Stimulated X-ray Emission Spectroscopy with hard X-rays

Thomas Kroll

SLAC National Accelerator Laboratory
Acknowledgement

SLAC
Uwe Bergmann
Clemens Weninger
Y. Zhang
Roberto Alonso-Mori
Agostino Marinelli
Alberto Lutman
Marc W. Guetg

CXI Instrument at LCLS
Sebastien Boutet
Andy Aquila
Jake Koralek
Dan DePonte

Max Planck, Hamburg, Germany
Nina Rohringer
Laurent Mercadier
Vinay P. Majety

Lawrence Berkeley National Lab
Vittal Yachandra
Junko Yano
Jan Kern
Franklin Fuller

Funding: DOE and NIH
X-Ray Emission Spectroscopy

Valence levels

3p

Kβ_{2,5}, Kβ''

Kβ_{1,3}, Kβ'

2p

Kα_{1,2}

1s

Level Diagram

Spin/oxidation state of transition metals

Valence orbitals: ligand type, structure, covalency, ligand protonation, etc

Stimulated X-ray Emission Spectroscopy

Stimulated (non-linear) emission:

Spontaneous (conventional) emission

- Low photon flux density (only a few photons at a time in the sample)
- Only spontaneous emission in 4π direction
Stimulated X-ray Emission Spectroscopy

Stimulated (non-linear) emission:
Amplified spontaneous emission (ASE)

- Very high flux density (~10^{11} ph / 10 fs / 100x150 nm2)
- Creation of population inversion
- Non-linear effects become dominant
- Cascade like decay
Experimental Setup

- Highly focused 10 fs beam (100 x 150 nm²)
- Flat crystal analyzer in forward direction
Objectives

- Can stimulated XES be applied to transition metal solutions?
- What is fundamentally new information provided by stimulated XES techniques that is not achievable with other techniques?
- Can stimulated XES be used for chemically sensitive X-ray emission lines? Is the chemical information preserved?
- Can we stimulate the weaker Kβ emission?
Single shots:

- Clean curve in single shot
- Only the $K\alpha_1$ visible
- FWHM < normal $K\alpha$ width

MnCl$_2$ solution
Lasing in MnCl$_2$ solution

Proof of Lasing:
- Exponential increase
- Linear gain regime below ~2 mJ
- Saturation reached > 2 mJ

Peak Position and Width

- Low to mid high photon numbers:
 - Constant broadening and position
- High photon numbers:
 - Spectral broadening
 - Shift to lower energies
- Variations through beam position, temporal shape, lasing condition

Line broadening due to saturation effects
Additional final states become visible
Peak Position and Width

- Mn Kα₁ life-time broadening: 1.48 eV (Krause and Oliver, 1979)
- Lowest observed S-XES peak width: < 1.0 eV
- Darwin width of Si (111): 0.77 eV
- Lowest S-XES lifetime broadening: < 0.5 eV
Stimulated (non-linear) emission:

Amplified spontaneous emission (ASE) + seeded stimulated emission

Pump: > abs. energy
Seed: Kβ energy

- Kβ Seed pulse outruns Kα emission → seeded stimulated Kβ emission
- Requirement: Overlap in time, space and energy
Experimental Setup

- Highly focused 10 fs beam (100 x 150 nm²)
- Use part of the undulators for seed pulse
- Two flat crystals in series in forward direction for simultaneous detection of Kα and Kβ
Seeded Stimulated Kβ emission

Biggest issue:
- Seed pulse and stimulated emission are at the same energy
- How to separate the stimulated signal from the SASE seed pulse?

Pump:
> abs. energy

Seed:
Kβ energy
Conclusions

• Strongly stimulated XES in Mn solutions has been observed
• Gain curves for X-ray lasing have been measured
• Gain narrowing to less than the natural line width
• Chemical information appears to be preserved!
• Seeded stimulated Kβ emission observed

Future

• Improved diagnostics:
 • especially in time domain
 • Seeded beam diagnostic
Stimulated X-ray Emission has been observed

Past achievements:

Soft X-rays
- Stimulated soft X-ray Ne laser
 (Rohringer et al., *Nature* 481, 488 (2012), LCLS)
 - Ne gas
- Stimulated X-ray Emission in Silicon L Lines (70-100 eV)
 (Beye et al., *Nature* 501, 191 (2013), LCLS)
 - Si

Hard X-rays
- Stimulated hard X-ray Fe laser
 (Yoneda et al., *Nature* 524, 446 (2015), SACLAL)
 - Fe foil
High number of photons:

Varying pulse energy:

- Increase of $K\alpha_2$ for high fluences
- Can be explained by final state effects

MnCl$_2$ FWHM:
- Green: 2.2 eV
- Blue: 3.3 eV
- Orange: 4.6 eV

Cu foil (Yoneda et al., *Nature* 524, 446 (2015))

Chemical Sensitivity

Compare solution spectra:

- Stimulated data retain the expected chemical shift
- Need to address stimulated photon / matter interaction in more detail

Experimental Setup

X-ray Free Electron Laser: LCLS

LCLS @ SLAC Linear Accelerator Laboratory
- > 3 km long building
- Electrons are accelerated
- Undulators create photons
- Pulsed and highly focused beam
- Large number of photons per pulse:
 - 10^{11} per pulse of 10 fs