National Synchrotron Light Source II

New insight into biophysics of lipid membranes with high resolution IXS

Mikhail Zhernenkov

06/27/2019

Fast and slow dynamics in a cell membrane

Model membranes as a test bed

R. Winter, C. Jeworrek, Soft Matter, 2009, 5, 3157

Binary systems (DPPC-Chol)

DEPARTMENT OF

G. Feigenson, Cornell U

National Synchrotron Light Source II 🔳

Model membranes as a test bed

Science

NATIONAL LABORATORY

Previous efforts to study fast dynamics

Office of

Science

- Different parts of lipid molecules contribute to different excitations, which all can, in principle, be probed by inelastic scattering
- Generalized three effective eigenmode (GTEE) theory to fit the IXS/INS data:

$$\frac{S(Q,\omega)}{S(Q)} = \frac{1}{\pi} \bigg[A_0 \frac{\Gamma_h}{\omega^2 + \Gamma_h^2} + A_s \bigg(\frac{\gamma_s + b(\omega + \omega_s)}{(\omega + \omega_s)^2 + \gamma_s^2} \\ + \frac{\gamma_s - b(\omega - \omega_s)}{(\omega - \omega_s)^2 + \gamma_s^2} \bigg].$$

➢ GTEE → treats the data in terms of simple liquids which is an oversimplification

Very few processes take place on ps time scale: trans-gauche isomerization, density fluctuations, ultra-fast diffusion

Passive transport mechanisms

IXS measurements: DPPC lipid

DPPC spin-coated on diamond substrate \rightarrow stack of thousands of lipid bilayers

M. Zhernenkov et al. Nat. Commun. 7, 11575 (2016)

- DPPC main transition temperature: 41 °C
- Measured at 20 °C and 45 °C; E = 21.78 KeV
- Saturated water vapor

The discovery of the low-Q phononic gap in TA mode!

BROOKHAVEN NATIONAL LABORATORY

Low-Q phononic gap in TA mode

Phonon-mediated nm-scale clustering

Phonon-mediated nm-scale clustering

Theory of solute diffusion through a membrane:

- > ultra-fast "hopping", or "rattling" between thermally-triggered voids
- ➢ partition coefficient strongly depends on the local chain ordering → solute exclusion within the region

Adv. Drug Deliv. Rev. **58**, 1357–1378 (2006) J. Am. Chem. Soc. **117**, 4118–4129 (1995) Cold Spring Harb. Perspect. Biol. (2010), 2, a002188

We observe:

- \checkmark nm-scaled short-lived molecular clusters \rightarrow local chain ordering, or density fluctuations
- $\checkmark\,$ Increased disorder beyond the cluster size $\rightarrow\,$ indication of the transient voids formation
- ✓ Size and the life time of the clusters agrees well with the theory prediction

DPPC-Cholesterol binary mixtures

IXS measurements: DPPC-Chol

IXS phonon current spectra

- Two or more "particles" per "unit cell" should generate the optical mode(s) due to out-of-phase movements
- Optical mode emerges at Q_{gap_op} ≥ 7 nm⁻¹ for all temperatures
- Transverse mode shows no Q_{gap_ta} within measured Q-range (in contrast to pure DPPC!)

National Synchrotron Light Source II 🔳

DPPC-Cholesterol binary mixtures

BROOKHAVE

- ➤ Longitudinal acoustic (LA) → compression waves (sound) propagating in lipids, no Q_{gap} allowed
- ➤ Transverse acoustic (TA) → oscillatory movements of lipids due to shear restoring forces (short range)

National Synchrotron Light Source II

Origin of phononic gap in optical mode

Optical and acoustic vibrations in linear diatomic chain

 $\boldsymbol{\alpha}$ - interparticle force constant

Under a continuous medium approximation $(Q \rightarrow 0)$ the optical mode cannot exhibit the phononic gap Q_{gap} !

Phononic gap in optical mode: finite size effect

finite size region

Recent example

Finite size effect on phonons of the quasione-dimensional system SrCuO₂: doping breaks symmetry and suppresses optical mode

at low Q

D. Bounoua et al. Physica B 536 (2018) 323-326

DPPC-Cholesterol case

D. Soloviov et al. (2019) under review.

Two lipid "particles" per "unit cell"

- ➤ Q_{gap_op} in lipids → finite size regions throughout the sample supporting optical mode
- Size of the region: 2π/Q_{gap_op} ~ 9 Å or several lipids in diameter!

Phononic gap in optical mode: DPPC-Chol "pairs"

Lo phase \rightarrow set of discrete patches with 2-3 coupled lipid pairs

Office of

Science

- OP mode (~5meV) observed when L_o phase is present
- Optical phonon energy estimation for DPPC-Chol pair: 4-7.5 meV
 - DPPC-Chol interaction energy (1-3.6 kT)*
 - Simple Hooke's law

•
$$\nu^2 \sim 2\alpha (\frac{1}{M_1} + \frac{1}{M_2})$$

*Heberle, F.; Feigenson, G. Cold Spring Harb. Perspect. Biol. (2011) Zeno, W. et al. Langmuir (2016)

Ternary systems: DOPC/POPC-based

Ternary systems

3 lipid "particles"

3 combinations of "pairs" (but not all "pairs" are equally favored!)

More optical modes allowed

Expectation: in reality, optical modes should be mixed in soft matter

de Almeida&Joly, Front. Plant. Sci (2014)

DOPC(3):DPPC(4):Chol(3) Lo+Ld

Veatch&Keller, Phys.Rev.Lett. (2005)

POPC(5):DPPC(3):Chol(2) Coexisting liquid domains are not previously observed

National Synchrotron Light Source II

IXS: ternary systems at 37°C

- Optical mode emerges at Q_{gap_op} ≥ 8.3 nm-¹
- OP energy: 3.5-3.9meV
- Size of the region: 2π/Q_{gap_op}
 7.5 Å or several lipids in diameter
- OP energy estimation for DOPC/POPC-DPPC pairs: 1.6 meV (unfavorable pairs)
- Unsaturated lipids reduce the size of discrete patches!

 No patches in Ld phase with excess of unsaturated lipids National Synchrotron Light Source II

Summary

Observations:

- Multicomponent phase separated membranes exhibit optical modes
- Optical modes are supported on a short length scale → indication of discrete nano-patches (*finite size effect*), or lipid "pairs"

(only groups of two+ lipids can support optical mode!)

 Optical mode only observed in phase coexistence, or when L_o phase is present

Hypothesis: in phase separated domains, a single domain with typical sizes of 10-200 nm on nanoscale consists of a set of mobile coupled discrete areas <1 nm in diameter. The large domains form when "pairs" transiently coalesce into larger entities.

• In multicomponent mixtures: different combination of "pairs" can couple due to the selective affinity between different lipid species

Acknowledgements

THANK YOU!

