

International Conference on Inelastic X-ray Scattering (IXS2019) Jun. 25, 2019

Magnetic Circular Dichroism in X-ray Fluorescence

National Institutes for Quantum and Radiological Science and Technology (QST)

Synchrotron Radiation Research Center

Toshiya Inami

Collaborators

Theory : T. Uozumi (Osaka Pref. University)

Instrumentation (New spectrometer) : K. Sugawara (QST)

Sample (Electrical steel) : T. Nakada (JFE-TEC) Y. Sakaguchi (JFE-TEC) S. Takahashi (JFE-TEC)

Fluorescence X-rays

X-ray fluorescence has a long history. It has been widely used as an excellent analytical tool.

You may think that there is nothing to explore in x-ray florescence, nothing interesting in x-ray fluorescence.

The state of a photon is described by its energy (wave length), direction of propagation, and polarization.

It seems that the last property of fluorescence x-rays has not been investigated in detail so far.

In this study, I measured the circular polarization of $K\alpha$ emission of Iron and obtained very new results.

ST X-ray magnetic circularly polarized emission (XMCPE)

New magnetooptical effect in the x-ray region

T. Inami, Phys. Rev. Lett. **119** 137203 (2017).

4

(i) Magnetic circular dichroism exists in x-ray emission. (ii) Large circular polarization (12%) at the Fe $K\alpha$ emission.

Outline

Introduction

Motivation

Spectrometer & Experimental results XMCPE in other emissions (multiplet calculations) Domain observation (magnetic microscope) Summary

Motivation

Synchrotron x-ray based magnetic measurements :

(non-)resonant x-ray magnetic diffraction,
 magnetic Compton scattering,
 x-ray magnetic circular dichroism (XMCD),
 XMCD photoemission electron microscopy, etc.

XMCD: standard tool

Element selective, highly sensitive (small samples and small moments), magnetooptical sum rules are applicable for several edges, etc.

Motivation

XMCD in the hard x-ray region :

- Cong penetration depth.
 Bulk sensitive. (~10μm)
- Insensitive to 3d transition metals (Fe, Co, Ni, etc). (< 0.5%)

A new magnetic spectroscopy in the hard x-ray region with a large dichroic effect for 3d TMs is necessary.

Fe $K\alpha$ emission must be circularly polarized and exhibit MCD!!

Contents

Introduction Motivation

Spectrometer & Experimental results
 XMCPE in other emissions (multiplet calculations)
 Domain observation (magnetic microscope)
 Summary

Spectrometer

Fluorescence spectrometer with circular polarization analysis

- QWP (phase retarder) : 0.5 mm thick diamond single crystal
- Analyzer (linear polarization and energy analyzer) : Ge (400) single crystal, 2θ=86.4°

Spectrometer

SPring-8 BL22XU

Analyzer

Phase retarder

Sample (Fe)

Experimental results

- (a) Iron $K\alpha_1$ fluorescence spectra I⁺ and I⁻, measured at configurations sensitive to right- and left-circularly polarized x-rays, respectively. I⁺ = $I_0(1+P_C)/2$, I⁻ = $I_0(1-P_C)/2$, $I_0 = I^++I^-$, P_C : degree of circular polarization. The I⁺ spectrum is shifted to the low energy side by about 0.3 eV.
- (b) The difference spectra I⁺-I⁻ normalized by the peak intensity. The ordinate is approximately P_C. The sign of P_C is inverted when the magnetization is inverted. The largest P_C ~12%.

IXS2019

- 1. An incident x-ray photon creates a 1s core hole.
- 2. A fluorescence x-ray is emitted when a 2p electron occupies the 1s core hole.
- 3. The final $2p^5$ state splits into a $2p_{3/2}$ quartet and a $2p_{1/2}$ doublet because of large spinorbit coupling.
- 4. The 2p3d exchange interaction further splits these multiplets when a magnetic moment exists in the 3d orbital, producing spin polarization.
- 5. Because of the large spin-orbit coupling, the spin polarization results in the orbital polarization, which is the origin of circularly polarized x-rays.

Contents

Introduction Motivation Spectrometer & Experimental results XMCPE in other emissions (multiplet calculations) Domain observation (magnetic microscope) Summary

XMCPE at other emissions

XMCPE is expected at many emission lines.

- L: Large, M: Moderate, S: Small, N: Nothing
- 3d transition metal $3p \rightarrow 1s$ (S) $3p \rightarrow 2s$ (S), $3s \rightarrow 2p$ (N), $3d \rightarrow 2p$ (?)
- 4f rare earth $3d \rightarrow 2p$ (L), $4d \rightarrow 2p$ (L), $3p \rightarrow 1s$ (M) $4p \rightarrow 3s$ (S), $4d \rightarrow 3p$ (L), $4f \rightarrow 3d$ (?)
- 5d transition metal

4p→2s (?), 4d→2p (?) 14

Multiplet calculation ($L\alpha_{1,2}$)

A program developed by Uozumi was used.

15

Multiplet calculation ($L\beta_{15,2}$)

Uozumi program was used.

0.6 3 4f⁷ (Eu²⁺) Ionic state $Eu^{2+} 4d2p_{3/2}$ R SO3 0.5 Intensity (arb. units) Intensity (arb. units) 6.842 keV 80% Slater integrals 0.4 2 SO (core, valence) 100% Μ 10 meV 0.3 Lorentzian 5.0 eV 0.2 (FWHM) 0.1 Gaussian 1.5 eV (FWHM) 0 0 -20 -30 -10 10 20 30 0 Energy (eV)

16

Multiplet calculation ($K\beta_1$)

Uozumi program was used.

17

IXS2019

Contents

Introduction
 Motivation
 Spectrometer & Experimental results
 XMCPE in other emissions (multiplet calculations)
 Domain observation (magnetic microscope)
 Summary

SR XMCPE Microscope

- Focusing optics for small lateral resolution (refractive lens, 10 μm)
- 2. Collimating optics for large solid angle (Montel mirror, 21 mrad × 21 mrad)

New spectra

(a) Iron Kα_{1,2} fluorescence spectra I⁺ and I⁻. The statistics is much improved. Background must be decreased.
(b) The difference spectra (I⁺- I⁻) normalized by the peak intensity.

21

Electrical steel

Grain oriented electrical steel is a functional material used as magnetic cores in transformers.

Basic magnetic domains are stripe domains.

We measured an electrical steel sheet, because ...

- 1. Large magnetic domains.
- 2. Only the 3*d* transition metal atoms carry magnetic moments.
- 3. Observation of magnetic domains well below the surface (and under the coating) is required.

Domain Observation

A map of the flipping ratio $(I^+-I^-)/(I^++I^-)$ measured at 6.405 keV. Basic stripe domains and several lancet domains are clearly discernible. Step sizes are $30\mu m$ (Z) and 65 μm (X). 101×53 points. The observation time is 4 sec/point. The incident x-ray energy was 17.3 keV. The exit angle was 45°. 22

Summary

- The degree of the circular polarization ($P_{\rm C}$) of the $K\alpha_{1,2}$ fluorescence line is measured on metallic iron.
- It is found that (i) the $K\alpha_{1,2}$ spectrum of magnetized iron exhibits finite circular polarization
- And that (ii) the sing of the circular polarization is inverted when the magnetization of the sample is inverted.
- These results indicate that magnetic circular dichroism exists in x-ray emission. Discovery of XMCPE.
- A measure of 2*p*3*d* exchange. Indirect measurement.
- The observed P_c is 12% and will amount to 18% after corrections. This large value is comparable to flipping ratios in soft x-ray MCD (~30%).
- A preliminary result on XMCPE microscope is presented.
- Large XMCPE signals are expected at various emission lines.

Acknowledgement

Technical support : S. Yamaoka (SES)

Discussions :

H. Hayashi (Japan Woman's University)
M. Taguchi (NAIST)
T. Matsumura (Hiroshima University),
M. Suzuki (JASRI)

Funding: Grant-in-Aid for Challenging Exploratory Research (No. 15K13508) from Japan Society for the Promotion of Science.

Thank you for your attention.