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Fields in Free Space: Scalar Potential
• (Always true)
• In a region free of any currents or magnetic 

material,                  , and B may be written 
as the gradient of a scalar potential,

• The two equations above may be combined 
to obtain the Laplace’s equation for the 
scalar potential, Φm,
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2-D Fields in Free Space
• and 

• Most accelerator magnet apertures have a 
cylindrical symmetry, with a length much 
larger than the aperture.  In such situations, 
the field away from the ends can be 
considered 2-dimensional, and the general 
solution can be expressed in a relatively 
simple harmonic series.

mΦ∇=B 02 =Φ∇ m



USPAS, Santa Barbara: June 23-27, 2003 Animesh Jain, BNL4

Commonly Used Coordinate System
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X-Axis (RIGHT)
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Currents
Aperture Users of magnetic 

measurements 
data may use a 
system oriented 
differently, often 
requiring suitable 
transformations 
of the measured 
harmonics.
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Solution in Cylindrical Coordinates
For no z-dependence (2-D fields),

writing  Φm(r,θ) = R(r)Θ(θ),  and imposing 
the conditions 

we can get the solution of the Laplace’s 
equation in terms of a harmonic series.             
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2-D Fields: Harmonic Series
• Components of 2-D fields in cylindrical 

coordinates:

• C(n) = Amplitude, αn = phase angle of the 
2n-pole term in the expansion.

• Rref = Reference radius, arbitrary, typically 
chosen ~ the region of interest.
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2-D Fields: Cartesian Components
• Cartesian components of B may be written 

as:

• A Complex field, B(z) = By + iBx, where
z = x + iy, combines the 2 equations above:
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2-D Fields: Normal & Skew Terms
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In the US, the 2n-pole terms are denoted by Bn–1 and An-1.

Sometimes, the skew terms are defined without the 
negative sign, but the above form is the most common now.
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Analytic Functions of a Complex Variable
Any function of the complex variable, z, given by

F(z)  =  U(x,y)  +  i V(x,y) 
is an Analytic function of z, if
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Conditions.

An analytic function can be expressed as a power 
series in z.  This series is valid within the circle of 
convergence, which extends to the nearest 
singularity. Analytic function does not depend on z*.
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Analyticity of Complex Field
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Conditions.

Maxwell’s equations in source free region:









∂
∂

−=







∂

∂
⇒=∇

x
B

y
B xy 0.B 








∂

∂
=








∂

∂
⇒=×∇

y
B

x
B xy

z  0)( B

Maxwell’s equations = Cauchy-Riemann conditions 
if we choose:  U(x,y) = By(x,y) and V(x,y) = Bx(x,y)
Thus,  B(z) = By(x,y) + i Bx(x,y) is an analytic 
function of z. The analyticity is useful in dealing 
with 2-D problems in magnetostatics.
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End Fields & Short Magnets
• The field near the ends of a long magnet, or 

everywhere in a short magnet, has all three 
components.  The simple 2-D expansion is 
not valid in these cases.  However,  if one 
considers only integrated values of field 
components, a similar 2-D expansion can be 
shown to be valid.

• For components of field at a point, a more 
complex expansion must be used.
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Validity of 2-D Field Expansion

Measuring coil

Short Magnet
Bz = 0 Bz = 0

No axial variation
Long Magnet

Measuring coil

Bz = 0
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3-D Field Expansion
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If the field harmonics vary along the axial direction, Z:
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where the index [2ℓ] denotes (2ℓ)th derivative with respect to z.  
If integral values are considered between Z1 and Z2 such that all 
derivatives are zero at the ends, then the above expression 
reduces to the 2-D expansion.
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Interpretation of Harmonics
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By = Constant ⇒  Dipole Only

(dBy /dx) = Constant ⇒  Dipole plus Quadrupole
and so on ...
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Examples of Harmonics

X

Y

X

Y

X

Y

By = B0 (Constant)

Normal Dipole

By = B0 + G.x

Normal Dipole
+

Normal Quadrupole

By = B0 + A.x2

Normal Dipole
+

Normal Sextupole
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Normalized Coefficients: Multipoles
• The coefficients Bn and An denote the absolute 

strength of the n-th harmonic, and are thus a 
function of the magnet excitation.

• The variation in the shape of the field as a 
function of excitation is best described using 
coefficients normalized by a suitable 
reference field, often chosen to be the 
amplitude of the most dominant term in the 
harmonic expansion. The normalized 
coefficients are also referred to as multipoles.
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Normalized Coefficients: Multipoles
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For a 2m-pole magnet, Bref = |Bm + iAm|

(bn,an) independent of current:  LINEAR SYSTEM

(bn,an)x104 = Normal & Skew Multipoles in “UNITS”
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Properties of Harmonics
• The Normal and Skew harmonics represent 

coefficients of expansion in a power series for 
the field components.

• The harmonics allow computation of field 
everywhere in the aperture (within a circle of 
convergence) using only a few numbers.

• These coefficients obviously depend on the 
choice of origin and orientation of the 
coordinate system. Measured harmonics, 
therefore, often need to be  centered and 
rotated.
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Field in a Non-circular Aperture
The 2-D field expansion in a harmonic series is 
valid only within the circle of convergence, which 
extends from the origin to the nearest current 
element or a magnetic material (“singularity”). 

For non-circular apertures,  a single series 
expansion does not cover the entire “source-free 
region”, even though the complex field By + iBx is an 
analytic function of (x + iy ) throughout the 
aperture.  One can circumvent the problem by 
defining several series expansions, each centered 
at a different origin.
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Field in a Non-circular Aperture

O1 O2

With origin at 
O1, a harmonic 
series converges 
only within the 
circle C1

C1 C2 C3

O4 O5

C4 C5
With the origin 
shifted to O2, 
O3, ..., a NEW 
harmonic series 
is valid within 
circles C2, C3, ...

O3

By having a significant overlap between the various circles 
of convergence, one can verify the integrity and accuracy 
of data by comparing results in the overlap regions.
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The Vector Potential
Scalar potential approach does not provide a 
relationship between the currents and the field.
From Maxwell’s equations: 
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Summary
• The 2-D field , away from the ends, in the 

aperture of a typical accelerator magnet, can 
be described by a simple power series, valid 
within a circle extending to the nearest 
current source or magnetic material.

• A similar 2-D expansion is also valid for 3-D 
fields if one considers only integrated values 
of the field components such that there is no 
axial variation at the boundaries of the 
integration interval.
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Summary (Contd.)
• The expansion coefficients may be 

interpreted as spatial derivatives of the field 
components.

• The expansion coefficients, or harmonics, 
depend on the choice of coordinate frame. 
This demands a careful description of the 
frame when quoting results of measurements. 
Similarly, users of the data also need to pay 
close attention to the coordinate definition.
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Summary (Contd.)
• The complex field, B(z) = By + iBx, is an 

analytic function of the complex variable, z.
• For non-circular apertures, one can describe 

the field in the entire aperture by defining 
several series expansions centered at different 
points in the aperture (analytic continuation).

• Scalar potential approach is unsuitable for 
establishing a relationship between the 
current and the field.  A vector potential 
approach is more general.
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