5.0s, the filament starts to deform, shrinking to a round spherical nanocluster 

implying an interfacial energy driven diffusion mechanism. All scale bars, 20nm. 

Figure 3 Timing mechanism of SiOxNy:Ag diffusive memristor. (a) Delay and relaxation 

characteristics of the device showing variation of current (blue) with applied voltage (red) 

pulses. Multiple read voltage pulses of (0.05V, 10µs) are used to study the device relaxation 

current after the switching pulse (0.75V, 5ms). The device requires a finite delay time to turn 

ON and has a finite relaxation time before it goes to the high resistance state after the switching 

pulse is removed. (b) Device relaxation performance showing the variation of current with 

applied voltage at different temperatures. The relaxation time decreases with increasing 

temperature. Inset shows the Arrhenius plot of the temperature dependence of the relaxation 

time. Each data point (black circles) is an average over 10-15 measured relaxation times, and 

are fitted to the blue line. The activation energy for the material system is calculated to be 

0.27eV. 

Figure 4 Simulated operation of a diffusive memristor device. (a) The conductance response (blue 

curve) induced by a voltage pulse (red curve) shows a delay in the response and a gradual 

relaxation towards the low conducting state, consistent with the experimental threshold 

switching property in Fig. 3a. Panels (a1-a4) show evolution of metallic nanoparticle density 

distributions. Blue curves represent particle distributions. Each curve was averaged over 

temporal interval 0.2/𝜅𝜅  around time moments indicated by orange dots (in (a)) when 
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instantaneous particle snapshots (red dots) are plotted. The inset shows the temperature 

dependence of the relaxation time 𝜏𝜏 defined as the time needed for the conductance to drop to 

value 0.02𝐺𝐺𝑚𝑚𝑚𝑚𝑥𝑥 after switching the voltage, which agrees with that of Fig. 3b. The red curve 

is the fitting of ln (𝜅𝜅𝜏𝜏𝑟𝑟) by the function 𝐴𝐴 + 𝐵𝐵 𝑤𝑤𝑝𝑝/𝑘𝑘𝐵𝐵𝑇𝑇  with 𝐴𝐴 = 0.1 , 𝐵𝐵 = 1 . (b) The 

simulated conductance response (blue curve) showing both facilitation and then depression 

upon a sequence of short and frequent pulses (red curve). Panels (b1-b6) show evolution of 

metallic nanoparticle density. Blue curves represent particle distributions, each curve was 

averaged over temporal interval 0.02/𝜅𝜅, around time moments indicated by orange dots (in (b)) 

when instantaneous particle snapshots (red dots) are plotted. The conductance initially 

increases with number of pulses until a conducting-bridge between terminals is formed. The 

conductance eventually saturates and drops as the number of pulses increase further, which 

captures an advanced synaptic behaviour, i.e., PPF followed by PPD. Other simulation 

parameters are 𝜆𝜆/2 = 𝑖𝑖𝐼𝐼 = 2𝑖𝑖𝑝𝑝/3 = 𝐿𝐿/10 , 𝑥𝑥0 = 0.85𝐿𝐿 , we simulate a hundred of nano-

metallic particles and the simulation step was 𝑑𝑑𝑑𝑑 = 2 × 10−6  resulting in 107  steps during 

each simulation run; the reasoning of parameters choice and pinning parameters are discussed 

in the method section. 

Figure 5 Schematic illustration of the analogy between Ca2+ and Ag dynamics, and short term 

synaptic plasticity of the diffusive memristor. (a) (left) Diffusion of Ca2+ from extracellular 

sources via VSCC and NMDAR, and the removal of Ca2+ via PMCA and NCE. (right) Ag 

diffusion into the gap region between Ag nanoclusters with field assistance and clearance of 

Ag filament from the gap region by the interfacial energy or mechanical stress once the voltage 

signal is removed, which is a close emulation of Ca2+ dynamics. (b) Experimental 

demonstration of short-term synaptic paired-pulse facilitation (PPF) and depression (PPD) 

behaviour with the diffusive SiOxNy:Ag memristor. Device current response (blue) to multiple 

subsequent voltage pulses (3V, 1ms). The duration between two pulses when the applied 
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voltage is 0V is denoted as tzero . For small tzero, the current increases with the number of pulses 

giving larger conductance (weight) change, demonstrating paired-pulse facilitation. Inset 

shows the percentage change in conductance (weight) for different tzero values. As the tzero 

increases from 1 ms to 160ms, the weight change slows down with increasing pulse number 

and eventually becomes negative. (c) Experimental demonstration of PPD following PPF in 

the diffusive SiOxNy:Ag memristor. Device current (blue) response to a train of voltage pulses 

(2.8V, 100μs) of the same amplitude but different frequencies. The device begins with PPD 

(depression) upon low frequency (196Hz) stimulation and experiences an increase in current 

(facilitation) once the stimulation frequency is raised (5000Hz). The brief facilitation is 

followed by depressed current under identical stimulation frequency (5000Hz) but excessive 

pulse number, as a result of the gradual depletion of silver at one electrode and accumulation 

at the other. The current relaxes to its initial value with subsequent low frequency stimulation 

(196Hz), implying potential for autonomic computing48,49. 

Figure 6 Long-term spike-rate-dependent potentiation and bio-realistic spike-timing 

dependent plasticity (SRDP and true STDP) behaviour of a combined device consisting of a 

diffusive and a drift memristor. (a) Illustration of a biological synaptic junction between the 

pre- and post-synaptic neurons. Also shown is the electrical implementation, a circuit diagram 

of the electronic synapse consisting of the SiOxNy:Ag diffusive memristor connected in series 

with the TaOx drift memristor and between pulsed voltage sources, which act as neurons that 

send voltage spikes to the synaptic junction. (b) Spike-rate-dependent potentiation showing the 

change in the conductance (weight) of the drift memristor in the electronic synapse with change 

in the duration tzero between the applied pulses. For long tzero, the change in the conductance of 

the diffusive memristor is lower (see Fig. 5b), resulting in a lower weight change of the drift 

memristor. As the tzero decreases, the weight change increases. The dotted red line represents a 

fit of the average conductance change with change in tzero. (c) Schematic of the pulses applied 
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to the combined device for STDP demonstration. The long low voltage pulse in each spike 

turns the diffusive memristor ON, and the short high voltage pulse switches the drift memristor. 

When the post-spike precedes the pre-spike, the device is reset (depressed), and when the pre-

spike precedes the post-spike, the device is set (potentiated). The timing (Δt) between the two 

spikes determines the voltage drop across the drift memristor. (d) Plot of the conductance 

(weight) change of the drift memristor with variation in Δt showing the spike-timing dependent 

plasticity of the electronic synapse. This response is characteristic of the timing-dependent 

response of biological synapses. The inset shows the spike-timing-dependent plasticity of a 

typical chemical synapse (reprinted from Fig. 7 of Ref. 50). 
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Figure 6 




