11th International Conference on Inelastic X-ray Scattering (IXS2019)

IXS Opportunities offered by High Repetition Rate X-ray Free Electron Lasers high

Chi-Chang Kao June 28th, 2019**x**O

e Roa

It all started with the idea of self-seeding

And, here at BNL : FEL @ eRHIC (circa 2010)

Think about future x-ray sources in terms of spectral brightness, and a factor of 1000 gain

LCLC turned on successfully in April 2009 at SLAC, with extraordinary peak power as predicted

A new vision for Linac Coherent Light Source (circa 2013)

- LCLS-II project has been re-scoped to include a superconducting linac to enable MHz repetition rate
- LCLS will be the x-ray free electron laser center of US, which will lead to significant investment for future expansion, and great scientific opportunities for SLAC and Stanford in the coming decades

The first step is LCLS-II

	Now	HXU - Cu	SXU – Cu	HXU - SC	SXU - SC
Photon Energy Range (keV)	0.25 -12.8	1 - 25	0.25 - 6	1 - 5	0.25 - 1.6
Repetition Rate (Hz)	120	120	120	929,000	929,000
Per Pulse Energy (mJ)	~ 4	~ 4	~ 8	~ 0.2	~ 1
Photons/Second	~ 10 ¹⁴	~ 10 ¹⁴	~ 10 ¹⁴	~ 10 ¹⁶	~ 10 ¹⁷

Get it done as fast as we can with a multi-lab partnership

LCLS-II is on track: project is ~85% complete

RIXS is one of an the first instruments

Endstation	Science	Methods	XFEL
qRIXS	Emergent phenomena and collective modes in correlated materials	Resonant inelastic X-ray scattering, Resonant diffraction	250 – 1600 eV, >10 ¹⁴ ph/s with >30,000 resolving power
ChemRIXS	Heterogeneous catalysis Interfacial chemistry Photo-catalysis	X-ray Absorption & Emission Spectroscopy	250-1600 eV, ≥ 100 kHz, 1000-5000 res. power
qRIXS	Nanoscale material dynamics	XPCS	250 – 1600 eV

A unique opportunity: transition edge sensor (TES)

Success of LCLS has led to rapid growth in X-FELs

SwissFEL, Switzerland X-ray Sources: 2

PAL-FEL, Korea X-ray Sources: 2

LCLS-II HE (High Energy) project was proposed (circa 2016)

Layout of LCLS-II HE allows great flexibility

LCLS-II-HE Layout 3-8 GeV 3-8 GeV 3-8 GeV 3-8 GeV 3-8 GeV 3-15 GeV Cu-Linac: LCLS Sec. 11-20 Linac 3-8 GeV Sec. 21-30 Linac 3-8 GeV HXU 3-8 GeV, 3-15 GeV 1-1 2- SCRF L3-SCRF L4

Plus: existing Cu-Linac can deliver high pulse energy at 120 Hz (to 25 keV)

SLAC

14

Instrument Upgrade includes Dynamic X-ray Scattering

Major Modifications for LCLS-II-HE

- New high resolution monochromator (in-line)
- Augment existing detector arm with inelastic scattering spectrometer
- High repetition rate detector

Parameter	Value
Photon energy range	10-19 keV (IXS) 4-22 keV (XPCS) (Higher energy range with harmonics)
ΔΕ / Ε	SASE, C* (111) or C* (333) mono < 10 ⁻⁶ with high resolution mono
Repetition rate	100 kHz to 1 MHz (IXS) Single pulse to >50 kHz (XPCS, detector limited)
X-ray spot size	1-500 μm
Detector arm	8 m between 0 and 55 $^\circ$ (shorter arm for larger angle)
IXS energy resolution	3-5 meV (dependent on photon energy)
Optical laser	100 kHz, 1 mJ, OPCPA system with wavelength conversion
Temporal resolution	0.2 fs to 2 ps dependent on mode of operation
Primary X-ray techniques	Inelastic X-ray scattering X-ray photon correlation spectroscopy

Science Opportunities

- Map collective excitations & understand their relation to emergent phenomena in complex materials
- Characterize materials heterogeneity, fluctuations & link to function
- High repetition rate high resolution scattering: IXS & XPCS

DXS optimized for <13 keV and capable of operating up to 19 keV

High energy-resolution photon numbers at LCLS-II-HE

- Unmatched performance from an X-ray laser (ph/s/meV)
- High spectral resolution (ph/s/meV) far beyond DLSRs
- Time-resolution near the FT limit (200 fs ⇔ 10 meV)

Resolution	Hard x-ray flux on sample per meV
LCLS-II-HE (seeded)	~10 ¹⁴ ph/s
LCLS-II-HE (SASE)	~10 ¹³ ph/s
Spring-8	~10 ¹¹ ph/s (BL43)
ESRF	~10 ¹⁰ ph/s (ID16, ID28)
APS	~10 ¹⁰ ph/s (27-ID, 30ID) ~10 ⁹ ph/s (UHRIXS)
NSLS-II	~10 ¹⁰ ph/s (10-ID)

- Lower peak power (1 MHz CW) vs. EuXFEL (~30 kHz burst mode)
 - 1 µs between pulses @ LCLS-II-HE vs. 200 ns bursts @ EuXFEL
 - Approximately x10 more integrated flux (key parameter for IXS)

LCLS-II-HE received CD-1 in September 2018

Develop high-brightness source is key to get to high x-ray energy

Photon Energy (keV)

High-brightness source R&D research program:

Cathode R&D

 Visible light cathode growth and characterization system for LCLS-II and beyond

SLAC

- Continuous Wave R&D
 - High-gradient CW SRF guns for future FELs, UED/UEM and colliders

• FEL R&D

 Detailed simulations of an SRF gun/injector for a new higher brightness system

Types of IXS spectrometers under consideration (Yavas)

One possible implementation of post-samplecollimation (Baron)

Flat Analyzers Near Backscattering:

Both RIXS (10+ meV) and NRIXS (1.2+ meV, maybe)

Double Bounce Possible -> Good Tails $(1/E^4)$

Easy to change crystals (and therefore resolution and operating energy)

Mostly relaxed angular tolerances (~0.1 mrad mostly\ enough).

Within limits: "free" Q resolution from area detector]

[Easier collimating elements (& thicker Samples)]

LCLS-II HE enables optical cavity-based XFELs to produce longitudinal coherent x-rays (Marcus et al; SLAC/ANL collaboration)

X-ray free electron laser oscillator (XFELO) [Kim et al] and *X-ray regenerative amplifier free-electron laser* (XRAFEL) [Huang et al]

High-repetition-Rate

SLAC

Pulse structure from LCLS warm Cu-linac at 120 Hz, burst-mode structure from the pulsed SCRF linac of the European XFEL at 5 MHz/10Hz, and the uniform (programmable) bunch structure from the CW-SCRF linac of LCLS-II-HE.

XFEL based IXS demonstration tr-RIXS Studies of Photo-dissociation

Valence orbital structure

SLAC

Orbital Mapping of Femtosecond Photochemistry

With the dramatic increase in average brightness at LCLS-II, high-resolution RIXS with femtosecond resolution will be used to map how frontier orbital energies drive charge separation and transfer in complex functioning systems. 23

XFEL based IXS demonstration Spin Dynamics on Sr₂IrO₄

tr-RIXS probes the magnetic quasiparticle spectrum.

- Such **Q**-space resolution is not available in the complementary technique of time-resolved twomagnon Raman scattering, owing to the fact that visible photons carry negligible momentum.
- This research breaks new ground by energy analyzing the scattered X-rays, that is, by performing the first ever time-resolved (tr) magnetic resonant inelastic X-ray scattering (RIXS) experiment.

SLAC

24

XFEL based IXS demonstration Investigating Spin-state under Extreme-condition

By using synchronizing a high magnetic pulse and x-ray pulse, the spin transition (LS \rightarrow HS), its mechanism "dynamic Jahn-Teller distortion" were directly observed.²⁵

XFEL based IXS demonstration Phonon spectroscopy by Fourier-Transform IXS

The time-domain measurements are a direct way to follow the excitations of solids and the flow of energy well away from their "home" positions and ground state.

This x-ray scattering technique allows us to track the motion of atoms as they respond to sudden changes in their energy state.

SLAC

Fourier Transform (FT) Inelastic X-ray Scattering at FELs

Summary

- IXS has come a long way
- It benefits and pushes the state-of-art accelerator, instrumentation, and theory
- The technique has brought spectroscopy, scattering and now ultra-fast and accelerator community together
- The next decade is going to be even more exciting as DLSR and high rep. rate FELs come online

Acknowledgement

SLAC: Jun-Sik Lee Hasan Yavas **Bob Schoenlein** Georgi Dakovski **Greg Hays Gabriel Marcus** Zirong Huang

SPring-8/RIKEN: Alfred Baron

Insert Presentation Title in Slide Master

X-ray Raman Scattering & (Resonant) IXS

Method **Applications** Energy (eV) Resolution Existing XRS* Core-level excitations 6000 - 13000~500 meV \sim capability RIXS** Charge, orbital & spin excitations 7000 - 12000 <10 - 100 meV New **Development** NIXS*** Lattice excitations 9000 - 250001-6 meV

* SSRL, APS, ESRF, Spring8, PETRA-III, Soleil ** APS, ESRF, Spring8 *** APS, ESRF, NSLS-II, Spring8

Motivation for higher energy photons

For non-resonant scattering, a typical high-Z material would yield x4 less signal at 12 keV compared to 20 keV (identical number of photons & resolution)

LCLS-II-HE parameters can make it up

Selection of experimental tools

Figures' courtesy of Yi-De Chuang

Inelastic x-ray scattering is the ideal tool for exploring many exotic properties in materials.

Inelastic x-ray scattering (IXS): Scientific Information

- Atomic Dynamics
- → Monitoring phenomena of phonons in a solid (or liquid)

Advantage in Non-resonant

A high resolution: Choose energy to match optics

- Electronic Dynamics
- → Monitoring phenomena of electron transition (excitations)

Advantage in *Resonant*

Tunable an atomic transition energy (absorption edges)

X-ray sources

X-ray sources for IXS

XFEL based IXS demonstration

SLAC

Although the finite momentum transfer could be an issue, due to their advantage, it can be helpful in exploring the dispersion of excitations;

edge	Energy range	Resolving power for 10 meV	Advantage	Disadvantage
L	500 ~ 1000 eV	1 keV/10 meV = 10 ⁵	-Large ΔQ -Small elastic peak on resonance -Fewer branching (multiplets)	-Large machine -Lower throughput -expansive
М	50 ~ 100 eV	100 eV/10 meV = 10 ⁴	-Small ∆Q -Smaller machine -High throughput	-Strong elastic peak -Complex branching

Huge advantage in High-Tc Cuprates

e.g., Single magnon dispersion probed by IXS and neutron

Braicovich et al., PRL (2010)

Plan for soft x-ray instrumentation High-resolution tr-RIXS setup

Plan for hard x-ray instrumentation Medium energy resolution (short term)

• An IXS instrument that can be utilized for

Ir L_3 edge (Resonant): (4 meV is available today)

- 90 degrees scattering angle for polarization Non-resonant IXS for phonons:
 - 1-3 meV overall resolution
 - Up to ~135 degrees two-theta
 - No polarization flip
- 11.2 keV, FT-limited matching energy-resolution pulses
- Small pixel size detectors (<25 micron approaching 1 micron)
- Integrated sample environment (Low Temperature, Magnetic field, diamond anvil cell, etc.)

Plan for hard x-ray instrumentation Medium energy resolution (short term)

Instrumentation home: XCS hutch (tentative)

SLAC

Optical cavity-based X-ray free electron laser

Figure 1.1: Preliminary model of a potential rectangular X-ray cavity in the LCLS-II undulator hall. BTH – Beam transport hall. UH – Undulator hall. TDUND – Undulator tune-up dump.

: Optical cavity-based X-ray free electron laser

- Extremely narrow and stable spectral bandwidths that can be as small as a few meV
- Push the average brightness of this source ~ orders of magnitude higher than that of SASE at LCLS-II/-HE
- Being complementary to the ultrafast temporal capabilities and high temporal photon density

Figure 1.1: Preliminary model of a potential rectang hall. BTH – Beam transport hall. UH – Undulator 1

Figure 3.2: LCLS-II-HE spectral comparison at a 9.8 keV photon energy using a 100 pC electron beam for tapered SASE x 100 (red – individual shots, blue - average), XRAFEL at saturation (yellow) and tapered XRAFEL (purple). The peak spectral brightness of saturated (tapered) XRAFEL is 75 (550) times larger than average SASE.

SLAC

Optical cavity-based X-ray free electron laser

Since this proposed new source is possible to deliver X-rays with high peak power at high repetition rate, as well as high coherence, it could directly affect IXS's instrumental/experimetnal limits.

Figure 6.7: Top – The LCLS-II HXR undulator configuration. From left to right: TDUND, 7 HXR undulators, empty section for 2-stage hard X-ray self-seeding, following undulators. Bottom – Preliminary mockup of the proposed HXR undulator configuration including the rectangular X-ray optical cavity (sans in-situ diagnostic line). From left to right: TDUND, chicane and optics chamber, 7 HXR undulators, chicane and optics chamber. The red line illustrates the X-ray cavity return line.

NOTE: Please put your summary/message after finalizing your slide.