In adsorption on Si(112) and its impact on Ge growth

The change of the Si(112) surface morphology and structure induced by In adsorption, as well as the impact of In preadsorption on the growth kinetics and island morphology in Ge/Si(112) epitaxy, has been investigated by means of low-energy electron microscopy and diffraction. The intrinsically faceted Si(112) surface is smoothed upon In saturation. In contrast to a previously reported \((7 \times 1)\) reconstruction (reported in a recent work of Gai et al.), we observe a \(\left\{(3 + x) \times 1\right\}\) superstructure, with \(x \approx 1/2\). This is attributed to the coexistence of \((3 \times 1)\) and \((4 \times 1)\) building blocks with In vacancies. The presence of such vacancy rows is confirmed by the saturation of the \(\left\{(3 + x) \times 1\right\}\) structure at about 0.8 monolayers. Ge growth on In-saturated Si(112) leads to the formation of 3-D islands, the morphology of which depends on the growth temperature. At 450°C, isotropic and dashlike islands are observed, whereas at 500°C, larger islands with a triangular outline are found. The orientation of the side facets of these triangular islands have been identified to be \((111)\), \((013)\), and \((103)\). The dependence of the island density on the growth temperature indicates an enhanced Ge surface diffusion, as compared with growth on bare Si(112).

Introduction

The adsorption of group-III metals on Si and Ge surfaces has been intensively studied for (001) and (111) surfaces. The technological potential for this class of material systems is mainly based on the surface passivation that is achieved by the adsorption of the trivalent metals on the group-IV semiconductors. Such a passivation can play an important role in surface functionalization, for example, for inorganic/organic material interfaces, where the interaction between the inorganic substrate and organic adlayers is modified by the group-III substrate termination. Another field of application is Ge/Si heteroepitaxy, where the growth mode has been shown to be drastically influenced if the surface is passivated prior to growth [1–9]. As Ge/Si growth is usually performed at elevated temperatures that provide sufficient activation energy for site-exchange processes [10], and since it is energetically favorable to keep the surface passivated, the group-III metals will, in general, segregate to the surface during Ge/Si growth [5, 11].

In contrast to low-index surfaces like Si(111) and Si(001), vicinal surface orientations like Si(112) or Si(113) provide less symmetry, which can be exploited for the growth of anisotropic nanostructures such as quantum wires. For instance, Ge nanowires can be grown on bare Si(113) in a narrow temperature window [12, 13]. In the case of Ga preadsorption on Si(113), the surface is completely decomposed into (112) and (115) facets, which can be employed to increase the density and to change the orientation of the Ge wires [14]. Hence, for a better understanding of the influence of metal preadsorption on subsequent Ge growth, the investigation of the adsorbate-indue change in substrate surface reconstruction and morphology is an important issue [15, 16]. For indium on silicon, many studies can be found for (111) and (001) surface orientations. In the case of In/Si(112), the only report is by Gai et al. [17], who found that the intrinsically faceted [18, 19] Si(112) surface is smoothed upon In adsorption and exhibits a \((7 \times 1)\) reconstruction. In this paper, we revisit the In/Si(112) surface structure and show that the surface reconstruction does not have a \((7 \times 1)\) but rather a \(\left\{(3 + x) \times 1\right\}\) periodicity, with \(x\) close to 1/2.

The impact of group-III metals on Ge growth on Si(112) has been already studied for Ga. Ga adsorption also leads to smoothing of the Si(112) surface [20, 21], and a \(\left\{(5 + x) \times 1\right\}\) reconstruction is found [22]. Subsequent Ge deposition on Ga-terminated Si(112) enables the growth
of wirelike Ge islands, whereas rather isotropic Ge islands are found for growth on bare Si(112) [22]. For In, however, no reports on the influence on Ge growth on Si(112) are found in the literature. Therefore, this paper addresses this issue and reveals the In-induced change in Ge growth kinetics and island morphology.

Experimental details

The low-energy electron microscopy (LEEM) and diffraction (LEED) measurements were performed at the LEEM/PEEM end station [23] of beamline U5UA at the National Synchrotron Light Source (NSLS), Brookhaven National Laboratory. The experiments were performed under ultrahigh-vacuum (UHV) conditions with a base pressure in the low \(10^{-10}\) mbar range. The microscope is a LEEM III by Elmitec, which is equipped with an electron energy analyzer for additional use as an x-ray photoemission electron microscope.

The silicon samples were cut from a Si(112) wafer with a miscut of less than 0.1°. After transfer into the UHV system, the samples were degassed at around 600°C for at least 12 hours to remove impurities from the surface and the sample holder. The native oxide layer was removed by several short flash heating cycles up to 1,200°C. After this procedure, a clear diffraction pattern was observed in LEED, and no contamination was obvious from LEEM images. Heating was performed by electron bombardment from the backside of the samples. The temperature was monitored with a thermocouple attached to the sample holder and with an infrared pyrometer operating at wavelengths below 1.1 μm.

Subsequently, indium was adsorbed on the clean Si(112) surface at a deposition temperature of 500°C, until In saturation coverage was reached, i.e., until the LEED pattern did not change anymore. Ge was grown onto In-saturated Si(112) at deposition temperatures between 450°C and 500°C. During Ge growth, In was co-deposited, i.e., the In flux was kept on, in order to compensate for In desorption. For the deposition of both materials, an electron beam evaporator (Omicron Triple EFM) was employed. The evaporator fluxes were calibrated in separate experiments on Si(111) substrates, via the well-known \((\sqrt{3} \times \sqrt{3})\)-R30°-In and \((4 \times 1)\)-In reconstructions and the transition of the \((7 \times 7)\) to the \((5 \times 5)\)-Ge structure on the Si(111) surface, respectively. The \((\sqrt{3} \times \sqrt{3})\)-R30° reconstruction is completely evolved at a coverage of 1/3 ML_{111} [24–26], whereas the \((4 \times 1)\) reconstruction is completely evolved at a coverage of 1 ML_{111} [25, 27, 28], where 1 ML_{111} corresponds to \(7.83 \times 10^{14}\) atoms/cm². (Here, ML stands for monolayer.) The Ge/Si(111)-(5 \times 5) structure is completed [29] at a coverage of 4 ML_{111}. In the following (if not differently stated), 1 ML refers to 1 ML_{112}, which is equal to \(5.54 \times 10^{14}\) cm⁻². Hence, 1 ML_{112} = 1/\sqrt{2} ML_{111}.

Results and discussion

In adsorption

A typical LEED pattern of the clean Si(111) surface with (111) and (5 5 12) facets is shown in Figure 1(a). All spots line up in rows along the [111] direction. Between the integer-order stripes, additional spots occur at \(n/7\) and \(n/2\) of the surface Brillouin zone (SBZ) along the [110] direction, as indicated by the red and green arrows, respectively. These fractional order spots can be assigned to a \((7 \times 7)\) reconstruction on the (111) facets and to a \((2 \times 1)\) reconstruction on the (5 12) facets [19].

Upon In adsorption, the faceted structure evolves via a disordered transition regime [a snapshot of this stage is shown in Figure 1(b)] into a flat surface with an ordered superstructure, as depicted in Figure 1(c).

The dynamics of this transition is illustrated in Figure 1(d). At the beginning of the deposition, the (00) spot becomes more intense, until it reaches its maximum at around 0.35 ML. This rise in intensity is explained in terms of surface smoothing. As the starting surface is completely decomposed into facets, there is no specular reflection along the [112] surface normal direction at all, but the (00) signal plotted here is generated from rather diffuse intensity associated with the facet spots near the center of the LEED pattern. Smoothing of the surface will therefore very likely increase the specularly reflected intensity, as observed here. An even stronger evidence for surface smoothing is given by the evolution of the facet spot intensity, which drops more or less linearly with In coverage, until it reaches a constant level (which corresponds to diffuse background intensity only) at about 0.25 ML. Although the surface seems to be smooth at this stage, it is not very well ordered, as shown from the LEED pattern in Figure 1(b). From this rather diffuse pattern, a clear indication for neither remnants of facets nor an ordered superstructure can be identified. When the indium deposit is further increased, the (00) intensity drops again. At the same time, new spots appear and become more intense, which we assign to an In-induced superstructure. As no change in the (00) intensity and in the superstructure spot intensities is observed after the exposure to around 0.8 ML, it is concluded that the newly formed structure is saturated at a coverage of about 0.8 ML. A typical LEED pattern recorded at the final stage is shown in Figure 1(c). The yellow rectangle marks a reciprocal \((1 \times 1)\) unit mesh. The three spots labeled A₁ to A₃ and the three spots labeled B₁ to B₃ have the same spacing of about 28.5% SBZ for the preparation conditions used here. This finding could, in principle, be explained by the presence of a \((7 \times 1)\) structure, as proposed by Gai et al. [17]. However, these authors could not observe \((1/7)n\) or \((6/7)n\) superstructure spots. In addition, in our experiments, no electron energies could be found where these spots occur. This leads us to conclude that the average
surface periodicity is indeed $[(3 + x) \times 1]$, with $x = 0.5$ in this case.

We assume that this “pseudoincommensurate” structure is composed of (3×1) and (4×1) building blocks, similar to the situation on the Ga/Si(112) surface. The latter mainly consists of (5×1) and (6×1) building blocks, as has been observed by scanning tunneling microscopy [20, 21], leading to a $[(5 + x) \times 1]$ LEED pattern [22]. Moreover, high-resolution LEED measurements (not shown here) prove that the value of x depends on the In coverage and adsorption temperature, which clearly rules out a (7×1) reconstruction and is detailed elsewhere [30]. A common structural element in the (5×1) and (6×1) building blocks of the Ga/Si(112) surface are Ga vacancies that produce a missing-row structure. In one (6×1) building block, only 10 of the 12 possible Ga sites are occupied. Returning to the results for In/Si(112), and assuming a similar atomic configuration as for Ga/Si(112), i.e., including one or two In vacancies per building block, a saturation coverage between 0.67 and 0.875 ML is expected for a $[(3 + x) \times 1]$ periodicity.
in agreement with our results. The similarity between the Ga/Si(112) and In/Si(112) atomic structures will be demonstrated by means of x-ray standing wave results in an upcoming publication [30].

Ge growth on In/Si(112)

As on the bare Si(112) surface [22], Ge growth on In-covered Si(112) leads to the formation of a wetting layer and, subsequently, to 3-D Ge islands. The island morphologies obtained for different growth temperatures are illustrated in the LEEM images in Figure 2. For growth at 450°C, as shown in Figure 2(a) and 2(b), essentially two island geometries are found. In addition to islands with a rather isotropic appearance, Ge islands with a dashlike shape are also observed, extending along the [110] direction. The average size of the dashlike islands is estimated to be about 150 nm in the [110] direction and 70 nm in the [111] direction. Most of the dashlike islands appear much brighter than the isotropic ones, whereas the latter tend to have a wider region with low LEEM intensity at their circumference. Since the LEEM contrast is influenced by form factors and field distortions, this finding might indicate that these two island types have different side facets that yield different intensities at the energy used here. Owing to the
small size of the islands and, thus, of their side facets, a
detailed investigation of the facet orientations with LEED, as
presented for the 500°C growth temperature below, was
not possible in our experiments.

When the growth temperature is increased to 500°C, the
surface morphology changes, as shown in Figure 2(c). Still, a
few dashlike islands elongated in the [110] direction are
observed, but most of the islands have a triangular outline,
with the longest edge along [110] and with the apex pointing
toward the [111] direction. The size distribution of these
triangular islands is rather broad. The vast majority of the Ge
is incorporated into large islands, many of which approach
or even exceed a width of 1 μm in [110] direction, as obvious
from Figure 2(c). Nevertheless, there are also many triangular
islands with a width below 350 nm, as shown in Figure 2(d).

Comparing the LEEM images for 450°C with those for
500°C, it is obvious that the island density decreases with
increasing temperature. This is readily understood in terms of
thermally activated diffusion. From a quantitative analysis of
the dependence of the island density on growth temperature,
the diffusion barrier height can be estimated within the
framework of the classical nucleation theory [31], as has been
demonstrated, e.g., in the case of Ge growth on bare and
Ga-covered Si(112) and Si(113) surfaces [22, 32]. In the
present case of Ge growth on In-terminated Si(112),
unfortunately, only a very small temperature window was
accessible in our experiments. When, on one hand, Ge was
significantly grown below 450°C, the islands became too
small and too dense for a reliable analysis. When, on the
other hand, the growth temperature was raised well above
500°C, the desorption of In from the Ge wetting layer could
no longer be compensated by In co-deposition. Hence, only a
rough estimate of the diffusion barrier height can be given
here. For 450°C, the island density is about 1.8×10^6 cm$^{-2}$,
which is comparable [22] with Ge growth on bare Si(112). At
500°C, however, the island density for Ge/In:Si(112) is
nearly twice as high (about 3.6×10^8 cm$^{-2}$) as for
Ge/Si(112). Assuming an Arrhenius behavior for island
density N, i.e., $N \propto \exp(E_A/k_B T)$, we obtain an activation
energy E_A of approximately 1.5 eV, which is significantly
smaller compared [22] with Ge/Si(112) ($E_A = 2.06$ eV) and
Ge/Ga/Si ($E_A = 2.35$ eV). According to a previously
detailed approximation [22, 32], a similarly reduced diffusion
barrier is implied. Thus, in the presence of In on the Ge/
Si(112) surface, the Ge adatom diffusion is enhanced. A
similar impact of In adsorption on surface diffusion has been
also reported for Ge/Si(111) [6].

A LEED pattern of the Ge/In:Si(112) surface after Ge
growth at 500°C is shown in Figure 3(a). It consists mainly
of a $[(3 + x) \times 1]$ pattern that is attributed to the
In-terminated Ge wetting layer, which makes up the largest
part of the surface. Within the experimental resolution, no
change for the value of x is observed, as compared with the
In:Si(112) starting surface. Hence, the periodicity (and,

presumably, the atomic structure) is virtually maintained
upon Ge wetting layer formation.

Apart from the $[(3 + x) \times 1]$ pattern, facet spots are
visible, some of which have been marked by circles in
Figure 3(a). When increasing the electron energy, these spots
move toward the directions indicated by the arrows attached
to the circles, whereas the $[(3 + x) \times 1]$ spots are stationary
on the projection screen. (Contrary to conventional LEED
systems, where scattering angles are detected, the LEEM
instrument probes the momentum transfer parallel to the
surface. Thus, diffraction spots originating from flat regions
on the surface appear at the same position for different energy
levels.) Therefore, we attribute these additional spots to
originate from Ge island side facets. The orientation of a
facet can be determined from its azimuthal orientation, i.e.,
the projection of the facet’s normal into the (112) surface
plane, and the inclination of the facet normal direction with
respect to the [112] surface normal direction. Both quantities
can be determined from a series of LEED patterns as a
function of electron energy. The azimuthal orientation is then
identified by the direction into which the facet spots move, as
indicated by the arrows in Figure 3(a). For the marked spots,
we find three different azimuthal orientations, namely, [111],
[714], and its symmetric counterpart [714]. This corresponds
to the existence of three side facets, two of which are mirror
symmetric with respect to the [111] axis. The inclination
angles have been determined from the reciprocal space maps
(RSMs) shown in Figure 3(c) and 3(d). These RSMs were
composed from line scans through the stack of LEED
patterns for different energy levels. In particular, for low
energies, the K_3-K_\perp dependence within a single LEED
pattern becomes important. This dependence has been
accounted for, which leads to the curved contours of the
RSMs. The RSM shown in Figure 3(c) was taken along the
[111] direction through the (00) spot. Therefore, all the (0n)
spots appear as vertical reciprocal lattice rods in this RSM.
Apart from these vertical rods, at least two inclined rods can
be identified, which are marked by arrows in Figure 3(c).
These oblique rods are tilted toward the [111] direction by
20.3°, which is in reasonable agreement with the inclination
of 19.5° expected for a (111) facet. In Figure 3(d), an RSM
taken along the [714] direction through the (01) spot is
shown. Again, some vertical rods appear, which originate
from the (01) spot in the center and the (31) and (31) spots
near the edge of the RSM. Some other weak vertical rods
appear in between, which are attributed to $[(3 + x) \times 1]$
superstructure spots that are close to the plane of the RSM. In
addition, one inclined rod marked by arrows is clearly
visible. Its tilt angle of 24.6° toward the [714] direction
agrees well with the angle of 25.4° expected for a (013) facet.
Its symmetric counterpart, then, is a (103) facet. Although
there are indications for additional oblique rods in both
Figures 3(c) and 3(d), none of these is sufficiently intense to
unambiguously be identified. Therefore, we conclude that the
Ge islands are mainly terminated by (111) and {103} side facets. A real-space image of a typical Ge island is shown in Figure 3(b), where the facet geometry is superimposed. The top (112) facet appears bright, whereas all side facets are dark. This is in agreement with geometrical LEED simulations (not shown here), which imply that, at the
electron energy used here, neither the (111) nor the {103} facets contribute to the (00) intensity and, thus, to the bright-field LEEM intensity.

Note added in proof: The In-terminated {103} facets observed here have most likely a (1 × 1) reconstruction [33], as this type of facet has been shown to be energetically very favorable in theoretical work [34], and such facets are also found after In adsorption on bulk Ge(001) [35] and bulk Ge(113) [36].

Conclusion
The adsorption of In on Si(112) and its influence on the surface morphology and atomic structure, as well as its impact on subsequent Ge growth, has been studied with LEEM and LEED.

The initially faceted Si(112) is smoothed upon In adsorption, and a complex superstructure is formed. In contrast to a previously proposed (7 × 1) structure [17], our results indicate the existence of a “pseudooincensurate” [(3 + x) × 1] structure that consists of (3 × 1) and (4 × 1) building blocks, similar to GaSi(112), where a [(5 + x) × 1] is reported [22] that consists of (5 × 1) and (6 × 1) unit cells [20, 21]. The In:Si(112)-(3 + x) × 1 structure saturates at a coverage of around 0.8 ML, which agrees with a vacancy “pseudooincensurate” model.

For subsequent Ge growth, a strong influence of In preadsorption on the island morphology has been found. Whereas on bare Si(112), islands with a rather circular outline have been reported [22], anisotropic islands are observed in the presence of In, the shape, size, and density of which depend on growth temperature. At 450°C, dashlike islands are formed, whereas at 500°C, mainly triangular islands occur, the side facets of which have been determined to be of (111) and {103} orientations.

Acknowledgments
The authors would like to thank P. Sutter, J. T. Sadowski, and P. Zahl for technical support at Brookhaven National Laboratory. This work was supported in part by the Deutsche Forschungsgemeinschaft under Grant FA 363/6 and in part by the Physics International Postgraduate Program of the University of Bremen (supported by the German Academic Exchange Service). The experiments were carried out in whole at the Center for Functional Nanomaterials, Brookhaven National Laboratory, which is supported by the Division of Materials Sciences and Division of Chemical Sciences, U.S. Department of Energy, under Contract DE-AC02-98CH10886.

References

Received September 30, 2010; accepted for publication April 5, 2011

Moritz Speckmann Institute of Solid State Physics, University of Bremen, Otto-Hahn-Allee 1, 28 359 Bremen, Germany (mspeckmann@ifp.uni-bremen.de).

Thomas Schmidt Institute of Solid State Physics, University of Bremen, Otto-Hahn-Allee 1, 28 359 Bremen, Germany (tschmidt@ifp.uni-bremen.de).

Jan Ingo Flege Institute of Solid State Physics, University of Bremen, Otto-Hahn-Allee 1, 28 359 Bremen, Germany (flege@ifp.uni-bremen.de).

Jens Falta Institute of Solid State Physics, University of Bremen, Otto-Hahn-Allee 1, 28 359 Bremen, Germany (falta@ifp.uni-bremen.de).