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It all started with the idea of self-seeding
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And, here at BNL : FEL @ eRHIC (circa 2010)

ERL linac I1
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‘ FEL,@ eRHIC

eRHIC is based on a multi-pass energy recovery linac whose top energy v
will be gradually increased from 5 GeV towards 30 GeV
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Think about future x-ray sources in terms of
spectral brightness, and a factor of 1000 gain
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LCLC turned on successfully in April 2009 at SLAC,
with extraordinary peak power as predicted
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A new vision for Linac Coherent Light Source (circa 2013)

e A

of e VN

 LCLS-Il project has been re-scoped to include a superconducting linac
to enable MHz repetition rate

« LCLS will be the x-ray free electron laser center of US, which will lead
to significant investment for future expansion, and great scientific
opportunities for SLAC and Stanford in the coming decades

\ .
.mm/‘llllllllllllll ‘|||||||||||||| \Eé%?aneeﬁi\Z?fd
VWW WUWW o, Lttty - LLLLLLT L LT | NS 0 all undulators
From
Linac

.
- —T
# 'f A E’ “q
) M
- ¥ ‘__.rh -
AT i

LCLS Today =  LCLS2020 ——  LCLS Future
Y e — Je ~— e




The first step is LCLS-II
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Get it done as fast as we can with a multi-lab partnership
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Soft X-ray  Experimental
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LCLS-Il is on track: project is ~85% complete
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RIXS is one of an the first instruments
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Chem-RIXS

Liquid jet
\ endstation

High resolution
qgRIXS
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gRIXS Emergent phenomena and Resonant inelastic X-ray scattering, 250 — 1600 eV,
collective modes in correlated Resonant diffraction >10'4 ph/s with
materials >30,000 resolving power
ChemRIXS Heterogeneous catalysis X-ray Absorption & Emission 250-1600 eV,
Interfacial chemistry Spectroscopy 2 100 kHz,
Photo-catalysis 1000-5000 res. power
gRIXS Nanoscale material dynamics XPCS 250 - 1600 eV
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A unique opportunity: transition edge sensor (TES)
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efficiency W LCLS-II
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- Broadband spectral - Improving the energy
coverage resolution (up to 0.5 eV)
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Success of LCLS has led to rapid growth in X-FELS

EuXFEL, Germany
X-ray Sources: 3 (5)

SACLA, Japan
X-ray Sources: 2 (3)

SCLF, China
X-ray Sources: 3

S ..

SwissFEL,
Switzerland
X-ray Sources: 2

PAL-FEL, Korea
X-ray Sources: 2



LCLS-Il HE (High Energy) project was proposed (circa 2016)
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Layout of LCLS-II HE allows great flexibility

LCLS-II-HE Layout
_ 3-8 GeV
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Instrument Upgrade includes Dynamic X-ray Scattering
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Parameter Value

10-19 keV (IXS)
4-22 keV (XPCS) (Higher energy range with harmonics)

Photon energy range

SASE, C* (111) or C* (333) mono

AE/E
/ < 10°® with high resolution mono

100 kHz to 1 MHz (IXS)

Repetition rate
£ Single pulse to >50 kHz (XPCS, detector limited)

X-ray spot size 1-500 pum

Detector arm 8 m between 0 and 55° (shorter arm for larger angle)

IXS energy resolution  3-5 meV (dependent on photon energy)

Major Modifications for LCLS-II-HE

«  New high resolution monochromator (in-line) Optical laser 100 kHz, 1 mJ, OPCPA system with wavelength conversion

* Augment existing detector arm with inelastic
scattering spectrometer

e High repetition rate detector

Temporal resolution 0.2 fs to 2 ps dependent on mode of operation

Primary X-ray Inelastic X-ray scattering

techniques X-ray photon correlation spectroscopy

Science Opportunities

* Map collective excitations & understand their relation to emergent phenomena in complex materials
* Characterize materials heterogeneity, fluctuations & link to function

* High repetition rate high resolution scattering: IXS & XPCS

DXS optimized for <13 keV and capable of operating up to 19 keV -




High energy-resolution photon numbers at LCLS-II-HE

 Unmatched performance from an X-ray laser (ph/s/meV)
» High spectral resolution (ph/s/meV) — far beyond DLSRs
» Time-resolution near the FT limit (200 fs < 10 meV)

Hard x-ray flux on sample per meV

LCLS-II-HE (seeded) ~1014 ph/s

LCLS-II-HE (sAsE) ~10%3 ph/s

Spring-8 ~10 ph/s (BL43)

ESRF ~101° ph/s (ID16, 1D28)

APS ~10%° ph/s (27-1D, 30ID)
~10° ph/s (UHRIXS)

NSLS-II ~10%° ph/s (10-ID)

» Lower peak power (1 MHz CW) vs. EuUXFEL (~30 kHz burst mode)
e 1 ps between pulses @ LCLS-II-HE vs. 200 ns bursts @ EuXFEL
« Approximately x10 more integrated flux (key parameter for 1XS)
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LCLS-II-HE received CD-1 in September 2018
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Accelerator and FEL Design

Cryomodule and accelerator installation

Cryoplant modifications & Helium distribution installation
High Power RF, low-level RF, and Controls

X-ray instruments design & installation

High QO & High Gradient R&D

Cryomodule design and prototype demonstration
50% of cryomodule production

Processing for high Q

Helium distribution system design and procurement

High QO & High Gradient R&D
50% of cryomodule production
Processing for high Q

High QO & High Gradient R&D

Accelerator Physics
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https://www.jlab.org/

Develop high-brightness source is key to get to
high x-ray energy

100

LCLS-II-HE HXR/SC-Linac

101 -

X-Ray Pulse Energy (mJ)

SRF Gun

High-brightness source R&D research
program:

e Cathode R&D

- Visible light cathode growth and
characterization system for LCLS-II and
beyond

e Continuous Wave R&D

- High-gradient CW SRF guns
for future FELs, UED/UEM
and colliders

e FEL R&D

- Detailed simulations of an SRF
gun/injector for
a new higher brightness system



Types of IXS spectrometers under consideration (Yavas)

N Monochromator
kia ('Ol

Existing
v capability

Existing capability
kReady for LCLS-II-HE

von Hamos
for core-level excitations
Resolution (~100 meV) is limited
by the analyzer geometry

o1 AL
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iIspersive Johann
esolution (1-100 meV)

Option for RIXS and NIXS
Mature monochromator technology

J

Heat-load issue is known, analyzer needs R&D

4 )

Post-sample-collimation

Resolution (1-10 meV)
or potentially better

Option for RIXS and NIXS

.>°New technology

" Both monochromator and analyzer
L require R&R)




One possible implementation of post-sample-
collimation (Baron)

Area Detector

Back Reflection ‘
or Area Detector

v Back-Reflection

*4. -------------- (QS..)

Sample Paraboloidal
Mirror

Flat Analyzers Near Backscattering:
Both RIXS (10+ meV) and NRIXS (1.2+ meV, maybe)
Double Bounce Possible -> Good Tails (1/E%)
Easy to change crystals (and therefore resolution and operating energy)

Mostly relaxed angular tolerances (~0.1 mrad mostiy\ enough).
Within limits: “free” Q resolution from area detector]
[Easier collimating elements (& thicker Samples)]
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LCLS-Il HE enables optical cavity-based XFELSs to
produce longitudinal coherent x-rays (Marcus et al;
SLAC/ANL collaboration)

X-ray free electron laser oscillator (XFELO) [Kim et al]
and X-ray regenerative amplifier free-electron laser
(XRAFEL) [Huang et al]
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High-repetition-Rate

« ~10 msec
LCLS "J t' ~1-100 fs Jl ~rr|J:pulse
// 0.1% BW
< ~100 msec
— < 200 nsec
EuXFEL - |« 600 psec ~1-100 fs » < ~mJipulse
JIAAAA JAALL oraw

LCLSl — — %"

HE) AAAANNAAARNMNN oo

— <« ~NsecC —>
DLSRs Auuuuuuuuuumm

~100 ps ~nJ/pulse
MMMMMMMMMMMML ~1%BW

Pulse structure from LCLS warm Cu-linac at 120 Hz, burst-mode
structure from the pulsed SCRF linac of the European XFEL at 5

MHz/10Hz, and the uniform (programmable) bunch structure from the

CW-SCREF linac of LCLS-II-HE.
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XFEL based IXS demonstration
tr-RIXS Studies of Photo-dissociation
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Wernet et al., Nature (2015)

With the dramatic increase in average brightness at LCLS-II, high-resolution RIXS
with femtosecond resolution will be used to map how frontier orbital energies
drive charge separation and transfer in complex functioning systems. 23



XFEL based IXS demonstration
Spin Dynamics on Sr,IrO,

o1 Any
o b MV
tr-RIXS probes the magnetic quasiparticle spectrum. Q= (r m)
a g Magnetic Bragg peak Magne_tic ¥ Equil.
R s - excitation § 2 ps
Time delay st s b .
#‘: L. | Spln-OI’bIt
oA . exciton mode

Time
delay

= ‘W{k tr-RIXS
c ” 7"

Energy loss
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o 500 1,000

Dean et al., Nature Mat. (2016) 4,,%%@\»;‘*‘ & Energy loss (meV)
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* Such Q-space resolution is not available in the % Equil
complementary technique of time-resolved two- I : zfpl:az ;
A ps

magnon Raman scattering, owing to the fact that
visible photons carry negligible momentum.

* This research breaks new ground by energy

analyzing the scattered X-rays, that is, by performing | i e ]
the first ever time-resolved (tr) magnetic resonant 2 s00 1,000
Energy loss (meV) 24

inelastic X-ray scattering (RIXS) experiment.



XFEL based IXS demonstration
Investigating Spin-state under Extreme-condition
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Molecular structure of Mn(taa)

Mn Motivation:
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By using synchronizing a high magnetic pulse and x-ray pulse, the spin transition
(LS = HS), its mechanism “dynamic Jahn-Teller distortion” were directly observed.”



XFEL based IXS demonstration
Phonon spectroscopy by Fourier-Transform IXS

Fourier Transform (FT) Inelastic X-ray Scattering at FELSs
! oA |7 e

Trigo et al., Nat. Physics 9, 790 (2013).

- Pump

s |
‘iii_i:iﬁ. g X-ray |
‘iﬁﬁiﬁ \;g?c\)-be

2D detector

The time-domain measurements are a
direct way to follow the excitations of solids
and the flow of energy well away from their
“*home” positions and ground state.

This x-ray scattering technique allows us
to track the motion of atoms as they
respond to sudden changes in their
energy state.

Fhonon trequency ( 1Hz)




Summary
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* |XS has come a long way
It benefits and pushes the state-of-art accelerator,
Instrumentation, and theory

e The technigue has brought spectroscopy, scattering and
now ultra-fast and accelerator community together

* The next decade is going to be even more exciting as
DLSR and high rep. rate FELs come online
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X-ray Raman Scattering & (Resonant) IXS

SLAE
XRS*  Core-level excitations 6000 — 13000 ~500 meV Y Ciﬁ;girl‘i?y
RIXS**  Charge, orbital & spin excitations 7000 — 12000 <10 — 100 meV New
NIXS***  Lattice excitations 9000 — 25000 1 — 6 meV >De"e'°pme”t

* SSRL, APS, ESRF, Spring8, PETRA-III, Soleil
** APS, ESRF, Spring8
* APS, ESRF, NSLS-II, Spring8 G

25.7 ke —e=—
e 21.7 ke ——
15.8 keV
9.1 keV

Motivation for higher energy photons

For non-resonant scattering, C;é TRV
a typical high-Z material would yield “@
x4 less signal at 12 keV compared to 20 keV &

. . . 0.01 ¢
(identical number of photons & resolution) :

0.001

. 0 20 40 60 80 100
LCLS-II-HE parameters can make it up Atomic Number (Z)
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Selection of experimental tools
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Physical/Chemical properties
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Inelastic x-ray scattering is the ideal tool for

exploring many exotic properties in materials.
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Inelastic x-ray scattering (IXS): Scientific Information

e« Atomic Dynamics
=>» Monitoring phenomena of phonons in a solid (or liquid)

Advantage in A high resolution: Choose
Non-resonant energy to match optics

 Electronic Dynamics
=>» Monitoring phenomena of electron transition (excitations)

Advantage in  Tunable an atomic transition energy
Resonant (absorption edges)
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X-ray sources

Ultimate Storage ring (USR)
High-repetition/gain FEL (e.g. LCLS-II)
etc

.Future

® Present
Synchrotron x-ray
X-ray free electron laser (XFEL)

® Past

Storage ring based x-ray
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X-ray sources for IXS

e An

o e

High-repetition/gain FEL (e.g. LCLS-II)

Future
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XFEL based IXS demonstration
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perturbation via the pump

pulse
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Chen et al., PRB 99, 104306 (2019)

(R)IXS
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Initial State
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Non-equilibrium physics in Wik L
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e . —0 . ' tte
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Benefit of soft x-ray

N
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B
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Although the finite momentum transfer could be an issue, due to their
advantage, it can be helpful in exploring the dispersion of excitations;

Energy range Resolving power for Advantage Disadvantage
10 meV

500 ~ 1000 eV 1 keV/10 meV = 10° -Large AQ -Large machine
-Small elastic peak -Lower throughput
on resonance -expansive
-Fewer branching
(multiplets)
M 50 ~ 100 eV 100 eV/10 meV = 104 -Small AQ -Strong elastic peak
-Smaller machine -Complex branching
-High throughput
i 400
Huge advantage in R XAS Lco (b) E
High-Tc Cuprates S5 20 T Cul, T=15K - 1300
g q,~ +1.885 ] s
: < 030 o3 | 1200 E
e_'g" Slngle magnon % 10 | Photon energy (eV) o N N =
dispersion probed by 5 S o, 1100 @
IXS and neutron £ 1 5 %\ ; - ] w
S wj/ / A ;] 0
g 0 L : : L l L L _I | IIII-

1 O-O 1
Energy loss (eV)

—
o
o
o

Braicovich et al., PRL (2010)




Plan for soft x-ray instrumentation
High-resolution tr-RIXS setup

High-resolution RIXS setup at soft x-ray
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Plan for hard x-ray instrumentation
Medium energy resolution (short term)

An IXS instrument that can be utilized for

Ir L, edge (Resonant): (4 meV is available today)

* 90 degrees scattering angle for polarization
Non-resonant IXS for phonons:

e 1-3 meV overall resolution

 Up to ~135 degrees two-theta

* No polarization flip

11.2 keV, FT-limited matching energy-resolution pulses

Small pixel size detectors (<25 micron approaching 1 micron)

Integrated sample environment (Low Temperature, Magnetic
field, diamond anvil cell, etc.)

39



Plan for hard x-ray instrumentation
Medium energy resolution (short term)

Instrumentation home: XCS hutch (tentative)




Beyond LCLS-II HE

N
r=

Optical cavity-based X-ray free electron laser

TDUND

<4——— Thermal barrier between BTH and UH

B

7 HXR undulators within the optical cavity

Chicane and optics

Figure 1.1: Preliminary model of a potential rectangular X-ray cavity in the LCLS-II undulator
hall. BTH — Beam transport hall. UH — Undulator hall. TDUND — Undulator tune-up dump.
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Beyond LCLS-Il HE: Regenerative
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: Optical cavity-based X-ray free electron laser

. 1015

—Avg SASE x 100

Extremely narrow and stable - L AAFEL it taper, puteongied”

co

spectral bandwidths that can be 7|

as small as a few meV =

Push the average brightness of £

this source ~ orders of il

magnitude higher than that of ! A
SASE at LCLS-II/-HE

0 — 1
9780 9790 9800 9810 9820
Eﬂh [eV]

Figure 3.2: LCLS-1I-HE spectral comparison at
a 9.8 keV photon energy using a 100 pC electron

Being complementary to the

ultrafast tempora| CapabilitieS beam for tapered SASE x 100 (red — individual
i shots, blue - average), XRAFEL at saturation
and hlgh temporal phOtOn (vellow) and tapered XRAFEL (purple). The
denS|ty peak spectral brightness of saturated (tapered)
XRAFEL is 75 (550) times larger than average
SASE.
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Beyond LCLS-II HE

N
"
&

Optical cavity-based X-ray free electron laser

Since this proposed new source is possible to deliver X-rays with high
peak power at high repetition rate, as well as high coherence, it could
directly affect IXS’s instrumental/experimetnal limits.

LCLS-II
' baseline

Proposed
i Configuration

Figure 6.7: Top — The LCLS-II HXR undulator configuration. From left to vight: TDUND, 7 HXR undulators, empty section for
2-stage hard X-ray self-seeding, following undulators. Bottom — Preliminary mockup of the proposed HXR undulator

configuration including the rectangular X-ray optical cavity (sans in-situ diagnostic line). From left to right: TDUND, chicane
and optics chamber, 7 HXR undulators, chicane and optics chamber. The red line illustrates the X-ray cavity return line. 43



Summary
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