Progress on Using High Temperature Materials in New Generation Accelerator Magnets

Ramesh Gupta
Superconducting Magnet Division
Brookhaven National Laboratory
Upton, NY 11973 USA

http://www.bnl.gov/magnets/staff/gupta
Overview of the Presentation

• Why High Temperature Materials in Accelerator Magnets?
• High Temperature Superconductor (HTS) Cable and tape
 □ Status
 □ Testing

• New Magnet Designs and R&D Approach Suitable for HTS

• Construction and Test Results of Short HTS Coil & Technology Magnets

• The Next Step and the Summary
Some Remarkable Properties of HTS (High Temperature Superconductors)

HTS retain superconductivity to higher temperature

Also compare the high field performance of “High Temperature Superconductors (HTS)” as compared to that of “Low Temperature Superconductors (LTS)”.

Ramesh Gupta, Progress on Using High Temperature Materials in New Generation Accelerator Magnets, RUPAC-2002, 8/2/02
Popular HTS Materials of Today

- BSCCO 2223 \((\text{Bi},\text{Pb})_2\text{Sr}_2\text{Ca}_2\text{Cu}_3\text{O}_x\)
- BSCCO 2212
- YBCCO

- \(\text{MgB}_2\) is technically a low temperature superconductor (LTS) with critical temperature \(\sim 39\) K.

Of these only BSCCO2212 and BSCCO2223 are now available in sufficient quantity to make coils of reasonable length (1-10 meter).

Competitive in >17 T magnet today.

We still need a factor of \(\sim 3\) improvement in current density to make them competitive in 12-14 T magnet.
Advantages of using HTS in Accelerator Magnets

As compared to LTS, the critical current density (J_c) falls slowly:

- as a function of field
- as a function of temperature

Translate this to magnet design and accelerator operation:

- HTS has a potential to produce very high field magnets
- HTS based magnets can work at elevated temperatures
 - a rise in temperature from, e.g., decay particles can be tolerated
 - the operating temperature does not have to be controlled precisely
- HTS based magnets don’t appear to quench in the normal sense
- Weak spots don’t limit the magnet performance, instead the local temperature rises a bit (major difference from LTS magnets).

It becomes a question of heat load rather than a weak spot limiting the performance of the entire magnet.
Challenges with HTS (and possible improvements over time)

- HTS materials are very brittle
 Work on magnet designs ("conductor friendly designs").

- HTS materials are still very expensive
 Hope the cost comes down in future.
 Also for some applications, the performance and not the material cost is determining factor.

- Large quantities are not available yet
 Situation is improving. Even now we have enough to make test coils.

- Unknown field quality issues
 We are addressing that by measuring field harmonics in HTS magnets (also work on the magnet designs).
First Likely Application of HTS: Interaction Region (IR) Magnets

Interaction region magnets for the next generation colliders or luminosity upgrade of existing colliders (LHC is existing collider for this purpose) can benefit a lot from:

♦ Very high fields
♦ Ability to take large energy deposition without much loss in performance
♦ Ability to operate at elevated temperatures that need not be uniform

→ For IR magnets, the performance, not the material cost is the issue.
→ These magnets can be, and perhaps should be, replaced in a few years. (for LHC, the first installment may be due ~10-15 years from now)

All of above makes HTS a natural choice for next generation IR magnet R&D.
BSCCO 2212 cable appears to be the most promising high temperature superconductor option for accelerator magnets

- Higher current for operating accelerator magnets
- Plus all standard reasons for using cable

A good and productive collaboration has been established between labs (BNL, LBL) and industries (IGC, Showa).
Measured Performance of HTS Cable and Tape As A Function of Field at BNL

Measurements of "**BSCCO-2212 cable**" (Showa/LBL/BNL) at BNL test facility

Reported I_c in new wires is $\sim 3x$ better than measured in the cable.

This was a narrow (18 strand) cable. Wider cable with new conductor should be able to carry 5-10 kA current at high fields!

(self field correction is applied)

Measurements of "**BSCCO 2223 tape**" wound at 57 mm diameter with applied field parallel (1\,μV/cm criterion)

(field perpendicular value is $\sim 60\%$)
For very high field magnet applications, we are interested in low temperature and high field characteristics of high temperature superconductors.

However, these conductors still have significant critical current at higher temperature. Testing at Liquid Nitrogen (LN$_2$) temperature is much more easier than testing at Liquid Helium (LHe) temperatures.

BNL has developed and extensively used LN2 testing in HTS cable, coil and magnet R&D.
Pressure-Temperature Curve for Liquid Nitrogen

Pressure vs. Temperature
Liquid Nitrogen

Pressure, mm Hg

Diode Voltage (@10µA), Volts

Temperature, K

Freezing Point
63.2K

Boiling Point
77.3K
Batch testing of the much smaller Bi-2223 tape conductors in liquid nitrogen is routinely used for quality control as the transition temperature is well above 77K.

The transition temperature of Bi-2212 based conductors is usually quite close to the normal boiling point of liquid nitrogen (77.3K). By pumping on the nitrogen bath the temperature can be controlled over a significant range. Testing near the transition temperature ensures that currents are small and the resulting forces and magnetic fields are very low so that the fixture used to hold the cable is simple to assemble and take apart.
HTS cable is carefully wound in large radius pancake coil for testing at liquid nitrogen temperatures.
Computed Field at the Surface of Solenoid at 100 A

HTS 40 turns solenoid 100 A 40 turns 8.4x1.5mm cable

Maximum Field at 260 A is ~0.19 T
Mix Strand Cable (2 BSCCO 2212, 16 Ag)
LN2 measurements in various sections (~3m each), 12/00

sections 8&9 are the worst
sections 4&5 are the best

Typical definition of Ic in HTS
Critical Current variation along the length of the cable

Cable 1
60K

Cable 3
64 K

Current @ 1 µV/cm, amps

Position along cable, meters

Position along cable, meters

Ramesh Gupta, Progress on Using High Temperature Materials in New Generation Accelerator Magnets, RUPAC-2002, 8/2/02 Slide No. 16
Ic Tracking Between 4.2 K and 55 K

Ic of various 3 m sections at 4.2 K and 55 K

Section No.

Mix strand cable test, BNL 12/00

Ic for 1 µV/cm

0 1 2 3 4 5 6 7 8 9 10 11

Ic1@55K

Ic1@4.2K
Correlation between T_c and I_c

T_c and I_c Correlation @ 4.2 K and 55 K

- **T_c (K)**
 - 55 K
 - 4.2 K

- **I_c (A)**
 - Mix strand cable test, BNL 12/00

Ramesh Gupta, Progress on Using High Temperature Materials in New Generation Accelerator Magnets, RUPAC-2002, 8/2/02 Slide No. 18
Correlation between T_c and n-value

n and I_c Correlation @ 4.2 K and 55 K

Mix strand cable test, BNL 12/00
Ic as a function of Temperature

![Graph showing Ic as a function of Temperature for Cable 1, Cable 3, and Cable 4.](image)
Better cables (with higher I_c) also have better T_c
Testing of HTS cables (or tapes) at LN2 is a powerful method even if the cables are to be used in magnets that would operate at LHe temperatures

- LN2 testing is much easier than LHe testing
- Yet LN2 testing gives a good indication of the cable behavior in LHe

HTS cable still has large potential for improvements

- Large variation in Ic across the length
- Low “n-values”
• HTS is very brittle

 Conventional designs are not the most suitable

• Large Lorentz forces

• The required temperature uniformity during the heat treatment is high:

 (~1/2 degree at ~890°C)

React & Wind Approach

“Conductor friendly” racetrack coil with large bend radius

Suitable for high field magnets with brittle material
Superconducting Magnet Division

Ramesh Gupta, Progress on Using High Temperature Materials in New Generation Accelerator Magnets, RUPAC-2002, 8/2/02

Slide No. 24

Common Coil Design

- **Simple 2-d geometry** with large bend radius (determined by spacing between two apertures, rather than aperture itself)
- **Conductor friendly** (no complex 3-d ends, suitable for brittle materials - most for H.F. are - Nb$_3$Sn and HTS)
- **Compact** (quadrupole type cross-section, field falls more rapidly)
- **Block design** (for handling large Lorentz forces at high fields)
- **Combined function** magnets possible
- **Efficient and methodical R&D** due to simple & modular design
- **Minimum requirements** on big expensive tooling and labor
- **Lower cost magnets** expected

Main Coils of the Common Coil Design

Beam #1

Coil #1

Coil #2

Beam #2
Field Lines at 15 T in a Common Coil Magnet Design

Aperture #1

Aperture #2

Place of maximum iron saturation
In common coil design, geometry and forces are such that the impregnated solid volume can move as a block without causing quench or damage (over 1 mm motion in LBL RT1 common coil test configuration).

In cosine theta designs, the geometry is such that coil module cannot move as a block. These forces put strain on the conductor at the ends and may cause premature quench. The situation is somewhat better in single aperture block design, as the conductors don’t go through complex bends.

We must check how far we can go in allowing such motions in the body and ends of the magnet. This may significantly reduce the cost of expensive support structure. Field quality optimization should include it (as was done in SSC and RHIC magnet designs).
Decay products clear superconducting coils

Compact ring to minimize the environmental impact (the machine is tilted)

Need high field magnets & efficient machine design

(simple racetrack coils with large bend radii allow the use of HTS)
Cross sections for LHC Upgrade Quad

Cosine theta X-section (with improved technology for ends)

Simple Racetrack New End Designs

High Performance Racetrack Quads

Ends drive the conceptual design of “React & Wind Magnets”
Flat Coil Ends: Nested Coils
New End Design Concepts (contd.)

Flat Coil Ends: Sideway Overlap
New End Design Concepts (contd.)

Overpass/Underpass (Clover Leaf) Ends: NO Reverse bend needed
HTS Magnet R&D and Test Program at BNL

HTS Tape Coil Program:
- Started ~ 4 years ago
- Six 1-meter long coils built and tested

10-turn HTS Cable R&D Program with rapid turn around
- Cost effective with rapid turn around
c
encourages systematic and innovative magnet R&D
allows many ideas to be tried in parallel
- Started ~2 year ago

20 coils with brittle materials (5 HTS, 15 Nb$_3$Sn) built and tested

12T high background field R&D Program
- Will address issues related to high field, high stress performance of HTS
Common Coil Magnets With HTS Tape
(Field quality in 74 mm aperture to be measured soon)

A coil being wound with HTS tape and insulation.

Status of HTS tape coils at BNL

<table>
<thead>
<tr>
<th>Size, mm</th>
<th>Turns</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nb$_3$Sn</td>
<td>0.2 x 3.2</td>
<td>168 Tested</td>
</tr>
<tr>
<td>IGC</td>
<td>0.25 x 3.3</td>
<td>147 Tested</td>
</tr>
<tr>
<td>ASC</td>
<td>0.18 x 3.1</td>
<td>221 Tested</td>
</tr>
<tr>
<td>NST</td>
<td>0.20 x 3.2</td>
<td>220 Under construction</td>
</tr>
<tr>
<td>VAC</td>
<td>0.23 x 3.4</td>
<td>170 Under construction</td>
</tr>
</tbody>
</table>

Two HTS tape coils in common coil configuration

Ramesh Gupta, Progress on Using High Temperature Materials in New Generation Accelerator Magnets, RUPAC-2002, 8/2/02 Slide No. 33
Superconducting Magnet Division

HTS Coil Wound by Hand

Al Bobbin (70 mm radius)
(also used, Fe, SS and brass bobbins)
The Bobbin and the 10-turn Coil

The bobbin
(the coil is wound on it)

The first 10-turn practice coil
(removed from bobbin after impregnation)

The complete cassette module
(vacuum impregnated coil in bobbin)

In the next generation package, the bobbin will not be part of the final product.
10-turn Coil Being Prepared for Vacuum Impregnation
Vacuum Impregnation Setup
Vacuum impregnated coils made with the “react and wind” technique.

This picture was taken after the coils were tested and removed from the support structure.
We put at least one voltage tap on each turn for detailed study.

Given the aggressive R&D nature of the program we instrument as much as we can to locate the weak spot(s).

Remember we are pursuing/pushing the new technology.

It’s OK to follow “learn and burn” approach, as long as we learn from it experimentally in a scientific and systematic way.
Coils are heavily instrumented. There is a voltage tap after each turn. Data were recorded from all 26 voltage taps.

Coils are assembled for the most flexible and extensive testing. Four leads are taken out of the cryostat. During the test the coils were powered separately and together in “common coil” and “split-pair solenoid mode”.

Two Hall probes (between the two coils and at the center of two coils) also recorded the central field.
Common Coil configuration

Powering differently changes a common coil design test to a muon collider design test

muon collider configuration
Two coils were tested in Liquid Nitrogen

A coil cassette made with HTS cable after vacuum impregnation and instrumentation

The HTS cables were from two different batches. They behaved differently:

- Different Ic
- Different Tc

Based on preliminary analysis, no large degradation is observed.
Voltage difference between each consecutive turn and on each coil

Measurements in HTS Magnet DCC004 at 4.2 K
Magnet DCC006: 2nd HTS Dipole
(Magnet No. 6 in the common coil cable magnet series)

A versatile structure to test single or double coils in various configurations

- Voltage taps on each turn
- Heaters on the magnet to make controlled change in magnet temp
- 4 thermometers on the coils
- 74 mm aperture to measure field quality
- HTS Cable Leads to make high temp measurements

74 mm aperture to measure field quality

Heaters on the magnet to make controlled change in magnet temp

4 thermometers on the coils

Voltage taps on each turn
Critical Current in Mixed Strand Cable

\(I_c \) in ten 3 m long sections at 4.2 K
(non-destructive test)

Mixed strand cable (2 BSCCO 2212, 16 Ag)

Mixed strand cable tested at BNL prior to winding coil

Section No.

I\(_c\) for 1 \(\mu \)V/cm and 0.1 \(\mu \)V/cm

0 1 2 3 4 5 6 7 8 9 10 11

0 50 100 150 200 250 300

(1uV/cm) (0.1uV/cm)
Performance of 2 Coils in Muon Collider Dipole Configuration

Coil 1

Coil 2

Mixed strand cable (2 BSCCO 2212, 16 Ag)

Coil 2 was made with generally better part of the cable than coil 1
Turns No. 1-7 show an I_c close to the best measured in cable prior to winding. This suggests a low level of degradation.
Measured Critical Current as a Function of Temperature

Half Coil #1
Half Coil #2
Half Coil #3
Half Coil #4

Mixed strand cable
(2 BSCCO 2212, 16 Ag)

4 coil halves
(2 each of two coils)
The HTS coil is made with all HTS strand cable

A hybrid magnet made with three coils (one HTS and 2 Nb$_3$Sn); Nb$_3$Sn coils provide background field on HTS Coil

Vary current in Nb3Sn coils (producing background field) to study HTS coil performance at different field level
Performance of HTS Coil in the Background Field of Nb$_3$Sn Coils

Measured electrical Resistance of HTS coil in the background field provided by various Nb3Sn coils in the magnet DCC008R

Field in various coils

Short sample definition for HTS
Performance of HTS Coil in the Background Field of Nb$_3$Sn Coils

HTS coil was subjected to various background field by changing current in “React & Wind” Nb$_3$Sn coils (HTS coil in the middle and Nb$_3$Sn on either side).

Ramesh Gupta, Progress on Using High Temperature Materials in New Generation Accelerator Magnets, RUPAC-2002, 8/2/02 Slide No. 51
Near Term R&D Program at BNL

- Build a series of 10 turn coils with better HTS cable
- Build ~40 turn coils after the technology is reasonably developed
- In parallel build ~12 T magnet with Nb$_3$Sn to provide background field
- Assemble hybrid magnet to study issues related to the performance of HTS coils in high field environment
- Study field quality issues related to HTS magnets

Present the results to accelerator community so it can make an informed decision about the viability of HTS in accelerators to take advantage of exciting benefits it offers.
Cut-away View of the 12 T Magnet
An interesting feature of the design, which will make it a truly facility magnet, is the ability to test short sample and HTS insert coils without disassembling it.

HTS insert coil test configuration

Short sample test configuration
Common Coil Magnet As A Test Facility

- A Modular Design with a significant flexibility.
- Coil geometry is vertical and flat. That means a new coil module having even a different cable width can be accommodated by changing only few parts in the internal support structure.
- The central field can be increased by reducing the separation between the coils.
- The geometry is suitable for testing strands, cables, mini-coils and insert coils.
- Since the insert coil module has a relatively small price tag, this approach allows both “systematic” and “high risk” R&D in a time and cost-effective way. This might change the way we do magnet R&D.
- Can use the successful results in the next magnet.
SUMMARY

- HTS has potential to make a significant impact on the design and operation of future accelerators
 - HTS can generate high fields
 - HTS can work at elevated temperature

- HTS cable and coil testing at Liquid Nitrogen (LN2) temperatures has been found reliable and productive
 - Good correlation between higher temperature (LN2) and lower temperature testing
 - LN2 tests are much easier, faster and cost effective

- New “conductor friendly designs” allow HTS “React & Wind” technology to be incorporated in accelerator magnets
SUMMARY (continued)

- Initial test results at the Brookhaven National Laboratory (BNL) have been quiet encouraging
 - No large degradation of HTS in coil has been observed

- Expect HTS to play a significant role in future accelerators assuming that about a factor of three improvement in conductor critical current is realized
 - First likely application of HTS could be the specialty magnets where the performance and not the cost are critical

Example: interaction region magnets for achieving very high luminosity