

Estimation of phonon lifetime in epitaxial films

H. Uchiyama JASRI/SPring-8 Phonon measurements in SPring-8

IXS BLs for phonon measurements

BL35XU & BL43LXU

Both are design and built by A. Baron

SPring-8

SPring.

BL35XU

Public facility: ~4000 hours/year for Users

Heat and Phonons

In recent device applications, Controlling heat properties are now important as controlling electronic properties.

 Energy saving/harvesting Heat is unused (wasted) energy; it should be used more efficiently.. e.g. thermoelectric, photovoltaic devices

 Preventing overheating due to miniaturization and power application heat can damage the specification of devices...

In order to control heat properties,

> Phonon properties

should be investigated

For example, (lattice) thermal conductivity is given by

Especially phonon lifetime can not be produced by the harmonic approximation.

Consideration beyond harmonic approximation is required

Phonon lifetime $\tau^{\circ}_{\mathbf{q},i}$ can be calculated and measured

In calculation, (for example, phonon-phonon interaction), Phonon lifetime can be given as a imaginary part of phonon self-energy $(\Sigma_{\mathbf{a},i}^{\circ})$

$$\tau^{\circ}_{\mathbf{q},j} = \hbar/2 \mathrm{Im} \Sigma^{\circ}_{\mathbf{q},j}$$

In the lowest order, $\tau^{\circ}_{\mathbf{q},i}$ is given as three–phonon interaction

Decay Process

Merging Process

In measurements,

Spectral line width corresponds to $2Im\Sigma_{q,j}^{\circ}$: estimated by IXS, INS, and Raman

Macroscopic thermal properties can be compared to microscopic phonon measurements

IXS for epitaxial films

IXS for epitaxial films

Phonon lifetime can be measured spectral width of

- ✓ INS (long probing depth)
- ✓ Raman (only at Γ)

Not suitable for epitaxial film with momentum dependence (cf. definition of thermal conductivity)

Two configurations for achieving low incident angle (cf. GIXRD)

	In plane	Brennan
Bragg	In the plane	Not in the plane
Setup	Easy	Difficult (needs math)
Precision	Small kz component	Accurate
Changing incident angle	Difficult	Easy

S. Brennan, Physica B(283) 125 (2000)

Nitrides

For application of power device, light emitting device, photovoltaic device, etc.

ScN & InN : mainly available as thin films (not bulk materials) ScN; thermoelectric device $ZT \sim 0.3$ (at 800 K)^{*} InN; phonon gap, phonon bottleneck

Example 1: ScN (40 μ m)/ Al₂O₃

Incident beam angle dependence for Bragg peaks

Substrate contribution is negligible

Example 1: ScN (40 μ m)/ Al₂O₃

Comparison with DFT

Good agreement

No contribution from substrate

HU, PRL(120) 235901

How to determine anharmonic contribution accurately?

(three-phonon interaction)

Good agreement (between Exp. and Calc.) of phonon lifetime in ScN

Detailed scattering process can be displayed

Lifetime of LO along Γ -X

Lifetime of TO along Γ -X

Furthermore, calculation indicates the macroscopic thermal conductivity

$$\kappa_{lat} = \frac{1}{3NV_0} \sum_{\mathbf{q},j} C_{\mathbf{q},j} \mathbf{v}_{\mathbf{q},j} \otimes \mathbf{v}_{\mathbf{q},j} \tau_{\mathbf{q},j}^{\circ}$$

Thermal conductivity also agrees

All heat properties can be reproduced by microscopic phonon properties

Example 2: InN (500 nm)/ Al_2O_3

Example 2: InN (500 nm)/Al₂O₃

For further thinner : InN (500 nm)

Uchiyama, Araki in preparation

Phonon lifetime in the harmonic approximation

In recent device applications, Controlling heat properties are now important as controlling electronic properties.

- Energy saving/harvesting
 Heat can be unused (wasted) energy;
 it should be used more efficiently..
 e.g. thermoelectric, photovoltaic devices
- 2. Preventing overheating due to miniaturization and power application can damage the specification of devices...

In order to control heat properties,

