M. Sundermann^{a,b,c}, G. van der Laan^d, A. Severing^{a,b}, L. Simonelli^e, G. H. Lander^f, M. W. Haverkort^g, R. Caciuffo^f - ^a Institute of Physics II, University of Cologne, Germany - ^b Max-Planck Institute for Chemical Physics of Solids, Dresden, Germany - ^c Deutsches Elektronen-Synchrotron (DESY), Hamburg, Germany - ^d Magnetic Spectroscopy Group, Diamond Light Source, Didcot, UK - ^e ALBA Synchrotron Light Source, Barcelona, Spain - f European Commission, Joint Research Centre (JRC), Karlsruhe, Germany - g Institute for Theoretical Physics, Heidelberg University, Germany #### Motivation: - > 5f-electrons have a large orbital degree of freedom - Special bonding character and new phases - \triangleright It is crucial to know which 5f-states are active in the GS - \triangleright Standard techniques as e.g. INS are hampered by the strong 5f-hybridization - UO₂ is one of the few actinide oxides where INS could measure the CF excitations G. Amoretti et al., PRB 40, 1856 (1989) R. Caciuffo et al., PRB 84, 104409 (2011) - Calculations yield larger CF splittings than INS H.U. Rahman and W.A. Runciman, J. Phys. Chem Solids 27 1833 (1966) - Higher multipoles in NIXS at the U $O_{4,5}$ edges (5 $d \rightarrow 5f$) yield GS symmetry & give insight to the UO₂ CF scheme #### What is the principle of NIXS? $$\frac{\mathrm{d}^{2}\sigma}{\mathrm{d}\Omega\,\mathrm{d}\hbar\omega} = \underbrace{\frac{\omega_{\mathrm{out}}}{\omega_{\mathrm{in}}}\left(\frac{e^{-2}}{2m_{e^{-}}}\right)^{2}|\boldsymbol{\epsilon}_{\mathrm{out}}^{*}\cdot\boldsymbol{\epsilon}_{\mathrm{in}}|^{2}}_{\text{Thomson}} \underbrace{\sum_{|\mathrm{f}\rangle}|\langle\mathrm{f}\boldsymbol{T}_{\mathrm{i}}\rangle|^{2}\delta(E_{\mathrm{f}}-E_{\mathrm{i}}-\hbar\omega)}_{\mathrm{S}(\boldsymbol{q},\omega)}$$ $$H = \sum_{j=1}^{N} \frac{\boldsymbol{p}_{j}^{2}}{2m_{e^{-}}} + \underbrace{\frac{e^{-}}{m_{e^{-}}}\boldsymbol{p}_{j} \cdot \boldsymbol{A}}_{\text{resonant}} + \underbrace{\frac{e^{-2}}{2m_{e^{-}}}\boldsymbol{A}^{2}}_{\text{non}} + \dots$$ #### **Double differential cross section** \triangleright Physics in S(\mathbf{q},ω) #### **Electron photon interaction** Beyond weak field approximation #### What is the principle of NIXS? Local projection of *T*: Absorption/Emission: $p \cdot A$ $$T = \boldsymbol{\mu} \cdot \boldsymbol{E} e^{i\boldsymbol{k}\boldsymbol{r}}$$ Non-resonant: A^2 $T = \mathbf{E} \cdot \mathbf{E}' e^{i(\mathbf{k} - \mathbf{k}')r}$ Dipole approximation: $e^{ikr} \approx 1$ Large |q|: $q \cdot r > 1$ quantization axis changes from *E* to *q* Triangular condition: $|I_f - I_i| \le k \le I_f + I_i$ Parity rule: $I_f + I_i + k = even$ #### What is the principle of NIXS? #### **Features of NIXS:** - Photon in photon out + no UHV with hard x-rays + bulk sensitive (>1μm) - + **no cleaving**Non-resonant low cross-section - + "no" self-absorption - + no intermediate state - XAS final state + Element specific - + directional dependence - Large |q| + Beyond dipole - + more excitonic - → atomic multiplet calculation - + not dipole limited - → >2 fold rotational symmetry (e.g. cubic) see also cubic 4f: M. Sundermann et. al., EPL **117** 17003 (2017) M. Sundermann et. al., PRL **120** 016402 (2018) Discussion: INS (weak CF) ⇔ calculation (strong CF) **Weak CF:** INS finds $V_4 = -123 \text{ meV}$ $V_6 = 26.5 \text{ meV}$ G. Amoretti et al., PRB 40, 1856 (1989) R. Caciuffo et al., PRB 84, 104409 (2011) P. Santini *et al.*, Rev. Mod. Phys. **81**, 807 (2009) **Strong CF:** calculation finds $V_4 = -410 \text{ meV}$ $V_6 = 25 \text{ meV}$ H.U. Rahman and W.A. Runciman, J. Phys. Chem Solids 27 1833 (1966) ### NIXS experiment: $5d \rightarrow 5f$ ID20 - RIXS spectrometer (2013) G. van der Laan, L. Simonelli, G. H. Lander, R. Caciuffo Single analyzer: Si(660) @ $2\theta = 140^{\circ}$ - $| \triangleright | q | \approx 9.1 \text{Å}^{-1} \qquad \Delta E \approx 0.65 \text{eV}$ - Experiment @ T = 300K since CF splittings are large M. Moretti Sala et al., J. Syn. Rad. 25 580 (2018) PHYSICAL REVIEW B 98, 205108 (2018) Crystal-field states of UO₂ probed by directional dependence of nonresonant inelastic x-ray scattering M. Sundermann, ^{1,2} G. van der Laan, ^{3,*} A. Severing, ^{1,2} L. Simonelli, ^{4,†} G. H. Lander, ⁵ M. W. Haverkort, ⁶ and R. Caciuffo ⁵ RIXS parameters taken from: Butorin *et al.*, Anal. Chem. **85** 11196 (2013) ht GS size of the CF splittings? PHYSICAL REVIEW B 98, 205108 (2018) Crystal-field states of UO₂ probed by directional dependence of nonresonant inelastic x-ray scattering M. Sundermann, ^{1,2} G. van der Laan, ^{3,*} A. Severing, ^{1,2} L. Simonelli, ^{4,†} G. H. Lander, ⁵ M. W. Haverkort, ⁶ and R. Caciuffo ⁵ **CF states without CF splitting** weak CF Parameters based on: G. Amoretti *et al.*, PRB **40** 1856 (1989) **Strong CF** Parameters based on: H. Rahman and W. Runciman, Phys. & Chem. of Solids **27** 1833 (1966) q | | (111) (110) # Crystal field scheme of UO, measured with NIXS PHYSICAL REVIEW B 98, 205108 (2018) Crystal-field states of UO₂ probed by directional dependence of nonresonant inelastic x-ray scattering M. Sundermann, ^{1,2} G. van der Laan, ^{3,*} A. Severing, ^{1,2} L. Simonelli, ^{4,†} G. H. Lander, ⁵ M. W. Haverkort, ⁶ and R. Caciuffo ⁵ **CF states without CF splitting** PRB **40** 1856 (1989) q | | (111) (110) ### modelling quantitative PHYSICAL REVIEW B 98, 205108 (2018) Crystal-field states of UO₂ probed by directional dependence of nonresonant inelastic x-ray scattering M. Sundermann, ^{1,2} G. van der Laan, ^{3,*} A. Severing, ^{1,2} L. Simonelli, ^{4,†} G. H. Lander, ⁵ M. W. Haverkort, ⁶ and R. Caciuffo ⁵ - ➤ NIXS confirms the CF scheme of UO₂ from INS - \triangleright Presence of distinct O₄ and O₅ edges indicates a GS with pure J=4 (>90%) - \triangleright 5f CF ground state can be determined by NIXS (higher multipoles) - Method has previously been successfully applied to metallic 5f material see URu₂Si₂ in Sundermann et al. PNAS 113 13989 (2016) Thank you