M. Sundermann^{a,b,c}, G. van der Laan^d, A. Severing^{a,b}, L. Simonelli^e, G. H. Lander^f, M. W. Haverkort^g, R. Caciuffo^f

- ^a Institute of Physics II, University of Cologne, Germany
- ^b Max-Planck Institute for Chemical Physics of Solids, Dresden, Germany
- ^c Deutsches Elektronen-Synchrotron (DESY), Hamburg, Germany
- ^d Magnetic Spectroscopy Group, Diamond Light Source, Didcot, UK
- ^e ALBA Synchrotron Light Source, Barcelona, Spain
- f European Commission, Joint Research Centre (JRC), Karlsruhe, Germany
- g Institute for Theoretical Physics, Heidelberg University, Germany

Motivation:

- > 5f-electrons have a large orbital degree of freedom
 - Special bonding character and new phases
- \triangleright It is crucial to know which 5f-states are active in the GS
- \triangleright Standard techniques as e.g. INS are hampered by the strong 5f-hybridization
- UO₂ is one of the few actinide oxides where INS could measure the CF excitations
 G. Amoretti et al., PRB 40, 1856 (1989)
 R. Caciuffo et al., PRB 84, 104409 (2011)
- Calculations yield larger CF splittings than INS
 H.U. Rahman and W.A. Runciman, J. Phys. Chem Solids 27 1833 (1966)
- Higher multipoles in NIXS at the U $O_{4,5}$ edges (5 $d \rightarrow 5f$) yield GS symmetry & give insight to the UO₂ CF scheme

What is the principle of NIXS?

$$\frac{\mathrm{d}^{2}\sigma}{\mathrm{d}\Omega\,\mathrm{d}\hbar\omega} = \underbrace{\frac{\omega_{\mathrm{out}}}{\omega_{\mathrm{in}}}\left(\frac{e^{-2}}{2m_{e^{-}}}\right)^{2}|\boldsymbol{\epsilon}_{\mathrm{out}}^{*}\cdot\boldsymbol{\epsilon}_{\mathrm{in}}|^{2}}_{\text{Thomson}} \underbrace{\sum_{|\mathrm{f}\rangle}|\langle\mathrm{f}\boldsymbol{T}_{\mathrm{i}}\rangle|^{2}\delta(E_{\mathrm{f}}-E_{\mathrm{i}}-\hbar\omega)}_{\mathrm{S}(\boldsymbol{q},\omega)}$$

$$H = \sum_{j=1}^{N} \frac{\boldsymbol{p}_{j}^{2}}{2m_{e^{-}}} + \underbrace{\frac{e^{-}}{m_{e^{-}}}\boldsymbol{p}_{j} \cdot \boldsymbol{A}}_{\text{resonant}} + \underbrace{\frac{e^{-2}}{2m_{e^{-}}}\boldsymbol{A}^{2}}_{\text{non}} + \dots$$

Double differential cross section

 \triangleright Physics in S(\mathbf{q},ω)

Electron photon interaction

Beyond weak field approximation

What is the principle of NIXS?

Local projection of *T*:

Absorption/Emission: $p \cdot A$

$$T = \boldsymbol{\mu} \cdot \boldsymbol{E} e^{i\boldsymbol{k}\boldsymbol{r}}$$

Non-resonant: A^2 $T = \mathbf{E} \cdot \mathbf{E}' e^{i(\mathbf{k} - \mathbf{k}')r}$

Dipole approximation: $e^{ikr} \approx 1$ Large |q|: $q \cdot r > 1$

quantization axis changes from *E* to *q*

Triangular condition: $|I_f - I_i| \le k \le I_f + I_i$

Parity rule: $I_f + I_i + k = even$

What is the principle of NIXS?

Features of NIXS:

- Photon in photon out + no UHV
 with hard x-rays + bulk sensitive (>1μm)
 - + **no cleaving**Non-resonant low cross-section
 - + "no" self-absorption
 - + no intermediate state
- XAS final state + Element specific
 - + directional dependence
- Large |q| + Beyond dipole
 - + more excitonic
 - → atomic multiplet calculation
 - + not dipole limited
 - → >2 fold rotational symmetry

(e.g. cubic)

see also cubic 4f: M. Sundermann et. al., EPL **117** 17003 (2017) M. Sundermann et. al., PRL **120** 016402 (2018)

Discussion: INS (weak CF) ⇔ calculation (strong CF)

Weak CF: INS finds $V_4 = -123 \text{ meV}$ $V_6 = 26.5 \text{ meV}$

G. Amoretti et al., PRB 40, 1856 (1989)

R. Caciuffo et al., PRB 84, 104409 (2011)

P. Santini *et al.*, Rev. Mod. Phys. **81**, 807 (2009)

Strong CF: calculation finds $V_4 = -410 \text{ meV}$ $V_6 = 25 \text{ meV}$

H.U. Rahman and W.A. Runciman, J. Phys. Chem Solids 27 1833 (1966)

NIXS experiment: $5d \rightarrow 5f$

ID20 - RIXS spectrometer (2013)

G. van der Laan, L. Simonelli, G. H. Lander, R. Caciuffo Single analyzer: Si(660) @ $2\theta = 140^{\circ}$

- $| \triangleright | q | \approx 9.1 \text{Å}^{-1} \qquad \Delta E \approx 0.65 \text{eV}$
- Experiment @ T = 300K since CF splittings are large

M. Moretti Sala et al., J. Syn. Rad. 25 580 (2018)

PHYSICAL REVIEW B 98, 205108 (2018)

Crystal-field states of UO₂ probed by directional dependence of nonresonant inelastic x-ray scattering

M. Sundermann, ^{1,2} G. van der Laan, ^{3,*} A. Severing, ^{1,2} L. Simonelli, ^{4,†} G. H. Lander, ⁵ M. W. Haverkort, ⁶ and R. Caciuffo ⁵

RIXS parameters taken from: Butorin *et al.*, Anal. Chem. **85** 11196 (2013)

ht GS

size of the CF splittings?

PHYSICAL REVIEW B 98, 205108 (2018)

Crystal-field states of UO₂ probed by directional dependence of nonresonant inelastic x-ray scattering

M. Sundermann, ^{1,2} G. van der Laan, ^{3,*} A. Severing, ^{1,2} L. Simonelli, ^{4,†} G. H. Lander, ⁵ M. W. Haverkort, ⁶ and R. Caciuffo ⁵

CF states without CF splitting

weak CF

Parameters based on: G. Amoretti *et al.*, PRB **40** 1856 (1989)

Strong CF

Parameters based on: H. Rahman and W. Runciman, Phys. & Chem. of Solids **27** 1833 (1966)

q | | (111)

(110)

Crystal field scheme of UO, measured with NIXS

PHYSICAL REVIEW B 98, 205108 (2018)

Crystal-field states of UO₂ probed by directional dependence of nonresonant inelastic x-ray scattering

M. Sundermann, ^{1,2} G. van der Laan, ^{3,*} A. Severing, ^{1,2} L. Simonelli, ^{4,†} G. H. Lander, ⁵ M. W. Haverkort, ⁶ and R. Caciuffo ⁵

CF states without CF splitting

PRB **40** 1856 (1989)

q | | (111)

(110)

modelling quantitative

PHYSICAL REVIEW B 98, 205108 (2018)

Crystal-field states of UO₂ probed by directional dependence of nonresonant inelastic x-ray scattering

M. Sundermann, ^{1,2} G. van der Laan, ^{3,*} A. Severing, ^{1,2} L. Simonelli, ^{4,†} G. H. Lander, ⁵ M. W. Haverkort, ⁶ and R. Caciuffo ⁵

- ➤ NIXS confirms the CF scheme of UO₂ from INS
- \triangleright Presence of distinct O₄ and O₅ edges indicates a GS with pure J=4 (>90%)
- \triangleright 5f CF ground state can be determined by NIXS (higher multipoles)
- Method has previously been successfully applied to metallic 5f material see URu₂Si₂ in Sundermann et al. PNAS 113 13989 (2016)

Thank you

