


# First-principles modeling of RIXS in liquid water:

Core-excited nuclear dynamics and the distribution of local potential energy surfaces



Vinícius Vaz da Cruz

University of Potsdam

The 11<sup>th</sup> International Conference on Inelastic X-ray Scattering Stony Brook, 24<sup>th</sup> of June of 2019



## Acknowledgments

#### Theory



Rafael Carvalho Couto Victor Kimberg Faris Gel'mukhanov



**Emelie Ertan** Michael Odelius

Calculations run on resources from The Swedish National Infrastructure for Computing (SNIC)







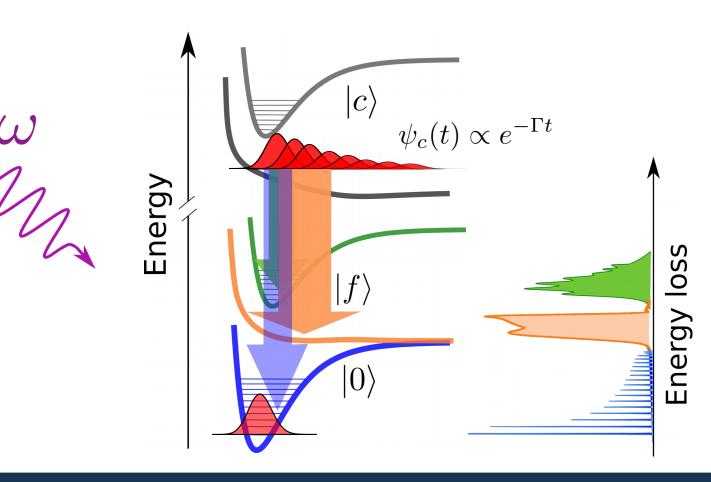
#### **Experiment**

Zentrum Berlin Mattis Fondell Brian O'Cinneide Annette Pietzsch Johannes Niskanen Raphael Jay Alexander Föhlisch



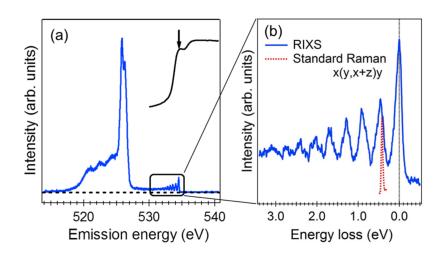
Marcus Dantz Xingye Lu Daniel McNally Thorsten Schmitt

Measurements done at the ADDRESS Beamline at PSI




## **Outline**

- Introduction.
- Theoretical Model.
- Core-excited dynamics in liquid water.
- Vibrational RIXS and HB strength in water.
- The splitting of the 1b₁ resonance.
- Summary.



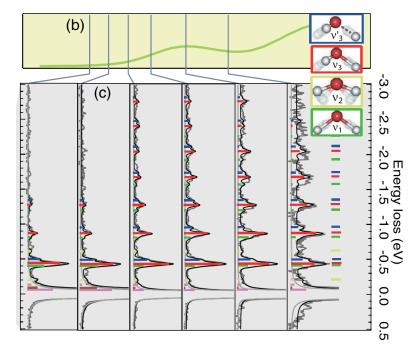

## **Schematic description of RIXS**





#### **Earliest measurements of water**

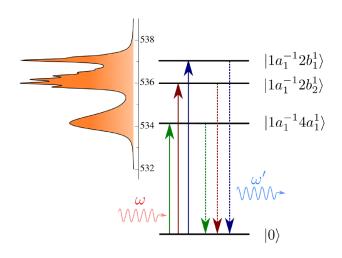



Harada et al. Phys. Rev. Lett., 111,193001 (2013).

- "The monotonic reduction of the energy separation between the various overtones can be explained by assuming a simple Morse function for the ground state potential surface."
- "For H2O and D2O v<sub>0→1</sub> coincides closely with the energy of the stretching vibrational mode of gas-phase water rather than that of liquid water, clearly indicating the contribution to the XAS preedge peak of molecules with a highly weakened or broken donating H-bond."

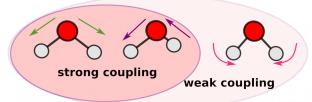


#### **Earliest measurements of water**

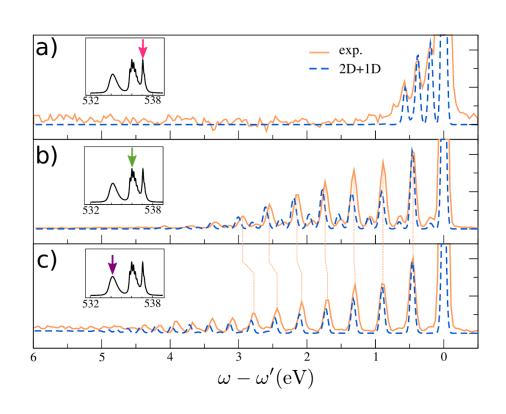

- "The profile of the vibrational peaks gets broader with larger energy loss."
- "The peak maximum positions, however, correspond to those of the asymmetric stretch mode of liquid water"
- "... we observe the presence of an additional mode which we assign to H-O---H molecules where one OH bond has lost its covalency due to bond elongation."



Pietzsch et al. Phys. Rev. Lett., 114, 88302 (2015).




### Gas-phase data weighs in!




#### **Nuclear degrees of freedom**

$$\omega_s = 0.453 \text{ eV}$$
  $\omega_a = 0.466 \text{ eV}$   $\omega_b = 0.198 \text{ eV}$ 



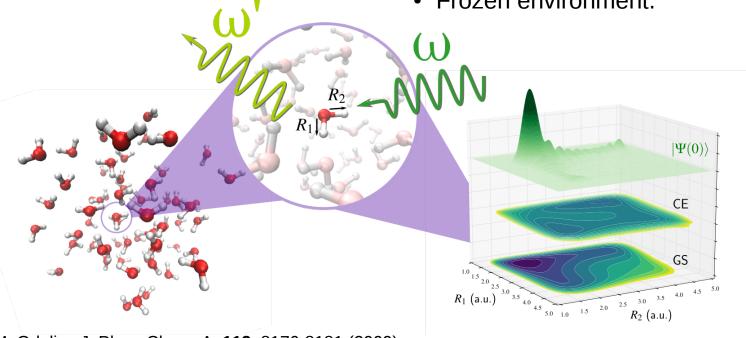
#### **RASPT2** potential energy surfaces 2D+1D Quantum wave packet model



V. Vaz da Cruz et al PCCP 19, 19573 (2017). R.C. Couto et al Nature Communications, 8, 14165 (2017)



## Main questions for the theory


- 1. Does O1s pre-edge RIXS probe **only** a sub-set of molecules with **weak/broken hydrogen bonds**?
- 2. Can the vibrational progression in liquid water be explained by a simple **Morse potential**, a **normal-mode** fit, or even a **gas-phase** model?
- 3. Is the associated channel to the **1b**<sub>1</sub> **electronic state** a reliable probe of **local structure** and **hydrogen bonding**?



### **Proposed Model of Bulk Liquid Water**

- Ab-initio molecular dynamics.<sup>a)</sup>
  - CPMD package.
  - DFT/BLYP (plane waves).
  - 64-molecule cluster with PBC.

- Quantum wave packet dynamics
  - eSPec code (developed by us).
  - 1D potential scans along each bond.
  - DFT potentials.
  - XCH transition dipole moments.
  - Frozen environment.



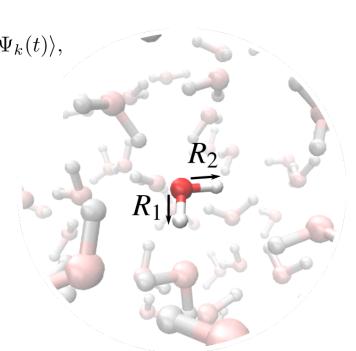
a) Similar to: M. Odelius J. Phys. Chem. A, 113, 8176-8181 (2009)



### **Details of the Quantum Model**

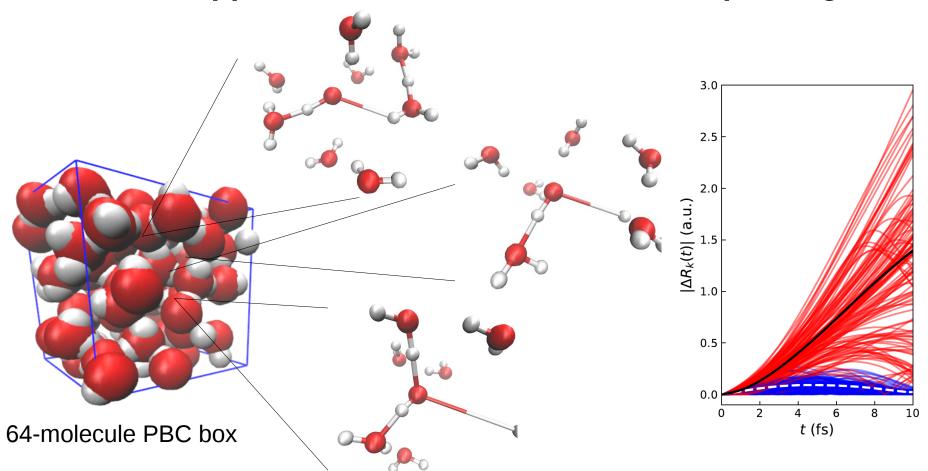
#### Hamiltonian:

$$h^k = -\frac{1}{2\mu} \frac{\partial^2}{\partial R_1^2} - \frac{1}{2\mu} \frac{\partial^2}{\partial R_2^2} - \frac{\cos \theta_{eq}}{m_O} \frac{\partial^2}{\partial R_1 R_2} + V_k(R_1, R_2, \theta_{eq}),$$


$$V_k(R_1, R_2, \theta_{eq}) = V_k(R_1, R_{eq}, \theta_{eq}) + V_k(R_{eq}, R_2, \theta_{eq}) - V_k(R_{eq}, R_{eq}, \theta_{eq}),$$

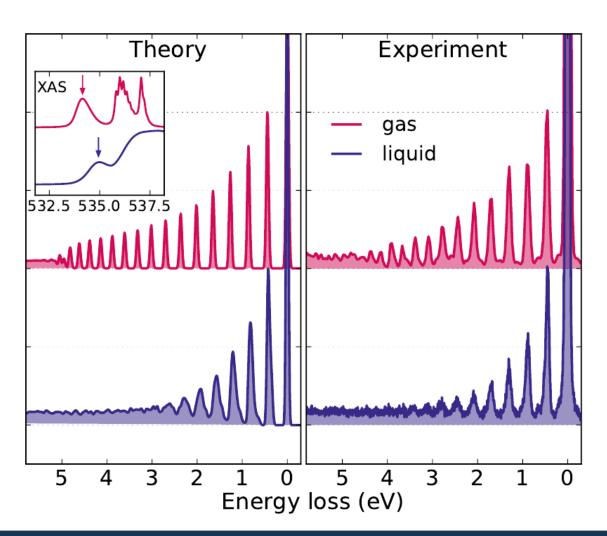
#### **Individual cross-sections:**

$$\sigma_k(\omega, \omega') = \frac{1}{\pi} \operatorname{Re} \int_0^\infty dt \ e^{i(\omega - \omega' - \omega_{f0}^k + \epsilon_0^k + i\Gamma)t} \langle \Psi_k(0) | \Psi_k(t) \rangle,$$
$$|\Psi_k(0)\rangle = \int_0^\infty dt \ e^{i(\omega - \omega_{i0}^k + \epsilon_0^k + i\Gamma)t} |\psi_k(t)\rangle,$$
$$|\psi_k(t)\rangle = e^{-ih_i^k t} |0_k\rangle, \quad |\Psi_k(t)\rangle = e^{-ih_f^k t} |\Psi_k(0)\rangle$$


#### **Liquid phase cross-section**

$$\sigma_{liq}(\omega',\omega) \approx \overline{\sigma}(\omega',\omega) = \sum_{k=0}^{64} (d_{i,0}^k)^2 (d_{f,i}^k)^2 \sigma_k(\omega',\omega)$$

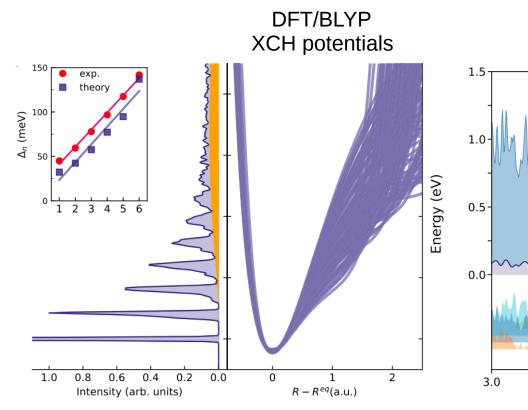





## What happens upon excitation at the O1s pre-edge?






## Calculated RIXS spectra for gas and liquid

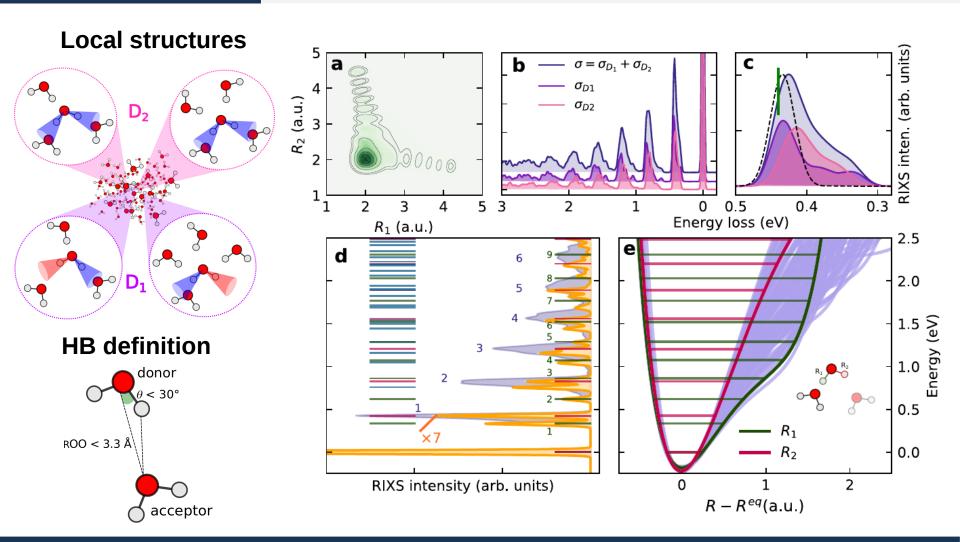


- Gas and Liquid phase have similar peak positions.
- Shortening of the vibrational progression in the liquid and formation of a background in the > 3 eV region.



## Formation of the smooth background



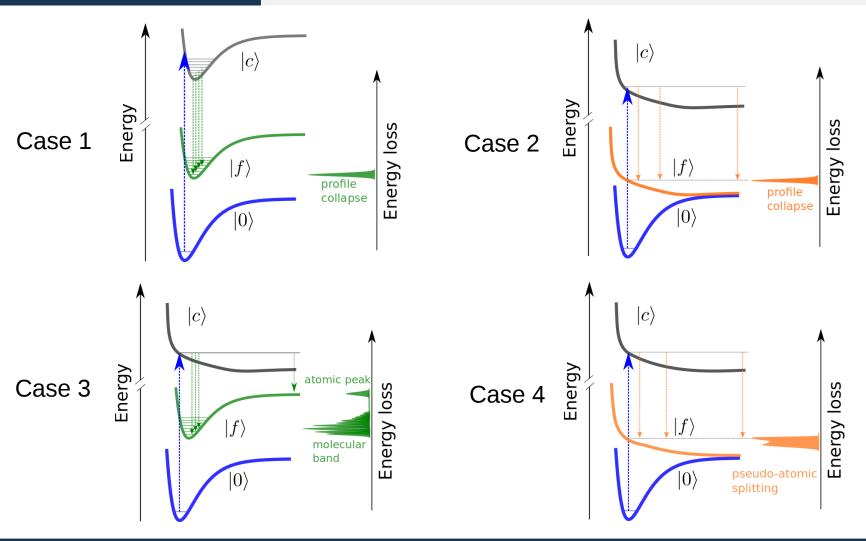

 $\rho_m(\epsilon) = \sum_{k=1}^{3} \sum_{n_1 + n_2 = m} \Phi(\epsilon - \epsilon_{n_1, n_2}^k + \epsilon_{0, 0}^k)$ Intensity (arb. units)  $\rho_{10}$ 2.5 2.0 1.5 1.0 0.5 0.0 Energy loss (eV)

Peak width increases High energy part is smeared out

Strong overlap between the partial densities of states

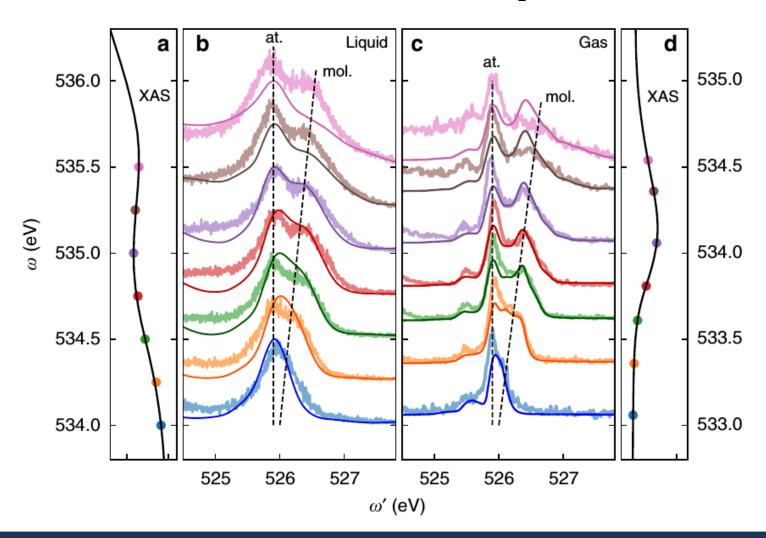


## Role of inequivalent bonds






## The 1b<sub>1</sub> splitting at the pre-edge




## **Atomic peaks revisited**





## The emergence of the 1b<sub>1</sub> split-peak





## For more details on the split peak and the structure of water...



# Compatibility of quantitative X-ray spectroscopy with continuous distribution models of water at ambient conditions

Johannes Niskanen<sup>a,b</sup>, Mattis Fondell<sup>a</sup>, Christoph J. Sahle<sup>c</sup>, Sebastian Eckert<sup>d,a</sup>, Raphael M. Jay<sup>d,a</sup>, Keith Gilmore<sup>c</sup>, Annette Pietzsch<sup>a</sup>, Marcus Dantz<sup>e</sup>, Xingye Lu<sup>e</sup>, Daniel E. McNally<sup>e</sup>, Thorsten Schmitt<sup>e</sup>, Vinicius Vaz da Cruz<sup>f,a</sup>, Victor Kimberg<sup>f,g</sup>, Faris Gel'mukhanov<sup>f,g</sup>, and Alexander Föhlisch<sup>a,d,1</sup>

<sup>a</sup>Institute for Methods and Instrumentation for Synchrotron Radiation Research, Helmholtz Zentrum Berlin für Materialien und Energie, D-12489 Berlin, Germany; <sup>b</sup>Department of Physics and Astronomy, University of Turku, FI-20014 Turun Yliopisto, Finland; <sup>c</sup>European Synchrotron Radiation Facility 71, F-38043 Grenoble Cedex 9, France; <sup>d</sup>Institut für Physik und Astronomie, Universität Potsdam, D-14476 Potsdam-Golm, Germany; <sup>e</sup>Swiss Light Source, Photon Science Division, Paul Scherrer Institut, 5232 Villigen PSI, Switzerland; <sup>f</sup>Theoretical Chemistry and Biology, Royal Institute of Technology, SE-10691 Stockholm, Sweden; and <sup>g</sup>Institute of Nanotechnology, Spectroscopy and Quantum Chemistry, Siberian Federal University, 660041 Krasnoyarsk, Russia

Niskanen et al. PNAS, **116**, 4058 (March. 2019).



#### **Summary**

- We have found that a broad distribution of local structures is probed at the O1s pre-edge of liquid water.
- The differences between the progression in gas-phase and liquid reflect the variations in local HB environment.
- The core-excited ultra-fast dynamics is an effective probe of hydrogen-bonds strength of in liquid water via the distribution of potential energy surfaces accessed.
- The 1b<sub>1</sub> split-peak is caused by nuclear dynamics, however it is formed by transitions close to the equilibrium geometry being much less sensitive to hydrogen bonding.



## Thank you!