Soft X-ray scattering instrumentation at LCLS-II

IXS2019 Meeting June 26th 2019

Georgi L. Dakovski

- Update on LCLS-II
- chemRIXS: spectroscopy of samples in solution phase
- qRIXS: high-resolution spectroscopy of correlated materials
- PAX

Highlights from SXR @ LCLS

SLAC

LCLS-II provides: • Repetition rate • Stability

Deciphering the intramolecular electron transport on the femtosecond timescale

- Key steps:
- Selective photoexcitation at the Ru site
- 2. XAS, XES and RIXS at Ru, N and Co to map (un)occupied DOS

S. Canton, et. al Nat. Comm. 6:6359, 2015

- Key requirements:
- 1. High throughput moderate resolution RIXS spectrometer
- 2. Tunable visible excitation
- 3. Fourier-transform-limited optical and x-ray pulses 5

What is the dynamics of light-enhanced coherent transport in cuprates?

- Key steps:
- 1. Characterize the spectrum of excitations at different temperature
- 2. Optically drive lattice distortion

• Key requirements:

L. Chaix, et. al, Nat. Phys. 2017

- 1. High energy resolution *q*-dependent RIXS spectrometer
- 2. Tunable mid-IR excitation
- 3. Fourier-transform-limited optical and x-ray pulses 6

N. P. Armitage, Nat. Mater. 13, 665

LCLS-II – Notional Timeline

chemRIXS: major components

chemRIXS: portable RIXS spectrometer

Transition Edge Sensor Spectrometer

qRIXS: spectrometer arm

Capabilities:

- Scattering angle 40 150 deg
- 1 chamber for parabolic mirror and gratings
- Downward deflection
- Polarimeter
- Current collaboration with BNL team to define the optical layout

qRIXS: sample chamber

Capabilities:

- Cryostat, 6 DOF, 20 K
- Flexible long-wavelength incoupling

SLAC

 In-vacuum detectors for peak finding and XAS in fluorescence yield mode

Parameter optimization

 $\begin{array}{l} r_a = 2200 \text{ mm} \\ \alpha(\text{psuedo-Rowland}) = 88.5^{\circ} \\ k_0 = 3600 \text{ mm}^{-1} \\ a_1 = 1.6003 \text{ mm}^{-2} \\ a_2 = 6.818 \times 10^4 \text{ mm}^{-3} \\ a_3 = 2.70 \times 10^{-7} \text{ mm}^{-4} \\ R = 84043.4 \text{ mm} \\ \text{optimized at } 930 \text{ eV}, \text{ m} = +3, r_b(930 \text{ eV}) = 3469.03 \text{ mm}, \text{ blaze angle} = 4.2^{\circ} \end{array}$

Courtesy of Joe Dvorak

SLAC

LCLSII RIXS Spectrometer, High Resolution Mode $eV_{opt}=930$, $m_{opt}=3$, k=3600 mm⁻¹, $\alpha=88.5$, $a_1=1.60$ mm⁻², $a_2=6.82E-04$ mm⁻³, R=84043.4 mm, $r_a=2200$ mm

XPCS X-ray Photon Correlation Spectroscopy

LCLS-II Science Opportunity:

 Connect spontaneous fluctuations, dynamics and heterogeneities on multiple length- and timescales to material properties

Significance & Impact

- Electronic structure dynamics
- Chemical heterogeneity/dynamics
- Phase transitions

LCLS-II Strengths & Challenges

- High rep rate
- Coherence (energy resolution) near FT limit
- Sub-Nanosecond 2-pulse technique (FEL)

NEH 2.2 Beamline layout

FEE H 1.1 TMO H 1.2 TXI

Front End Enclosure & Near Experimental Hall

NEH 2.2 Hutch complete, FY 2023

Challenges of high resolution soft x-ray RIXS

Source requirements

- Small x-ray spot, not good for FELs
- Limited flux at 3rd generation light sources

Engineering challenges

- Grating with excellent
 quality
- Long detector arm
- Very high detector spatial resolution
- Excellent stability

Collection efficiency

 Low fluorescence yield, ~ 10⁻³

SLAC

 Very low collection efficiency, ~ 10⁻⁵

Efforts to improve the throughput/resolution

Source requirements

- Small x-ray spot, not good for FELs
- Limited flux at 3rd generation light sources

Engineering challenges

- Grating with excellent quality
- Long detector arm
- Very high detector spatia resolution
- Excellent stability

 Small pixel, counting centroiding

Collection efficiency

- Very low collection efficiency, ~ 10⁻⁵
- Stimulated emission
- Transition Edge Sensors

Alternative: convert photons to photoelectrons

Proposed solution: convert photons to photoelectrons!

PAX (Photoelectron Analysis of X-rays) and M. O. Krause

(1)

Basis and characterics of method

The principle of the method is simple and consists of converting the x-rays under study into photoelectrons which are then analyzed in a suitable instrument according to energies and flux.

Given a known energy level E_B of some converter atom, free or bound, the energy hv of the photon is obtained from the kinetic energy $E_{e,kin}$ of the photoelectron according to

 $hv = E_{R} + E_{e,kin}$

Transuranium Research Laboratory Oak Ridge National Laboratory Oak Ridge, Tennessee 37830

Test experiment: CoO

Electronic Structure of CoO Nanocrystals and a Single Crystal Probed by Resonant X-ray Emission Spectroscopy

Matti M. van Schooneveld,^{*,†} Reshmi Kurian,[†] Amélie Juhin,^{†,‡} Kejin Zhou,[‡] Justine Schlappa,[‡] Vladimir N. Strocov,[‡] Thorsten Schmitt,[‡] and Frank M. F. de Groot^{*,†}

Pilot study: Cobalt oxide Step 2: PES from CoO and RIXS map retrieval

• Convolved it with the analyzer response (the *4f* peaks): very good fit

Comparison of first test to grating VLS spectrometer

Comparison (per shot) between grating spectrometer and PAX

Parameter	VLS	PAX	
# photons/shot	2 x 10 ¹⁰	2 x 10 ¹⁰	
Fluence mJ/cm ²	25	0.25	
F yield	10 ⁻³	10 ⁻³	Big gain for PAX
Al foil transmission	0.8	0.8	
Collection efficiency	10-6	2.5 x 10 ⁻²	
Diffraction efficiency	2.5 x 10 ⁻²		
Conversion to e-	-	3 x 10 ⁻²	→ • Similar
Detection efficiency	0.8	0.8	
Analyzer transmission		10-5	 Target for
Estimated ph/e-	0.32	0.096	improvement
Measured ph/e-	0.15	0.05	-

si ac

VLS signal rate is 3 times higher than PAX (same # photons) PAX signal rate is 30 times higher than VLS (same fluence) ₂

Advantages

Simulations

SLAC

26

- Signal rate is already comparable to grating-based RIXS
- Various improvement schemes can boost signal rate much higher: fresh Au evaporation, electrical bias
- Path towards efficient RIXS with ~200 meV looks good
- Path towards very high resolution possible, needs testing, possibly at BL 13-1 at SSRL in the fall
- Opportunity to do RIXS at any edge appears possible with no modification of the spectrometer

Acknowledgements

SLAC

- Daniele Cocco
- Frank O'Dowd
- Joe Dvorak
- Scott Coburn
- Serge Guillet
- Ted Osier
- Hengzi Wang
- Jim Defever
- and many others

- Ming-Fu Lin
- Dan Damiani
- Bill Schlotter
- Josh Turner
- Dennis Nordlund
- Hirohito Ogasawara

THANK YOU !

Key Beamline Performance Requirements

Parameter	Range	Comment
Photon Energy Range SXU [eV]	250-1600	Cover the C, N, O <i>K</i> -edge, L-edge of 3 <i>d</i> transition metals, <i>M</i> -edge of rare earths
Bandwidth Control [RP, resolving	50,000; 10,000	Required for RIXS: 2 x FT limit
power]	5,000	Required for all other techniques: < 2 x FT limit
Experimental Spot Size Range	2 4000	Spot size adjustable to the interaction point
a. Horizontai [µm]b. Vertical [µm]	3-1000	at each endstation
Lasers	Visible to THz	For correlated materials
	Visible to 2.4 µm	For chemistry
Synchronization [fs]	<10	

chemRIXS endstation

Capabilities:

- Variable x-ray spot
- Wide range of laser wavelengths
- (Semi) Automated sample delivery
- Arrival Time Monitor

qRIXS endstation

Capabilities:

- Variable x-ray spot
- Wide range of laser wavelengths
- Automated sample delivery

Experiment schematic

XAS in transmission mode Energy (eV) cupie x-ray Diode Liquid film -0 **XES and RIXS** hν_{in} Detector Liquid jet XES. hν_{out} Diode Grating -535 Oxygen 1s

S. Schreck, et al., Struct. Dyn., 1, 054901, 2014

XAS: X-ray Absorption Spectroscopy XES: X-ray Emission Spectroscopy RIXS: Resonant Inelastic X-ray Scattering

SLAC

32

Wernet et al, Nature **520**, 78 (2015)

Science motivation: Photocatalysis

- Key questions:
 - How do photogenerated carriers catalyze chemical reactions?
 - How does charge separation, transport and localization occur on ultrafast time scales?
 - For systems in a photoexcited state, how does the nuclear structure and local defects influence the catalytic process?

R. Saravanan, Francisco Gracia and A. Stephen, Springer, Nanocomposites for Visible Light-induced Photocatalysis

SL AC

chemRIXS Requirements

Key requirements:

- Vacuum: 10⁻⁴ Torr (jets) to <10⁻⁸ Torr (solids)
- Spectrometers: grating and transition-edge sensor, 2000 RP
- Point detectors: avalanche photodiode and microchannel plate: 1 MHz readout rate
- Sample Viewing: on-axis & perpendicular ; infrared illumination
- Develop large-area sheet jets to best utilize x-rays
- Automated delivery

Science motivation: Quantum Materials

- Key questions:
 - How does the interplay between constituent entities lead to emergent behavior?
 - What is the spectrum of the collective excitations and how do they evolve with temperature, strain, magnetic field, tailored optical excitations, etc.?
 - Can we understand and control the properties of these materials?
 - How do spontaneous fluctuations and heterogeneities affect macroscopic behavior?

Spectrometer schematic

X-ray emission spectrometer on a rotatable platform Polarimeter 2D detectors **Grating Chamber** Parabolic Mirror Chamber ~6 m Sample Chamber Incoming x-rays

- An extra **parabolic mirror** is added to collimate horizontally the beam
 - Increase the detector acceptance
 - Reduce/eliminate inter-plane aberrations (smile profiles)
 - Make use of Multilayers for polarimetry studies feasible

qRIXS Requirements

- Sample chamber capable of supporting XAS, REXS
- UHV (<3 x 10⁻⁹ Torr), Low Temperature (20 K)
- Laser in-coupling: support of wavelengths from visible to THz
- Continuous rotation of spectrometer arm: 40 150 degrees
- Overall arm length: maximum length is fixed to 6000 mm
- Reach RP of 50,000 & 1 keV, option for ~10,000 (second grating)
- Polarization analysis
- Provisions for XPCS
- Design guideline
 - Make the spectrometer as simple as possible to operate with the minimum number of actuators (ideally one) to change the energy

What is PAX?

- PAX stands for "Photoelectron spectrometry for Analysis of X-rays"
- Introduced by Manfred O. Krause. Oak Ridge National Laboratorv

1.3 FLUORESCENCE YIELDS FOR K, L, AND M SHELLS

Jeffrey B. Kortright

M. O. Krause, "Atomic Radiative and Radiationless Yields for K and L Shells," J. Phys. Chem. Ref. Data 8, 307 (1979).

M. O. Krause and J. H. Oliver, "Natural Widths of Atomic K and L Levels, Kα X-Ray Lines and Several KLL Auger Lines," J. Phys. Chem. Ref. Data 8, 329 (1979).

What is the difference between Spectrometry and Spectroscopy?

 Spectroscopy is the science of studying the interaction between matter and radiated energy while spectrometry is the method used to acquire a quantitative measurement of the spectrum.

How to retrieve the RIXS spectrum with the 4f doublet?

- Using e.g. 4f of Au should be trivial: 2 Gaussians (appr.)
- Using the Fermi edge needs more study: numerical simulation to investigate signal-to-noise ratio The problem of de-convolving a spectrum from a known response function is well-known and various stable iterative algorithms exist.

The concept has been used...

SLAC

41

New soft X-ray beamline BL07LSU at SPring-8

Susumu Yamamoto,^{a,b} Yasunori Senba,^c Takashi Tanaka,^d Haruhiko Ohashi,^c Toko Hirono,^c Hiroaki Kimura,^c Masami Fujisawa,^{a,b} Jun Miyawaki,^{a,b} Ayumi Harasawa,^{a,b} Takamitsu Seike,^c Sunao Takahashi,^c Nobuteru Nariyama,^c Tomohiro Matsushita,^c Masao Takeuchi,^c Toru Ohata,^c Yukito Furukawa,^c Kunikazu Takeshita,^c Shunji Goto,^c Yoshihisa Harada,^{a,b} Shik Shin,^{a,b} Hideo Kitamura,^d Akito Kakizaki,^{a,b} Masaharu Oshima^{b,e} and Iwao Matsuda^{a,b}*

Precision measurement of the conversion electron spectrum of 83m Kr with a solenoid retarding spectrometer^{*}

Pilot study: Cobalt oxide Step 1: Au characterization with direct beam

4f_{7/2} 2500 4f_{5/2} tensity [a.u. 2000 Fermi Intensity [a.u.] edge 1500 20 15 10 5 0 Binding energy [eV] 1000 500 100 95 90 85 80 Binding energy [eV]

4f peaks in Au. Inset: valence band spectrum. The sharp 4f resonances represent the response function of the converter-analyzer system and are used to encode the spectrum of the inelastically scattered x-rays. If very high resolution is desired the region in the vicinity of the Fermi edge could be used instead.

Comparison to grating-based RIXS

PAX and M. O. Krause

Fig. 9. The general photoelectron spectrum, exemplified by Ar L, M(CuL). The spectrum can be interpreted as an atomic-level spectrum, Ar $L, M(Cu L\alpha)$, or as an x-ray spectrum, Ar 2p(Cu L). Peaks ϵ, l arise from excitation of a 3p electron concomitant with the ionization of an L or M electron.

PAX is demonstrated. Multiple improvement options possible:

Maximize throughput for medium resolution (~0.5 eV) experiments using the *4f* peaks of Au

Maximize throughput for high resolution (30 meV) experiments using the Fermi edge in Au/Pt

Variable, user-defined

$$\Delta E_{res} = \sqrt{\Delta E_{mono}^2 + \Delta E_{atom}^2 + \Delta E_{det}^2}$$