IRIXS: an Intermediate X-Ray Energy RIXS Spectrometer

Current status and recent developments

Hlynur Gretarsson - P01 High Resolution Dynamics Beamline, DESY 11th International Conference on Inelastic X-ray Scattering Stony Brook University, June 2019

Special thanks to...

DESY-P01: H. Gretarsson, <u>H. Yavas</u> (SLAC), H.-C. Wille, S. Mayer*

F.-U. Dill*, and C. Hagemeister**

MPI-Stuttgart: B. Keimer, G. Khaliullin, B. J. Kim (Postech), J. Bertinshaw, H. Suzuki, Lichen Wang, K. Ueda (U. Tokyo), H. Kim (Postech), J. Chaloupka (Masaryk University), Huimei Liu, and M. Minola

DESY

APS: T. Gog, Jungho Kim, A. Said, E. Kasman, and XianRong Huang (X-Ray Optics)

ESRF: R. Verbeni (X-Ray Optics)

MAXIV: K. Klementiev (ray tracing XRT)

Beamline P01 DESY goal is 5000 hours to users/year

NRS (50%)

Phonon DOS Magnetic structure

IXS (50%)

Electronic DOS Magnetic excitations

Strong support for x-ray spectroscopy at P01

Partnership with an outside institute offers a unique scientific opportunity

Prof. Hao Tjeng
Imaging orbitals in TMO's
using XRS
MPI-Dresden
Hasan Yavas
Nature Physics (2019)
Brett Leedahl
Submitted (2019)

Prof. Bernhard Keimer
Collective modes in 4d TMO's
using RIXS
MPI-Stuttgart
Hakuto Suzuki
Nature Materials (2019)
Hlynur Gretarsson
PRB (2019)

Use L_3 -edge RIXS to measure collective modes (e.g. magnons)

Beamlines split into soft and hard x-rays with no overlap in energy

Figure adapted from: Luuk J. P. Ament, Thomas P. Devereaux, et al., RMP (2011)

	Soft	Tender	Hard
E (keV)	<1	1:5	>5
Optics	<u>Grating</u>	Grating /Crystal	Crystals
Vacuum	UHV	HV	<u>v</u>
Windows	No	No	<u>Yes</u>
Location	Spring-8, TPS, MAXIV, ESRF, Diamond, NSLSII		Spring-8, ESRF, Soleil, APS

There is a need for a RIXS beamline that can measure at the Ru L_3 -edge

Current Status

The IRIXS Project (2016-2026)

Beamline dedicated to 4d TM's materials (e.g. E=2.840 keV, Ca₂RuO₄) with a 20 meV resolution

2016

Instrument design Hard x-ray RIXS Crystal optics Si and SiO₂

2017

2x undulator
First beam
(2840 eV)
Spectrometer
(IRIXS v1)
HRM installed

2018

4B-HRM in use
Resolution
100 meV
Commissioning
CA-spectrometer
(IRIXS v2)

2019 - current

Commissioning
CA-spectrometer
(IRIXS v2)
More R&D
(IRIXS v3)

Overview of our IRIXS instrument ($\Delta E=100 \text{ meV } @ 2840 \text{ eV}$)

Spectrometer based on a diced analyzer – Suffers in resolving power but easy to operate

DCM

Si (111) α=32° 0.6 eV @ 2840 eV

HRM

Dispersive 4B (+--+)
Si (111) α=20°
60 meV @ 2840 eV

KB + Spectrometer

IRELEC mirror SiO₂ (10-2) 60 meV 2D-pixel iKon L (13x13µm²)

Misc.

Huber (5D)
ARS cryostat 10–300K
(Cu braids)

Dispersive (+--+) 4-bounce HRM giving 60 meV @ 2840 eV

Reflections close to backscattering are not available, a problem well known in the field of NRS

4B-HRM for NRS: M. Yabashi, et al., Rev. Sci. Instrum. (2001)
MERIXS: Yu. V. Shvyd'ko, et al., J. Electron Spectrosc. Relat. Phenom. (2013)

Dispersive (+--+) 4-bounce HRM giving 60 meV @ 2840 eV

Reflections close to backscattering are not available, a problem well known in the field of NRS

Yu. Shvyd'ko, X-Ray Optics – High-Energy-Resolution Applications, vol. 98 of Optical Sciences (2004) J.W.M. DuMond, Phys. Rev. (1937)

$$b = -\sin(\theta_B - \alpha)/\sin(\theta_B + \alpha)$$

No offset of the HRM beam Smaller bandwidth compared to 2B Reflectivity is low

Good agreement with XRT results

Ray tracing simulations of our 4-bounce HRM

Angular beam profile is not intact, the monochromator acts as a prism!

Incoming beam is highly collimated ...but broad energy bandwidth

Outgoing beam has low energy bandwidth ...but badly collimated

Reflection from asymmetric crystals can alter the beam profile

A complicated energy/divergence distribution emerges

Figures are adapted from: X. R. Huang, et al., J. Appl. Cryst. (2012)

Implications for the focusing optics

KB mirror will convert the large angular dispersion into real space, creating a "rainbow"

Ray-tracing results confirm the virtual source problem

Experimentally we get 150 µm in vertical height Our beam is therefore still scrambled

Performance of the IRIXS spectrometer

Diced analyzers away from backscattering suffer from large Johann error

Finite pixel size give use >1 eV window

At these angles mask is crucial $\theta_B = 73^{\circ} \rightarrow \text{ Johann error}$ ~ 15 meV (100 meV)

Dispersion rate of our spectrometer:
6 meV/pixel (0.4 meV/μm)
Source size error is 60 meV for 150 μm

$$\Delta E^{2} = \Delta E_{i}^{2} + \Delta E_{a}^{2} + \Delta E_{g}^{2}$$
$$\Delta E^{2} = 60^{2} + 60^{2} + 60^{2}$$

Estimated ΔE is 100 meV

ID20 ESRF: M. M. Sala, et al., J. Synchrotron Rad. (2018)

Performance of the IRIXS spectrometer

There is still a room for improvements

Simulations based on the XRT code from:

D. Ketenoglu, H. Yavas, et al., J. Synchrotron Rad. (2015)

Intrinsic resolution is 55 meV

Eliminate the source size error improve the incoming bandwidth → 70 meV

Recent Developments

Revisiting the HRM with a nested concept

We need a "non-dispersive" monochromator that can give small bandwidth

"...negligible VS spread": X. R. Huang, et al., J. Appl. Cryst. (2012)

Revisiting the HRM with a nested concept

We need a "non-dispersive" monochromator that can give small bandwidth

Sapphire boules from Rubicon Oriented, cut, and polished at APS

[A. Said, E. Kasman, and XianRong Huang]

A new (C)A-Spectrometer based on Montel optics

Spherical analyzer has limitations – poor efficiency when looking at magnons

HRM

Nested 4B (+ + - -) Si(111) α =25° Al₂O₃(111) α =-60° 30 meV @ 2840 eV

Spectrometer
Montel
Incoatec (100µrad)

A-spect. SiO₂(10-2)
Darwin 60μrad
100 meV @ 2840 eV

CA-spect. $SiO_2(111)$ α =-67° Darwin 50µrad 35 meV @ 2840 eV

A new (C)A-Spectrometer based on Montel optics

Spherical analyzer has limitations – poor efficiency when looking at magnons

HRM

Nested 4B (+ + - -) Si(111) α =25° Al₂O₃(111) α =-60° 30 meV @ 2840 eV

Spectrometer
Montel
Incoatec (100µrad)

A-spect. SiO₂(10-2)
Darwin 60μrad
100 meV @ 2840 eV

CA-spect. $SiO_2(111)$ α =-67° Darwin 50µrad 35 meV @ 2840 eV

Performance of the A-Spectrometer

Alignment has to be done close to 90° – Elastic scattering is very weak

Large variations in the energy

Measured slope error: <15 µrad rms

Translates to worse performance

Correction → **Theoretical value**

Conclusion

Magnon in a microcrystal ($SrRu_2O_6$) $\Delta E = 150 \text{ meV}$

IRIXS = <u>intermediate x-ray energy</u> <u>RIXS</u> located at P01 DESY and run by MPI-Stuttgart

Current: Resolution of $\Delta E = 100 \text{ meV}$ at Ru L₃-edge (2840 eV)

Future: Spherical Analyzer and/or CA-Spectrometer $\Delta E = 70 \text{ meV}$

H. Suzuki, H. Gretarsson, H. Ishikawa, K. Ueda, Z. Yang, H. Liu, H. Kim, D. Kukusta, A. Yaresko, M. Minola, J. A. Sears, S. Francoual, H.-C. Wille, J. Nuss, H. Takagi, B. J. Kim, G. Khaliullin, H. Yavas & B. Keimer, Nature Materials 18, 563–567 (2019)

Thank you

Contact

DESY. Deutsches

Elektronen-Synchrotron

www.desy.de

Hlynur Gretarsson

FS-PETRA-S

hlynur.gretarsson@desy.de

+49-040-8998-4420

Future Perspectives

Are there other options out there?

A spectrometer with a large angular dispersion rate is needed

"...imaging a spectrum of photons...": Y. Shvyd'ko, et al., PRA (2013)

Is it too good to be true?

Extensive ray tracing work by <u>Joel</u> supports 20 meV resolution

Caveat: Stepping into the unknown. Will require considerable R&D

