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INTRODUCTION 

The analysis of magnetic fields produced by currents is an essential part of the 
design and construction of superconducting magnets. Beyond this, of course, a broad 
range of engineering judgements is involved, such as those concerning cost, materials, 
mechanical design, machining, production, assembly, testing, etc. These are not taken 
up in this summary, nox is the use of iron in the magnetic field. 

A static magnetic field is always a three-dimensional configuration in space. 
While the basic physical principles are well understood their detailed analytical ap- 
plication to a whole three-dimensional magnet can rapidly become unmanageable, even 
with computers, unless appropriate simplifications and idealizations are introduced. 

For accelerator and many other applications transverse magnetic fields are used 
to guide and focus beams of charged particles. When the beam cross section dimensions 
are small compared'to the radius of curvature of the beam it is often an appropriate 
simplification to use a Go-dimensional analysis to make the initial design of a mag- 
net. Three-dimensional features, such as end effects, can later be taken into accounr 
as necessary along with engineering modifications once an idealized two-dimensional 
design has been chosen. 

It should be clearly recognized, however, that certain,. possibly very useful, 
three-dimensional patterns, such as spiral or alternating spiral fields, are expressly 
left out of consideration when we restrict ourselves to an idealized two-dimensional 
design. 

The main purpose of the present paper is to describe and illustrate some of the 
methods now available for the analysis of two-dimensional fields. 

I. TWO-DIMENSION& FIELDS PRODUCED BY CURREmS 

Required Field and Aperture 

.The componen;s, Hx and Hy, of the transverse field required in a beam handling 
X,Y plane normal to the beam and the beam cross section will 

The primary problem is 
magnet will lie in an 
lie'within a specified "aperture" region in this X,Y plane. 
to find an arrangement of longitudinal currents, assumed infinitely long, straight 
and perpendicular to the X , Y  plane (current filaments, current sheets, or solid cur- 
rent "blocks") lying outside the aperture which will produce the required two-dimen- 
sional field within the aperture. 
inverse way - i.e., by assuming a distribution of current magnitudes and locations 
and calculating the field that would be produced, then modifying the assumed currents 
and/or their locations until the calculations give the required field with sufficient 

Usually this primary problem is solved in an 

* 
Work performed under the auspices of the U.S. Atomic Energy Commission. 
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, Obviously t h e  e f f ic iency  of t h i s  procedure w i l l  be g r e a t l y  enhanced i f  the 
urrent  d i s t r i b u t i o n s  can be guided by idealized but mathematically precise 
solut ions such a s  those which can be obtained by the methods described h e r e .  

- d  

ana . 

These methods a l s o  enable u s  t o  obtain ana ly t ica l  solut ions t o  a wide range of 
secondary problems i n  t h e  idealized case - f o r  example, finding the ex terna l  f i e l d ,  
t h e  f i e l d  within conductors, the f i e l d  forces act ing on conductors, and the  energy . 
stored in  the magnetic f i e l d .  

Complex Representation 

Maxwell's equations f o r  a s t a t i c  two-dimensional magnetic f i e l d  p a r a l l e l  t o  t h e  
X,Y plane may be w r i t t e n  i n  the form 

- - - =  ax ay 

0 ¶ '  

- + - =  a% 
ax a Y  

where o(X,Y) is  the dens i ty  of current'normal t o  the X,Y plane and B = H. 
(3 = constant ( including 0) ,  these two Maxwell equations may be ident i f ied '  with t h e  
- two Cauchy-Riemann equations 

When 

which are necesszry and suf f ic ien t  f o r  

F r l J + i V  

t o  be an ana ly t ic  funct ion,  F(Z), i n  any region of the  Z = X + iY plane. 
seen tha t  the  i d e n t i f i c a t i o n  may be made by s e t t i n g  

It is  e a s i l y  

u = Ky - 2nox 

v = $ + 2 n d Y  9 

or 

* F = R - Z r r o Z  , 
where Z* = X - i Y  and 

E Ky + is = i<)Bx - iyI> 

i s . t a k e n ,  by d e f i n i t i o n ,  as the complex f i e l d .  

1. R.A. Beth, J .  Appl. Phys. 38, 4689 (1967). 
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.Field as  a Complex Power Series 

In  any region without currents  (e.g., i n  a magnet ape r tu re ) ,  CT = 0 and H ( Z ) G s  
i t s e l f  an ana ly t i c  function without s i n g u l a r i t i e s .  Hence two-dimensional f i e l d  
t h a t  s a t i s f i e s  Maxwell's equations can be k i t t e n  a s  a complex power series 

m 

2 H(Z) = H1 4 H2Z -t- H3Z 1- . .. .. = 1 HnZn-l 

n=l 
(5) 

about any point within the regular  region as o r ig in .  The complex coe f f i c i en t s ,  G, 
completely specify W(z) ; thus H i  s p e c i f i e s  the dipole  component , H2 the quadrupole, 
H3 the sextupole, and, i n  general ,  % t he  2n-pole component. 

' 

For many appl icat ions the desired f i e l d  w i l l  be antisymmetric above and below 
some "median plane" through the o r i g i n .  When the X-axis represents  the median plane 
a l l  of the Rn coe f f i c i en t s  are real. 

Current Filaments 

2 The magnetic f i e l d  a t  Z due t o  a fi lament current I at  z i s  

LI H(2) = - = Hy+ iI$ z - z  

Thus an isolated fi lament current  I c o n s t i t u t e s  a s i m p l e  pole with residue 2 1  f o r  the 
two-dimensional magnetic f i e l d  defined by Eq. (4). 

Since the in t eg ra l  of H(2) around any closed contour C i n  the Z-plane i s  2ni  
times the sum of t he  residues within C ,  i t  follows tha t  

where IC is the t o t a l  cu r ren t  within C. 

Current Sheets 

If d I  i s  the filament current  flowing along the elements of a cylinder perpen- 
then the f i e l d  d i scon t inu i ty  between'the dicular  t o  the Z-plane i n  the i n t e r v a l  dz 

r i g h t  and l e f t  s ides  of dz can be shown from ( 6 )  t o  be3.  

. .  d I  
% ( z )  - % ( z )  = 4rii - dz 

where ER(z) and %,(z)  a r e  the l i m i t  values  a t  the cyl inder  where 2 = z of the f i e l d s  
ER(Z) and HL(Z) i n  the regions t o  the r i g h t  and l e f t  of t h e  cy l ind r i ca l  current sheet .  

2 .  R.A. Beth, J .  Appl. Phys. 37, 2568 (1966). 

3 .  R.A. Beth, .Brookhaven National Laboratory, Accelerator Dept. Report 
. AADD-102 (1966). 
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When the current densi ty  i s  uniform (U = constant) ,  a s t r a i g h t  conductor, repre- 
sented by i t s  cross sect ion i n  the Z-plane, may be ca l led  a current  block. 
a current  block the function F(Z) i n  Eq. (3) can be shown t o  be1 

For such 

c 

where z = x + i y  represents t h e  points of the cross-section boundary, and z* = x - iy .  
Then t h e  f i e l d s  inside and outs ide the conductor are 

. .  These a r e  both given by the s ing le  formula 

H = io ( '* '* ) dz  
z - z  

C 

+r .it. 
s ince  the residue of z /(z - 2 )  is  Z f o r  Z = Z i n  and is zero f o r  Z = ZOut. 

F ie ld  Forces 

The resu l tan t  f i e l d  force  acting on a unit  length of a l l  t h e  c u r r e n t s  within an 
a r b i t r a r y  contour C i n  the 2-plane can be shown435 t o  have X and P components which 
a r e  given by the  contour i n t e g r a l  

Similarly the force df act ing on uni t  length of a current  sheet  i n  the  in te rva l  
dz is  given by 6 

which, using (8), can be w r i t t e n  in  the form 

- df - - iti(z) df  
dz 
- -  

4.  R . A .  Beth, Brookhaven National Laboratory, Accelerstor Dept . Report 
AADD-107 (1966) . 

5. R . A .  Beth, i n  Proc. 2nd Intern.  Conf. Magnet Technology, Oxford, 1967, 
p .  135. 

6. R.A. Beth, i n  Proc. 6th Intern.  Gonf. High Energy Accelerators, Cambridge, dplass., 
. - 1967, p. 387. 
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where 

i s  the  mean of the l i m i t s  of the l e f t  and r i g h t  f i e l d s  at the cur ren t  sheet. 

Potent ia ls  

In any simply connected region without currents the in tegra l  of the analyt ic  
function H ( 2 )  between t w o  points is independent of the path of integrat ion.  The 
vector 'and sca la r  po ten t ia l s ,  A(X,Y) and n(X,Y),  are  then given by 

0 
R=l 

where H i s  defined as i n  ( 4 )  and 2 = 0 lies i n  the regular region. Conversely, the 
f i e l d  i s  given by 

The curves A = constant  give the l i n e s  of force of the magnetic. f i e l d  and a r e  every- 
where orthogonal. t o  t h e  sca la r  equipotent ia ls ,  = constant. 

It w i l l  be seen t h a t  the vector p o t e n t i a l  A(X,Y) i n  t h i s  two-dimensional case 
is  r e a l l y  only the component of the three-dimensional vector po ten t ia l  normal t o  
the  f i e l d  plane; the  o ther  two components l i e  i n  the field plane and are  constant. 

Field Energy 

The vector and scalax poten t ia l s  

A = A(X,Y) and n = Q(X,P) 

specify a transformation from the  X,Y plane t o  an A , n  plane whose Jacobian i s  

i.e.,  J i s  proportZona1 t o  the f i e l d  energy density. 
thickness in  any region R of the X,Y plane is  proportional t o  the area of the trans- 

Hence the  f i e l d  energy per u n i t  

formed region R' i n  the A $  plane,5r7 i.e., . .  

Eg = & J;' JdXdY = & JJ dAdn . 
R R '  

7 .  R . A .  Beth, Brookhaven National Laboratory, Accelerator Dept. Report 
AADD-106 (1966). 
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c 

thk p o t e n t i a l  func t ion  W(Z), def ined  i n  (15) ,  i s  known i n  complex form i t  
i s  often convenient t o  c a l c u l a t e  t h e  a rea  of t h e  r eg ion  R '  i n  t h e  W p l ane  as a contour 
i n t e g r a l  around i t s  boundary C ' :  

?i. 7 is the .  complex conjugate  of W. where W 

11. ILLUSTRATIVE EXAMPLES 

Mult ipole  F ie ld  i n  a C i rcu la r  Aperture 

The most general  nonsingu,lar Maxwell f i e l d  i n  two dimensions nay be represented  
as a superpos i t ion  of mul t igI9  f i e l d s  as in (5 ) .  

*i 
; ; J&wT:: 1. 

Suppose we wish t o  "Froduce the  2n-pole component 

n-1 
Hin(Z) = Hn 2 

with in  a c i r c u l a r  ape r tu re  of rad ius  a by an a r r a y  O€ c u r r e n t  f i l amen t s .  

The a r r ay  of minimum lateral  s i z e  and min imum f i e l d  energy s t o r a g e  w i l l  be ob- 
ta ined  wi th  a c y l i n d r i c a l  cu r ren t  shee t  t i g h t l y  surrounding t h e  r e q u i r e d  c i r c u l a r  
aper ture .  L e t  t h e  poin ts  z of t h e  cy l inde r  c r o s s  s e c t i o n ,  and t h e  arc l e n g t h  s meas- 
ured around t h e  circumference be 

0 5 e < 2 r r  i 9  
,z = ae 

s = a %  . 
Then z* = ae-ie = a 2 / z  and dz = i zd9  = i ( z / a ) d s .  

By means of t h e  cu r ren t  sheet  theorem (8) we can  see t h a t  t h e  r e q u i r e d  cur ren t  
d i s t r i b u t i o n  is 

I H , ~  n-1 
ds 
d I  

4rra ( Hnzn + Hzz"" ) = - 7 a cos (ne -I- en) , - = - -  

where K, = ei&, and t h e  e x t e r n a l  f i e l d  is  

c 

n-1 Thus t h e  requi red  l i n e a r  cur ren t  d e n s i t y  i n  t h e  c y l i n d e r  is  p ropor t iona l  t o  a and 
v a r i e s  s i n u s o i d a l l y  as an n th  harmonic of t h e  c e n t r a l  ang le  % around the circumference 
of t he  cy l inde r .  Note t h a t  the phase angle  en merely s p e c i f i e s  t h e  o r i e n t a t i o n  of t h e  
mult ipole  f i e l d  wi th  r e spec t  t o  t h e  d i r e c t i o n  chosen f o r  8 = 0. 

The f i e l d  force  a c t i n g  on u n i t  area of t h e  c u r r e n t  shee t ,  d f / d s ,  can  be evaluated 
It t u r n s  o u t  t h a t  t h e  r a d i a l  component is everywhere by using t h e  f o r c e  theorem (14). 

zero and t h e  t angen t i a l  component is  
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Thus the t angen t i a l  fo rce  densi ty  (26) is zero where the current densi ty  ( 2 4 )  i s  zero 
o r  has  maximum magnitude. The tangent ia l  force i s  directed toward the  nearest  abso- 
l u t e  maximum of ( 2 4 )  a t  intermediate points.  

It can be shown from the  energy theorem (20) t h a t  the in t e rna l  and external  f i e l d  
energies  are equal €or a c i r c u l a r  multipole current sheet and tha t  

2 a2n J 
(27) I - - - 

E i n  Eout 8n 
. .  

For an e l l i p t i c  a p e r t u r e  and current sheet t he  formulas are somewhat more compli- 
cated; they have been worked out together with the case of two confocal e l l i p t i c  (or 
concentr ic  c i r c u l a r )  cy l inde r s  required t o  produce a prescribed f i e l d  within the inner 
cyl inder  while cancel l ing t h e  f i e l d  external  t o  the outer cylinder.  

Step-Function Approximation f o r  cos cp 

W e  may wish t o  approximate the smoothly varying current densi ty  (24) by a s t e p  
funct ion made up of i n t e r v a l s  of constant current density.  We set 

cp = ne + en (2 8) 

and seek t o  approximate cos rp by a function of N s t eps  per quadrant. 
metry as shown i n  Fig.  1, the Fourier composition of the s t e p  function is 

With cosine sym- 

where the coe f f i c i en t s  C, w i l l  depend on N values of gv and N values of cp,. 
values  can be chosen t o  make C1 -$ 0 and Cm = 0 f o r  m ,= 2, 3, . . . 2N.  

These 2N 
The solution' i s  

, v = 1, 2,  ... N - cos ( v  - k) Q - 
gv , cos  fa 

TV = . , v = 1, 2, ... N , 

where 

TT 2TT 
Q = - = -  2 N + l  M . 

8. ' R.A. Beth, ZEEE Trans. Nucl. Sci.  NS-14, No. 3,  386 (1967). 

9. R.A. Beth, Brookhaven National Laboratory, Accelerator Dep t .  Report 
AADD-135 (1967). 
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With these values of g, and rpV t h e  Fourier  expansion of the s t e p  function i s  
m m 

k=O k= 1 

so tha t ,  a f t e r  the fundamental, a l l  harmonics are eliminated up t o  t h e  cos (4Et-l)  cp 
t e r m  - which, i n  view of (281, means s inusoidal  functions of n(4N+ l ) e  and a deviat ion 
of the order of 

t i m e s  the  fundamental 

from the ideal  f i e l d  (22) .9 
t h e  first f e w  cases N = 1, 2, 3, and 4 .  

Figures 2 through 6. show t h e  general form of %(a) and 

It w i l l  be seen t h a t  the  approximation is  so good 'that p rac t ica l  construction 
' 

inaccuracies w i l l  soon outweigh the devia t ion  of SN from a pure cos w f i e l d  even f o r  
N = 3 or 4. The construction of ste -function dipoles  and quadrupoles-was described 
by Brit ton during t h i s  Summer Study. f 0  

Constant Gradient Field i n  an  E l l i p t i c  Aperture 

Any desired f i e l d  (5) can be produced within an e l l i p t i c  aperture by providing 
the proper current d i s t r i b u t i o n  on t h e  e l l i p t i c  cyl inder  determined by t h e  specified 
aperture;  the resu l t ing  ex terna l  f i e l d  and f i e l d  energy can be calculated .8 

The re la t ions  for  a constant gradient  f i e l d  i n  an e l l i p t i c a l  aper ture  may be 
sun&arized as  follows5: 

To produce the f i e l d  . 

= Bo (1 + E) (dipole + quadrupole) 'in 

within the e l l i p t i c a l  cyl inder  whose normal sect ion is 

z = a cos 0 4 i b  sin 6 = reie f 6e-ie (0  I: 6 < 2ri) 

where 

r = %(a + b) 6 = f(a - b) 
requires  the  current d i s t r i b u t i o n  i n  t h e  cyl inder  elements 

2 ( r  cos  0 + r K cos 20) d I  BO 
e=-- 

d6 2l-r 

with 

2 2  2 W 2 = 2 r  ( r  + S ) K  . 

(33) 

(34) 

(35) 

10. R.B. Britton, these Proceedings, p. 893. 
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The external. f i e l d  i s  

- -1 + 2w2 1/42  - c 2 
Nout - - Bo c w1 e 

The complex p o t e n t i a l s  are W = - (A + 22) such that H = dW/dZ 

'in - - Bo [ Z + + KZ2 ] Wout  = Bo [ wo + w1 5-1 + w2 f 2  ] . 
2 Vector po ten t i a l  A i s  continuous across the e l l i p s e  when Wo = r 6  = . c  14. 

Circular  cyl inder  case: r = a = b,  6 = 0,  c = 0. 

The f i e l d  energies  per uni t  length are:  

Ein = 8 B2 0 [ ab + t K2ab(a2 3. b2) ] 

Eout 8 o 
1 2 2  - _ -  B2 [ a2 t- E K (a + b2)2 ] 

E t o t a l  = $ E: (a + b) [a + K2(a + b)(a2 + b2)] . 

The r i n g  magnets of the Brookhaven Alternating-Gradient Synchrotron provide a 
constant gradient f i e l d  with K = 0.0425 cm'l within a roughly e l l i p t i c a l  ape r tu re  f o r  
which a = 8.8 cm, b = 4.0 cm. 

Such a f i e l d  can be produced by an e l l i p t i c  cylinder current  sheet chosen t o  f i t  
t he  aper ture .  The equipotent ia l  curves U = - A(X,Y) = const and V = - n(X,Y)  = const 
are p lo t t ed  i n  t h e  l e f t  s ide  of Fig. 7 and the corresponding A$ p l o t  with areas pro- 
port ional  t o  f i e l d  energy i s  shown in the  r i g h t  s ide of the same  f i gu re .  5 

The U = const curves show l i n e s  of force of the magnetic f i e l d  i n  the  space 
p lo t .  
cover only f i n i t e  regions of the U,V (or  A,n)  plane. 
a r ea  theorem (21) .  Selected corresponding regions have been crosshatched s i m i l a r l y  
t o  e luc ida te  the i n t e r r e l a t i o n s  of the two p lo t s .  

Since the t o t a l  f i e l d  energy is always f i n i t e ,  the po ten t i a l  p lo t  will always 
Areas can be calculated by the 

Superposit ion of E l l i p t i c a l  Current Blocks 

By means of the in t eg ra l  fornula (9) the f i e l d s  (10) in s ide  a s  w e l l  a s  outs ide 
an e l l i p t i c a l  conductor' bounded by 

z = a cos % + i b  s i n  8 

and carrying a uniform current densi ty ,  Q = const,  can be evaluated1: 

(bX - iaY) 4no = -  
Hin a + b 

where 
c 2 = a 2 - b  2 . 
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If we superpose two 
and centers at Zo = - Xo 
forms an empty aperture 
gradient field: 

equal area elliptical conductors with 0’ = - CT, ab = a’b’, 
, 2,: = Xo, as shown in Fig. S(a) ,  then the overlap region 
(since 0 + CT‘ = 0 )  with the resultant interior constant 

1 [(ab’ + a’b + 2bb’) Xo +,(a’b - ab’) 21 = 4no 
Hin (a+b)(a’+b‘) 

where 
ab = a’b‘ . 

We obtain a pure dipole field 

8 m  b xo 
= const - - 

Hin a + b  

for equal ellipses, a’ = a and b’ = by as in Fig. &(b). 

We obtain a pure quadrupole field 

i - 47~0 (a’b - ab‘ - 
Hin (a+ b)(a’ + b’i 

when both ellipses are centered at the origin, Xo = 0 ,  as in Fig. 8(c). 

* + e * * * * * *  

Remarks OR Complex Methods 

The complex variable methods fox two-dimensional fields described and illustrated 
in this paper go beyond the older methods which focus on setting up a potential that 
satisfies Laplace’s equation in a region without currents. Here the natural emphasis 
is on the & of field components which have direct physical significance everywhere - even within current bearing regions where- both potentials cannot be defined. Cur- 

. rents are systematically taken into the theory as singularities and all three aspects 
of anaIytic functions - Cauchy-Riemann equations, Cauchy integrals, and power series 
representations - turn out to have useful physical applications. Field forces and 
field energy storage can be calculated. 
form useful extensions of the usual complex.treatment of two-dimensional fields. 

In these and other ways the methods described 
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3, d-- 

Fig.  L .  General form of s t e p  function. 

I I I 

\ p i  

30° c o‘ 

Fig .  2. Form of SN(cp) for arbitrary N. 
N steps cy=- l-i M = 4 N + 2  2N + 1 

l? 
cy tan - 2 - tan - = - 

Iy 2 n  M 
COS (M - 1) cp + cos (M + 1) (D 

M - 1  M +  1 
COS (2M- 1) t~ + COS ( 2 M S . 1 )  (D 

2M - 2 M - k  1 
COS (3M- 1) cp ~ cos (3M4-1) w 

3M - 1 3M + 1 

sN(u) = tan 2 [cis cp - M 

- 
” 

.. + .... ] .... 



Fig. 3 .  S1(cp). 

N = 1 s t e p  cy = 5 -a 60’ M =  6 

tan f = a tan 30’ = 11.10266 
Q 7T 

1 Sl(cp) = 1.10266 [cos cp - 5 l cos 59 + j- cos 7w 

11 - -  I cos l l c p  + 13 cos 13w 
1I 

1 
17 I9 

- -  I cos 17v + - cos 19Q 

- ‘ 1  .... i- .... 
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F i g .  4. S2(tp) 

M = 10 TT cy.= -4 3 6 O  
5 nl = 2 steps 

2 Q 10 0 - tan - = - tan 18 = 1.03425 
Q 2 T - l  

s2(cp) = 1.03425 [cos ID - - 9 
I 
11 cos 90 4 - cos 11; 

1 - -  I cos E9w + - cos 21Q 
, 19 ' 2 1  

P 
cos 29 31 

.... 1- 

- -  ' 29cp f - COS 31tp 

- .... 3 
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F i g .  5. S’,(W) 

M = 14 t r = I I - + 2 5 -  5 0  
7 7 N = 3 s teps  

CY 14 2 tan - = - tan 12 a 2 r r  7 

S3(cp)  = 1.01712 [cos a - 13 cos 13cp + 15 cos 150 
= 1.01712 

1 

- -  I cos 27rp + & cos 29m 
27 

- -  I COS 41w + -& cos 430 
41 

- 1 .... + -.*a 

R 
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0,34730 1 
3w 

1 
I , I I h -  

oc 
30' 60' 9 

Fig. 6 .  S ~ ( C D )  

M =  18 TT CY .= - * 200 
9 N = 4 steps 

- tan 
CY n 

. 2  = 18 tan 10' = 1.01030 

cos 17co + - 1 COS 1 % ~  
19 s4(o) = 1.01030 [cos tp - - 17 

35 

1 
53 55 

- -  I cos 35cD + + cos 37@ 
- -  I cos 53rp -I- - cos 55cp. 

- 1 . . . . - I -  .... 
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§PACE PLOT OF 
POTENTIAL CURVES 

POTENTIAL PLOT OF 
SPACE COORDINATES 

AREAS ARE PROPORTIONAL TO FIELD ENERGY 

I MEDIAN PLANE 

Fig.  7. Constant grad ien t  f i e l d  wi th in  an  e l l i p t i c a l  cur ren t  s h e e t ,  

, 



. . 

Y 

I 

Fig. 8. Apertures formed by overlapping el--gtical conductors. 
(a) Constant gradient field. 

(c) Quadrupole field. 
. (b) Dipole field. 
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