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Measurement of D0 azimuthal anisotropy at mid-rapidity in Au+Au collisions at√
s
NN
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We report the first measurement of the elliptic anisotropy (v2) of the charm meson D0 at mid-
rapidity (|y|< 1) in Au+Au collisions at

√
s
NN

= 200GeV. The measurement was conducted by the

STAR experiment at RHIC utilizing a new high-resolution silicon tracker. The measured D0 v2
in 0–80% centrality Au+Au collisions can be described by a viscous hydrodynamic calculation for
transverse momentum (pT) less than 4GeV/c. The D0 v2 as a function of transverse kinetic energy

(mT − m0, where mT =
√

p2
T
+m2

0
) is consistent with that of light mesons in 10–40% centrality

Au+Au collisions. These results suggest that charm quarks have achieved local thermal equilibrium
with the medium created in such collisions. Several theoretical models, with the temperature–
dependent, dimensionless charm spatial diffusion coefficient (2πTDs) in the range of ∼2–12, are
able to simultaneously reproduce our D0 v2 result and our previously published results for the D0

nuclear modification factor.
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PACS numbers: 25.75.Cj, 25.75.Ld, 12.38.Mh

Quantum chromodynamics (QCD) is a non-Abelian
gauge theory which describes the strong interactions be-
tween quarks and gluons. Experiments at the Relativistic
Heavy Ion Collider (RHIC) and the Large Hadron Col-
lider (LHC) indicate that a novel form of QCD matter,
consistent with a strongly coupled Quark-Gluon Plasma
(sQGP), is created in heavy-ion collisions at these ener-
gies [1–3]. A key piece of evidence for this new state of
matter is the strong collective, anisotropic flow of pro-
duced light flavor particles, suggesting possibly hydrody-
namic behavior of the strongly interacting matter during
the collision [4].

Heavy quarks (charm and bottom) are predominantly
created in the initial hard scatterings in a heavy-ion colli-
sion, and their propagation in the sQGP can be described
as Brownian-like motion [5, 6]. The sQGP properties
can be accessed through experimental observables such
as the nuclear modification factor (RAA) [7], the ratio of
the yield in heavy-ion collisions to the scaled yield in pro-
ton+proton (p+p) collisions, and the elliptic anisotropy
(v2) [8], the second Fourier coefficient of the particle yield
with respect to the reaction plane (defined by the beam
axis and the direction of the impact parameter between
two colliding nuclei). Of these observables, the v2 at
low transverse momentum (pT) where light and strange
flavor hadrons appear to behave hydrodynamically, is of
particular interest because it probes the properties of the
bulk medium in the strongly-coupled region and is less
affected by the shadowing and Cronin effects [9].

Recent measurements at RHIC and the LHC show that
high-pT charm hadron yields are significantly suppressed
in central heavy-ion collisions indicating strong charm–
medium interactions [10–12]. The D-meson v2 measured
by ALICE [13] is comparable to that of light hadrons at
the LHC. So far, charm quark flow at RHIC has only
been inferred from measurements of semileptonic decays
of charm and bottom hadrons [14, 15]. However, a clear
interpretation of lepton v2 measurements suffers from an
ambiguity in the lepton sources between charm and bot-
tom decays and the decay kinematics. On the other hand,
there has been significant progress in theoretical calcula-
tions for charm hadron v2 in heavy-ion collisions [16–23].
A precise measurement of charm hadron v2 over a wide
momentum range is expected to provide valuable insights
into the sQGP properties [9].

In this Letter, we report the first measurement of the
D0 anisotropy parameter v2 at mid-rapidity (|y|< 1) at
RHIC by the STAR Collaboration using the newly com-
pleted Heavy Flavor Tracker (HFT) [24, 25]. The HFT
is a high-resolution silicon detector system, which aims
for the topological reconstruction of secondary decay ver-
tices of open heavy flavor hadrons. It has three sub-
detectors: the Silicon Strip Detector, the Intermediate

Silicon Tracker (IST), and the Pixel (PXL) detector. In
the 2014 Au+Au run at

√
s
NN

= 200 GeV, ∼ 1.1 billion
minimum bias triggered events, selected by a coincidence
signal between the east and west Vertex Position De-
tectors (VPD) [26] located at 4.4< |η| < 4.9 (η is the
pseudo-rapidity), were recorded with the IST and the
PXL. In this analysis, the reconstructed collision primary
vertex (PV) is required to be less than 6 cm from the de-
tector center along the beam axis to ensure good HFT
acceptance. The collision centrality, the fraction of the
total hadronic cross section, is defined using the mea-
sured charged track multiplicity at mid-rapidity and cor-
rected for the online VPD triggering inefficiency using a
Monte Carlo Glauber simulation [27].

D0 and D
0

mesons are reconstructed in the K∓π±

decay channel, which has a short proper decay length
(cτ ∼ 123µm) [28]. Charged tracks are reconstructed by
the Time Projection Chamber (TPC) [29] together with
the HFT in a 0.5 T uniform magnetic field. Tracks are
required to have a minimum of 20 TPC hits (out of
a maximum of 45), hits in all layers of PXL and IST
sub-detectors, pT > 0.6 GeV/c, and |η|< 1. To identify
particle species, the ionization energy loss, dE/dx, mea-
sured by the TPC is required to be within three and
two standard deviations from the expected values for π
and K, respectively. The particle identification is ex-
tended by the Time Of Flight (TOF) [30] detector up to
pT ∼ 1.6 GeV/c by requiring the 1/β (β is particle ve-
locity in unit of the speed of light), calculated from the
path length and the TOF, to be less than three standard
deviations different from the expected value calculated
using the π or K mass and the measured momentum.

Figure 1 (a) shows the track pointing resolution to
the collision vertex in the transverse plane (σXY) as a
function of momentum (p) for identified particles in 0–
80% centrality Au+Au collisions at

√
s
NN

= 200 GeV.
The resolution is better than 55µm for kaons with p ≥
0.75 GeV/c. With two daughter tracks, a secondary de-
cay vertex can be reconstructed as the middle point
on the distance of the closest approach (DCA) between
them. The primary background is due to fake pairs com-
ing from random combinations of tracks which propagate
directly from the collision point. The background can be
significantly reduced by applying cuts on five variables:
decay length (the distance between the decay vertex and
the PV), DCA between the two daughters, DCA between
the reconstructed D0 track and the PV, DCA between
the π track and the PV, and the DCA between the K
track and the PV. The cuts on these variables are opti-
mized using the Toolkit for Multivariate Data Analysis
(TMVA) package [31]. Their optimization was pursued
separately in each D0 candidate pT bin in order to have
the greatest signal significance.
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FIG. 1. (color online) Identified particle pointing resolution in
the transverse plane as a function of particle momentum (a).
Invariant mass spectra of Kπ pairs for 1<pT < 1.5GeV/c (b)
and 5<pT < 10GeV/c (c), respectively. The solid data points
are the D0 signal reconstructed with unlike-sign pairs. The
red crosses and the blue lines show the like-sign and mixed
event background distributions.

Figures 1 (b) and (c) show the invariant mass spectra
of Kπ pairs after applying these cuts for two pT bins.
Comparing these mass spectra with the previous D0

study [10], the signal significance is markedly improved
due to the background rejection using the geometric cuts
enabled by the HFT (∼220σ vs. ∼13σ per billion events).
The combinatorial background is estimated with like-sign
Kπ pairs and the mixed event unlike-sign technique in
which K and π with opposite charge signs from differ-
ent events are paired. The mixed event distributions
are normalized to the like-sign distributions in the mass
range of 1.7–2.1 GeV/c2. The remaining contributions to
the background is expected to come from the correlated
sources, e.g. Kπ pairs from jet fragments or multi-prong
decays of heavy flavor mesons.

Two different methods are employed to calculate
v2: the event plane method [8] and the correlation
method [32, 33]. In the event plane method, a second
order event plane angle Ψ2 is reconstructed from TPC
tracks excluding decay products of D0 mesons and after
correcting for the azimuthal nonuniformity in the detec-
tor efficiency [8]. To suppress non-flow effects (correla-
tions not connected to the event plane, such as resonance
decays and jet correlations), only particles from the op-
posite η hemisphere of the reconstructed D0 and outside
of an additional η-gap of |∆η| > 0.05 are used in the
event plane reconstruction. The D0 yields are measured
in azimuthal bins relative to the event plane azimuth
(φ−Ψ2). The yields are weighted by 1/(ε×R), where ε is
the D0 reconstruction efficiency×acceptance and R the
event plane angle resolution [8] for each centrality inter-
val [34]. In each φ−Ψ2 bin, the mixed event background,
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FIG. 2. (color online) (a) D0 yield as a function of φ−Ψ2 fit to
A(1 + 2v2cos(2(φ−Ψ2))), for 3<pT < 3.5GeV/c. (b) Corre-
lations 〈 cos(2∆φ)〉 between the D0 candidate or background
and charged particles, as a function of pT. (c) v2 as a function
of pT for D0 calculated with the event plane and correlation
methods. The data shown in all three panels are for 0–80%
centrality Au+Au collisions at

√
s
NN

= 200GeV. The vertical
bars and the brackets represent the statistical and systematic
uncertainties, respectively. The estimated non-flow contribu-
tion is not shown in this plot, but is common to both methods.
In (a) and (b), only statistical uncertainties are shown as ver-
tical bars (not visible if they are smaller than marker sizes).
In (b) and (c), the open points are shifted along the x-axis
for clarity.

scaled to the like-sign background, is subtracted from the
unlike-sign distribution. The D0 yield is obtained via the
side band method by subtracting the scaled counts in two
invariant mass ranges around the signal (1.71−1.80 and
1.93−2.02GeV/c2) from the counts in the signal region
(1.82−1.91GeV/c2) [35]. A fit method using a Gaus-
sian function for D0 signal plus a first order polynomial
function for the background is also used to estimate the
systematic uncertainty on the raw yield extraction. Fig-
ure 2 (a) shows an example of the weighted D0 yield as a
function of φ− Ψ2. The observed v2 is then obtained by
fitting with a functional form A(1 + 2v2cos(2(φ− Ψ2))),
where A is a normalization parameter. Finally, the true
v2 is obtained by scaling the observed v2 with 〈1/R〉 to
correct for the event plane angle resolution [34].

In the correlation method [32, 33], v2 is calculated
for D0 candidates and the background, separately. For
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example, the D0 candidate-hadron azimuthal cumulant
V cand−h
2 ≡ 〈 cos(2φcand − 2φh)〉, shown as a function of

pT as solid markers in Fig. 2 (b), is calculated by the
Q-cumulant method where φcand and φh are azimuthal
angles for D0 candidates and charged hadrons, respec-
tively [33]. The average is taken over all events and
all particles. Neglecting non-flow contributions, the fol-
lowing factorization can be assumed to obtain the D0

v2: V cand−h
2 = vcand2 vh2 . Here, vh2 can be obtained

from hadron-hadron correlations via V h−h
2 = vh2 v

h
2 . The

same η-gap as in the event plane method was chosen
for the correlation analysis. The D0 background v2 is
calculated similarly, with the background represented
by the average of the like-sign Kπ pairs in the D0

mass window (±3σ, where σ is the signal width) and
side bands (4−9σ away from the D0 peak, both like-
sign and unlike-sign Kπ pairs). The background-hadron
cumulant is also shown in Fig. 2 (b) as open circles.
The D0 v2 is obtained from the candidate and back-
ground v2 and their respective yields (Ncand, Nbg) by

v2 = (Ncandv
cand
2 −Nbgv

bg
2 )/(Ncand −Nbg).

The systematic uncertainty is estimated by compar-
ing v2 obtained from the following different methods:
a) the fit vs. side-band methods, b) varying invariant
mass ranges for the fit and for the side bands, c) varying
geometric cuts so that the efficiency changes by ±50%
with respect to the nominal value. These three different
sources are varied independently to form multiple com-
binations. We then take the maximum difference from
these combinations and divide by

√
12 as one standard

deviation of the systematic uncertainty. The feed-down
contribution from B-meson decays to our measured D0

yield is estimated to be less than 4%. Compared to other
systematic uncertainties, this contribution is negligible
even in the extreme case that B-meson v2 is 0.

Figure 2 (c) shows the result of the D0 v2 in 0–80%
centrality Au+Au events as a function of pT. The re-
sults from the event plane and correlation methods are
consistent with each other within uncertainties. For fur-
ther discussion in this letter, we use v2 from the event
plane method only, which has been widely used in previ-
ous STAR identified particle v2 measurements [36, 37].

The residual non-flow contribution is estimated by
scaling the D0-hadron correlation (with the same η gap
used in the analysis) in p+p collisions, where only the
non-flow effects are present, by the average v2 (v2) and
multiplicity (M) of charged hadrons used for event plane
reconstruction or D0-hadron correlations in Au+Au col-
lisions. Thus the non-flow contribution is estimated to
be

〈

∑

i
cos 2(φD0 − φi)

〉

/Mv2 [38], where φD0 and φi

are the azimuthal angles for the D0 and hadron, respec-
tively. The

∑

i is done for charged tracks in the same
event, and 〈〉 is an average over all events. The D0-
hadron correlation in p+p collisions is deduced from D∗-
hadron correlations measured with data taken by STAR
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FIG. 3. (color online) (a) v2 as a function of pT and (b) v2/nq

as a function of (mT − m0)/nq for D0 in 10–40% centrality
Au+Au collisions compared with K0

S , Λ, and Ξ− [36]. The
vertical bars and brackets represent statistical and system-
atic uncertainties, and the grey bands represent the estimated
non-flow contribution.

in year 2012 for pT> 3 GeV/c and from a PYTHIA sim-
ulation for pT< 3 GeV/c. The correlations in p+p colli-
sions were used as a conservative estimate since the cor-
relation may be suppressed in Au+Au collisions due to
the hot medium effect. The estimated non-flow contri-
bution is shown separately (grey bands) along with the
systematic and statistical uncertainties in Figs. 3 and 4.

For cross check we performed a MC simulation using
the measured D0 v2 to calculate the single electron v2
and compare to previous RHIC measurements [14, 15].
Both the PHENIX and STAR measurements are com-
patible with the calculated electron v2 at pT < 3 GeV/c
where the charm hadron contribution dominates [39–41].
At higher pT region, where the bottom contribution is
sizable, the large uncertainty in the measurement of v2
of single electrons does not allow for a reasonable extrac-
tion of v2 for B-mesons.

Figure 3 compares the measured D0 v2 from the event
plane method in 10–40% centrality bin with v2 of K0

S ,
Λ, and Ξ− [36]. The comparison between D0 and light
hadrons needs to be done in a narrow centrality bin
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FIG. 4. (color online) v2 as a function of pT for D0 in 0–
80% centrality Au+Au collisions compared with model calcu-
lations [16–21, 45].

to avoid the bias caused by the fact that the D0 yield
scales with number of binary collisions while the yield of
light hadrons scales approximately with number of the
participants [42]. Panel (a) shows v2 as a function of
pT where a clear mass ordering for pT< 2 GeV/c includ-
ing D0 mesons is observed. For pT> 2 GeV/c, the D0

meson v2 follows that of other light mesons indicating
significant charm quark flow at RHIC [36, 37, 43]. Recent
ALICE measurements show that the D0 v2 is comparable
to that of charged hadrons in 0-50% Pb+Pb collisions at√
s
NN

= 2.76 TeV [13] suggesting sizable charm flow at
the LHC. Panel (b) shows v2/nq as a function of scaled
transverse kinetic energy, (mT−m0)/nq, where nq is the
number of constituent quarks in the hadron, m0 its mass,
and mT =

√

p2T + m2
0. We find that the D0 v2 falls into

the same universal trend as all other light hadrons [44], in
particular for (mT −m0)/nq < 1 GeV/c2. This suggests
that charm quarks have gained significant flow through
interactions with the sQGP medium in 10–40% Au+Au
collisions at

√
s
NN

= 200 GeV.

The heavy quark-medium interaction is often charac-
terized by a spatial diffusion coefficient Ds, or a dimen-
sionless coefficient 2πTDs, where T is the medium tem-
perature [5]. In Fig. 4, the measured D0 v2 in 0–80%
centrality collisions is compared with several model cal-
culations [16–21, 45]. Duke, LBT, PHSD, SUBATECH
models and TAMU model with charm quark diffusion
are able to describe our previously published D0 RAA

result [10, 16, 21]. Compared to the v2 measurement,
TAMU model with no charm quark diffusion does not
reproduce the data, while the same model with charm
quark diffusion turned on describes the data better [20].
A 3D viscous event-by-event hydrodynamic simulation
with η/s= 0.12 using the AMPT initial condition and
tuned to describe v2 for light hadrons, predicts D0 v2

that is consistent with our data for pT< 4 GeV/c [45].
This suggests that charm quarks have achieved thermal
equilibrium in these collisions. We performed a statisti-
cal significance test for the consistency between our data
and each model quantified by χ2/NDF and the p-value
listed in Table I. One can observe that the Duke model
and TAMU model with no charm quark diffusion are
inconsistent with our v2 data, while other models de-
scribe the v2 data in the measured pT region. These
models that can describe both the RAA and v2 data in-
clude the temperature–dependent charm diffusion coeffi-
cient 2πTDs in the range of ∼2–12. 2πTDs predicted by
lattice QCD calculations fall in the same range [46, 47].
In addition to the different treatments of the charm–
medium interactions, there are also various differences
among these models, e.g. the initial state, the space-time
description of the QGP evolution, the hadronization, and
the interactions in the hadronic matter. More coherent
model treatments of these aspects are needed in order
to better interpret the information about charm-medium
interaction, and provide a better constraint on 2πTDs

using our D0 v2 measurement.

TABLE I. D0 v2 in 0–80% centrality Au+Au collisions com-
pared with model calculations, quantified by χ2/NDF and the
p-value. 2πTDs values quoted are in the range of Tc to 2Tc.
χ2/NDF is calculated in the pT range wherever the model
calculation is available.

compare with 2πTDs χ2/NDF p-value
SUBATECH [17] 2−4 15.2 / 8 0.06
TAMU c quark diff. [20] 5−12 10.0 / 8 0.26
TAMU no c quark diff. [20] - 29.5 / 8 2× 10−4

Duke [19] 7 35.7 / 8 2× 10−5

LBT [21] 3−6 11.1 / 8 0.19
PHSD [16] 5−12 8.7 / 7 0.28
3D viscous hydro [45] - 3.6 / 6 0.73

In summary, the D0 v2 in Au+Au collisions at
√
s
NN

=
200 GeV has been measured with the STAR detector us-
ing the Heavy Flavor Tracker, a newly installed high–
resolution silicon detector. The measured D0 v2 fol-
lows the mass ordering at low pT observed earlier. The
v2/nq of D0 is consistent with that of other hadrons
at (mT − m0)/nq < 1 GeV/c2 in 10–40% centrality col-
lisions. A 3D viscous hydrodynamic model describes the
D0 v2 for pT < 4 GeV/c. Our results suggest that charm
quarks exhibit the same strong collective behavior as the
light hadrons and may be close to thermal equilibrium in
Au+Au collisions at

√
s
NN

= 200 GeV. Several theoreti-
cal calculations with temperature–dependent, dimension-
less charm quark spatial diffusion coefficients (2πTDs)
in the range of ∼2–12 can simultaneously reproduce our
D0 v2 result as well as the previously published STAR
measurement of the D0 nuclear modification factor. The
charm quark diffusion coefficients from lattice QCD cal-
culations are consistent with the same range [46, 47].
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