Sample Environment for in situ Synchrotron Corrosion Studies of Materials in Extreme Environments

Submitted to Journal of Review of Scientific Instruments

January 2017

Nuclear Science and Technology Department

Brookhaven National Laboratory

U.S. Department of Energy
USDOE Office of Science (SC), Nuclear Physics (NP) (SC-26)

Notice: This manuscript has been authored by employees of Brookhaven Science Associates, LLC under Contract No.DE-SC0012704 with the U.S. Department of Energy. The publisher by accepting the manuscript for publication acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes.
DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or any third party’s use or the results of such use of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof or its contractors or subcontractors. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
Sample Environment for in situ Synchrotron Corrosion Studies of Materials in Extreme Environments

Mohamed S. Elbakhshwan¹, Simerjeet K. Gill¹*, Arthur T. Motta², Randy Weidner¹, Thomas Anderson¹, Lynne E. Ecker¹

¹Nuclear Science and Technology Department, Brookhaven National Laboratory, Upton, NY, 11973, USA.
²Department of Mechanical and Nuclear Engineering, The Pennsylvania State University, University Park, PA, 16802, USA.

Corresponding author:
Simerjeet K. Gill
Nuclear Science and Technology Department, Brookhaven National Laboratory
email: gills@bnl.gov
Tele: 631-344-5633
Fax: 631-344-7650
Abstract

A new in situ sample environment has been designed and developed to study the interfacial interactions of nuclear cladding alloys with high temperature steam. The sample environment is particularly optimized for synchrotron X-ray diffraction (XRD) studies for in situ structural analysis. The sample environment is highly corrosion resistant and can be readily adapted for steam environments. The in situ sample environment design complies with G2 ASTM standards for studying corrosion in zirconium and its alloys and offers remote temperature and pressure monitoring during the in situ data collection. The use of the in situ sample environment is exemplified by monitoring the oxidation of metallic zirconium during exposure to steam at 350°C. The in situ sample environment provides a powerful tool for fundamental understanding of corrosion mechanisms by elucidating the substoichiometric oxide phases formed during early stages of corrosion, which can provide a better understanding the oxidation process.

Introduction

Corrosion of zirconium alloy fuel cladding in water or steam and the associated hydrogen pickup is a limiting factor for increasing fuel burn-up in current and future reactors [1 - 12]. In addition, the acceleration of corrosion, known as breakaway oxidation, that occurs during severe accidents, such as Loss of Coolant Accidents (LOCA) conditions, leads to the production of hydrogen and fuel rod failure due to embrittlement from hydrides formed within the cladding [1, 8]. The explosions in two reactor buildings at Fukushima during the recent accident were caused by hydrogen produced by the zirconium-water reaction [8]. Corrosion of zirconium alloys occurs at the metal/oxide interface [1 - 3]. The current model of zirconium alloy corrosion is that a protective layer of tetragonal zirconium oxide forms at the interface. This layer eventually degrades and becomes less passivating allowing more oxygen to reach the metal surface. Stress and the conversion of the tetragonal oxide to the monoclinic phase are believed to play a role in the breakdown of the protective oxide layer [1, 2]. This phenomenon is cyclic and occurs several times during the life of a fuel rod. Zirconium alloys with slightly different composition and microstructure show widely different corrosion behavior. Such differences are manifested in the corrosion rate and on the oxide transition from tetragonal to monoclinic and are likely caused by differences in oxide microstructure [1 - 3].

There is lack of fundamental understanding of oxidation and associated corrosion mechanisms that occur at zirconium alloy cladding interfaces under extreme conditions of temperature, pressure and corrosive environments [1, 2]. For most metal-oxide systems, the relationships between the oxidation conditions and the resulting oxide-film growth kinetics and microstructure are poorly understood [3]. Several studies using surface sensitive methods (STM, TEM, XPS) have been done [13 - 19]. However, there is limited information about the structural changes as well as the change in the elemental distribution at the early oxidation stages of oxide-film growth. This knowledge gap can be addressed by developing advanced sample environments where materials interactions and behavior at the surfaces and interfaces can be studied in situ under corrosive conditions. Such understanding is vital to predict the performance of existing claddings and to design and develop materials with long-lived stability under extreme conditions [20]. High synchrotron X-ray energy and brightness, coupled with advanced sample environments, present an exceptional opportunity to understand the fundamental interfacial processes involved in the degradation of materials in extreme environments [3, 6, 11, 12].
In our work, we demonstrate the capabilities of an in situ sample environment that we developed to monitor oxidation at zirconium alloy-steam interfaces under corrosive conditions using in situ synchrotron X-ray diffraction (XRD). The in situ sample environment provides the capability of precisely controlling the temperature during oxidation using lab-view based platform. The environment has ability to monitor corrosion both in transmission and reflection geometry for bulk and surface structural analysis. In addition, the dimensions of the microreactor where the sample is mounted comply with G2 ASTM standard [21] for studying corrosion in zirconium and zirconium based alloys making the results collected relevant to industrial conditions and directly comparable to autoclave testing. In this article, we present the in situ corrosion data collected on metallic zirconium in steam at 350ºC and elucidate the structure of oxide phases formed at the very beginning of corrosion.

Clearly, applications of the in situ sample environment are not limited to corrosion of nuclear claddings. It includes studying corrosion in materials relevant to many energy sectors such areas such as hydrogen storage, batteries, CO₂ sequestration and geothermal wells. It also includes studying interfacial interactions on surface modified materials such as corrosion resistant coatings and advanced structural ceramics. All these materials are of high technological value often are complex, nanostructured, and heterogeneous and involve exposure to extreme environments [22 - 24]. Neither is the application of in situ sample environment limited to XRD analysis.

The design of the in situ sample environment

The in situ sample environment developed will provide nanoscale monitoring for material-fluid interfaces in real time using advanced X-ray nano and micro beams at synchrotron facilities. The scope of the sample environment is broad and can be extended to all the energy sectors that involve understanding of metal alloy-fluid interface including steam and supercritical carbon dioxide environments. The sample environment design is sufficiently flexible to adapt to various beamline set ups, where the surface orientation required for in situ data collection might be horizontal or vertical relative to the beam direction.

The sample environment design consists of three main parts; 1) the reaction cell, 2) the delivery system, and 3) the instrumentation and control loop as shown in Figure 1. The reaction cell is where the sample is mounted and actual corrosion takes place when the steam is delivered into it by the delivery system. The delivery system consists of pressurizer, tubing and distribution system for steam generation and delivery. The instrumentation and controls loop is lab view based platform for remote monitoring of temperature and pressure of the reaction cell and the delivery system while the in situ sample environment is in operation.

(1) The reaction cell: the overall design of the reaction cell is based on a modified Merrill-Bassett type diamond anvil cell to assemble all parts in a compact form [22, 25], as shown in Figure 2. It consists of four major parts: Outer frame, microreactor, sample holder and windows. The design of the reaction cell was modified from an existing in situ environment developed by Diefenbacher et. al. [22] for in situ spectroscopic and diffraction studies of mineral carbonation and CO₂ sequestration under supercritical carbon dioxide environments [23, 24]. The reaction cell was modified to investigate the corrosion of zirconium based claddings where cell dimensions complied with G2 ASTM industrial standard for corrosion tests of zirconium alloys [21]. The total volume of reaction cell was designed to be 100 µl and sample surface area to cell volume ratio was designed to 0.1m²/l.
The outer frame is made up of vascomax (300 steel alloy) which has high strength but lower corrosion resistance than hastelloy. It is easier to machine and has lower density which reduces the overall cost and weight of the reaction cell. It holds the windows, gaskets and micro-reactor core together by screws that hold them between the two parts of the triangular frame.

The micro-reactor core has a cylindrical diameter of 5 mm and 10 mm length, with grooves to support the sample holders in the center to assure uniform oxidation on both sides of the sample. It has an opening angle of 38° degrees to allow for both transmission and reflection XRD measurements as shown in Figure 3. At both ends of the cylindrical core, 10 mm diameter and 2 mm deep holes were created to accommodate the sealing windows. It holds the sample holder where sample is mounted. Both the microreactor core and sample holders are made from hastelloy C22 in order for them to be corrosion resistant in steam, an environment that nuclear claddings are exposed to in a typical boiling water nuclear reactor. The microreactor has an inlet where the steam is delivered from the pressurizer through 1/16 inch stainless steel high performance liquid chromatography (HPLC) tubing which is connected to the core through internal 10 - 32 threads connection. In addition, it is equipped with thermocouple which is placed inside the microreactor frame and monitors the temperature on the micro-reactor. The sample temperature is measured using this grounded thermocouple embedded into the core body without penetrating the interior to provide accurate reading of the sample temperature. It is placed in 0.42 mm diameter opening that extends from the outer surface core up to the edge of the sample chamber as shown in Figure 3.

The sample holder has two different designs for in situ data collection: transmission mode holder (as shown in Figure 4(a) which holds sample perpendicular to the X-ray beam and reflection mode holder (as shown in Figure 4(b) which holds sample parallel to the X-ray beam. The transmission geometry allows structural measurement of both the bulk sample and thick oxide films that are formed during corrosion. However, if the oxide film is very thin compared to the bulk sample, the diffraction pattern is dominated by the bulk signal with very little or even unmeasurable contribution from the newly developed oxide layer. The reflection mode holder allows the sample surface to be parallel to the beam which is suitable to perform grazing incidence diffraction measurements as shown in Figure 4(b). This technique is most effective in detecting the development of newly formed thin oxide films on the surface of the sample.

For the sealing windows, Single crystal moissanite and sapphire windows were selected for high energy XRD measurements while glassy carbon windows were selected for low energy measurements [26]. Flexural strength calculations were performed to ensure that windows met the requirements to withstand the high pressure operating conditions during in situ data collection. The optimum thickness of the windows was found to be 2 mm to provide enough strength to withstand the high pressure and in the same time to the transmission of reliable X-ray signal during measurements. For initial testing for windows, a sample was sandwiched by two windows at each side to simulate the sample environment conditions. Single crystal moissanite showed two minor peaks, while glassy carbon give five broad peaks with high background especially in the low 2θ range as shown in Figure 5.

The reaction cell is sealed by placing flat circular gaskets with outer diameters of 8.89 mm and thickness of 0.6 mm between the cell core and the windows. Additional gaskets are placed between the windows and the frame to reduce friction between windows and outer frame and protect the windows as shown in Figure 2. Both gold and annealed aluminum gaskets were used due to the softness and durability at high
temperatures (up to 400°C) and being chemically inert with steam environments. Pre-rated torque is used to seal the reaction cell applied equally to three bolts located at each corner of the triangular cell.

Once the reaction cell is assembled the heating of the cell is performed using a copper based heater where the temperature on the reaction cell is controlled independently from the pressure vessel. A hollow triangular copper based heater was built to surround the reaction cell from all directions except the faces with the windows to allow the passage of the X-rays as shown in Figure 6. Total of five cartridge heaters with different power ratings were embedded in the copper heating block through the three sides to assure uniform heating of the reaction cell. A large opening was cut at one side to allow a position for the steam inlet and another opening was placed to allow a channel to place the thermocouple of the reaction cell.

(2) The delivery system: it is used for both steam generation and delivery during in situ corrosion experiments. It consists of three major components; pressure vessel, distribution manifold and pressure transducer. The pressure vessel is where the steam is generated for corrosion studies and distribution manifold is used to flow the steam in the in situ sample environment and pressure transducer is used for communicating with instrumentation and controls loop for remote monitoring of pressure and temperature.

The pressure vessel plays the role of the steam generator as well as the pressure controller of the whole system. The water flows through 1/4 inch stainless steel tubing to the pressure vessel which acts as the steam generator in the system. For steam generation, the in situ sample environment is evacuated followed by introducing deionized water into the pressurizer which is heated using the heater jacket surrounding the pressurizer. The steam generated then fills the in situ sample environment including the delivery system and reaction cell, making the pressurizer as the main point of pressure control. The pressure vessel is ASTM rated up to 2950 psi at 350°C and it is equipped with two built-in Alloy C-276 rupture discs as a safety barrier against over pressurizing.

The distribution manifold is used for controlling the fluid flow in the system. It has 5 valves and each valve is used for specific function during the operation of in situ sample environment which includes evacuating the system, introducing water in pressurizer for steam generation, introducing other components in case mixture was to be used as a corrosive environment, and communicating with instrumentation loop via pressure transducer.

The pressure transducer generates an electrical signal to the LabView based instrumentation loop (see below) as a function of the pressure imposed, which enables remote monitoring of pressure outside the hutch during the in situ corrosion data collection. The pressure transducer chosen is rated up to 300°C, while the temperature measured near transducer connection was 315°C when in situ sample environment is in operation. Hence, a cooling tower was introduced to compensate for the temperature difference as shown in Figure 7.

(3) The instrumentation and control loop: allows remote monitoring of temperature and pressure outside the hutch during the in situ data collection. It has two main components Compact Rio (CRio) and PCM4s. The CRio is the main hardware platform for running the LabView real time software as shown in Figure 1. The software is used to control the hardware, display and store parameter (T, P) information, while the in situ data collection. It monitors temperature readouts of the pressure vessel and the reaction cell from
the thermocouples in the copper based heater on the reaction cell and the pressure vessel and outputs two individual 4 - 20 mA DC signals respectively to Omega Pulse Control Module (PCM4s).

The PCM4s convert the 4 - 20 mA signals to voltage which is read by the solid state relays (SSR). The SSRs control the heaters on both the reaction cell and pressure vessel using this time proportional voltage output. Linearly from 20mA to 4mA the SSR goes from fully closed (20 mA) to completely open (4 mA).The instrumentation and control system is also setup to be able to manually control the 4-20mA signal so the user can control the rate of the temperature increase manually.

During the development of in situ sample environment, safety by design approach was followed and many in-built safety features were introduced. The first feature is that the pressure and temperature are compared against one another using a modified ASME steam table. If the temperature’s related ASME Steam Table pressure and the actual system pressure are off by +/-50 psig an alarm is triggered. This enables safe operation if there was sudden drop in pressure due to leak during in situ corrosion data collection. Second, the in situ sample environment has a manual safety built into the software that allows the user to power off the heaters for the reaction cell and the pressure vessel if required. Third, the system is setup to automatically turn off power to the heaters in case of a large decrease in the pressure occurs. This function was designed to prevent complete drying of pressurizer and keeping system safe in case of disc rupture.

In situ corrosion study

As a preliminary step initial testing of the in situ sample environment was done at the X17A beamline in the National Synchrotron Light Source (NSLS). An in situ corrosion study of metallic Zirconium under steam at 250°C and 600 psi was carried out successfully for 31 hours. The X-ray wavelength was 0.1839Å and beam size was 500x500 µm². We were able to collect in situ data with good sealing using moissanite windows. No oxide peaks were noticed due to the short exposure time and low temperature, however a successful leak free test and in situ corrosion data collection in transmission geometry were achieved.

After successful demonstration of sample environment for in situ corrosion data collection under steam environment, an in situ corrosion study of zirconium metal under steam was carried out using Zr metal at 6-ID-D beamline at Advanced Photon Source (APS) in Argonne National Laboratory. The data was reduced using Nika software [27]. The specimen was exposed to steam at 350°C and 50 psi for 82 hours. The specimen had surface area of 2x2 mm² with 200 µm thickness. The measurements were collected using grazing incidence geometry using the reflection sample holder shown in Figure 4(b). The X-ray wavelength was 0.1235Å and beam was reduced in the vertical direction to 70 µm while the beam width was 200 µm. The specimen was aligned parallel to the beam while touching only the lower portion of it. The surface sensitivity of the measurements was optimized on the sample by changing the tilt angle of the sample (0.3° - 2°) while monitoring the intensity of the oxide peak. This procedure was used to maximize the signal from the slowly grown oxide layer relative to the bulk. For each pattern, the specimen was exposed to the X-ray beam for 10 seconds and a total of 20 exposures were summed together to give one pattern. Two references were used to calibrate the sample to detector distance; first Ni NIST standard powder wrapped in kapton tape and placed inside the sample environment. This calibration was used as a guide for the sample position with respective to the detector. Once the in situ data collection was started the Zr metal peaks were used to calibrate the sample to detector distance to
avoid any effect of the sample movement (if any) on the data analysis. In these measurements, single crystal sapphire windows were used to seal the sample environment. The windows contributed two sharp peaks to the diffraction pattern, while the sample holder (made from Ni based alloy “Hastelloy C22”) added a total of six peaks to the patterns as shown in Figure 8. Such interference could be eliminated if a smaller X-ray beam can be used.

After exposure to steam for 32 hours, the development of four non-stoichiometric oxide peaks was observed at the diffraction angles of 0.92°, 1.54°, 1.75°, and 2.3° degrees which can be attributed to the growth of the Zr$_3$O, Zr$_3$O$_{1-x}$, and Zr$_3$O$_{1-x}$ oxide phases as shown in Figure 9. Our findings of formation and growth of non-stoichiometric oxide phases with an overall O/Zr-ratio < 2 are consistent with previous studies [17 - 19]. The initial formation of thin oxide film on zirconium metal surface involves various steps which include transport of oxygen molecules to the surface followed by their adsorption, which is followed by oxide nucleation and growth, subsequently resulting in formation of a protective oxide film covering the entire metal surface and continued oxide-film growth [1, 2]. The formation of non-stoichiometric phase at initial stage comes from a concentration gradient of Zr-enrichment and O-deficiency in the developing oxide film that decreases from metal/oxide interface towards the oxide surface [17, 18]. These results show that at the early stages of oxidation, there is not enough oxygen at the interface to form the stable monoclinic zirconium oxide. This is due to the slow diffusion kinetics (due to low temperature and short amount of time) for oxygen ions that are being transferred through the zirconium surface [17 - 19, 28]. Beyond the first 40 hours of exposure, the diffraction patterns showed the development of the tetragonal and monoclinic zirconium oxide peaks when the suboxide peaks disappeared, and this data will be discussed in more details in future publications.

Conclusion

A novel in situ sample environment for monitoring structural changes and oxide growth on nuclear cladding steam interfaces using high resolution synchrotron methods was designed and built. The first results of in situ data collection are presented here as an initial step toward developing a technique capable of in situ studies of variety of zirconium based and other advanced cladding alloys in corrosive environments of steam and supercritical carbon dioxide. We were able to successfully monitor the substoichiometric oxide phases formed during initial corrosion of zirconium in steam at 350°C. The environmental cell design offers great flexibility, and can be used to study a variety of material interfaces under extreme environments at the nanoscale. The design allows for studies of numerous interfacial phenomenon including oxidation of thin films, hydride formation, and detection of early oxidation forms. Such information can be gained not only in pure steam environments, but also with different additives and under various environments including supercritical carbon dioxide. The ability to couple high resolution synchrotron methods for in situ analysis using this new in situ sample environment opens up a large number of possibilities for mechanistic corrosion studies under extreme environments.

Acknowledgements

The authors would like to thanks Andrew Desantis for CAD drawing, Hengzi Wang for designing the grazing incidence sample holder. The authors would like to thank Dr. Sanjit Ghose, Dr. Eric Dooryhee from XPD/NSLS-II beamline and Dr. Juergen Thieme from SRX/NSLS-II for optimizing the cell design for the beamline measurements, and Michael Gaffney’s team at NSLS-II for discussion about safety
features in the cell design. Special thanks to Dr. Douglas Robinson; the beamline scientist at 6-ID-D beamline in the Advanced Photon Source, for his patience and dedication during the data collection. This work was supported by Laboratory Directed Research and Development (LDRD) Program (Project no. 13-027) at BNL. Work at the NSLS and CFN was supported under US DOE contract DE-AC02-CH10886. This research used resources of the Advanced Photon Source, a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under contract DE-AC02-06CH11357. CHESS is supported by the NSF & NIH/NIGMS via NSF award DMR-1332208.

References

Figure 1: Schematic showing three major components of the in situ sample environment the 1) reaction cell, 2) delivery system along with 3) lab-view based instrumentation and controls loop.
Figure 2. The components of the core of the sample environment. The components are: (1) bolts, (2) the reaction cell, (3) the outer frame (upper plate), (4) the sample holder, (5) the outer frame (lower plate), (6) O-ring or gasket, and (7) windows.
Figure 3. The opening angle of the core. This determines the angle of X-rays coming from the sample that can be collected at the detector. It was optimized to provide enough structural support and to accommodate spectroscopy measurements in the fluorescence mode.
Figure 4. (a) Transmission and (b) reflection sample holder.
Figure 5. XRD patterns for (a) Moissanite windows with zirconium alloy and (b) Glassy Carbon windows with advanced steel. Data was collected at X-ray wavelength of 0.1839Å.
Figure 6. Image showing the copper heating block surrounding the hastelloy reaction cell.
Figure 7. Image showing the actual reaction cell, pressure vessel, pressure transducer, cooling tower and the distribution manifold.
Figure 8. XRD pattern for (a) sapphire windows (b) sapphire windows with the sample holder, and (c) sapphire windows, the sample holder and Zr metal specimen. Black arrows point to diffraction peaks from the windows while red arrows point to diffraction peaks from the sample holder. Data was collected at X-ray wavelength of 0.1235Å.
Figure 9. XRD patterns of Zr metal exposed to steam at 350°C and 50 psi up to 40 hours. Data was collected at X-ray wavelength of 0.1235Å.