CONTENTS

1. REVIEW OF THE FIELD ... 1
 1.1. Introduction ... 1
 1.2. Physics Potentials and Goals of RHIC 2
 1.3. Overview of RHIC Machine 5
 1.4. Superconducting Magnets 8
 1.4.1. Introduction to the Magnet Geometry 8
 1.4.2. Superconducting Cable 10
 1.4.3. Cryogenic System 13
 1.4.4. Mechanical Design 14
 1.4.5. Magnetic Design 15
 1.4.6. Magnet Construction 16
 1.4.7. Magnet Measurements 17
 1.5. Magnetic Field Analysis in Accelerator Magnets 22
 1.5.1. Basic Electromagnetic Field Equations 22
 1.5.2. Field Harmonic Definitions 26
 1.5.3. Analytic Expressions for Accelerator Magnets 31
 1.5.3.1. Field and Vector Potential due to a Line Current 31
 1.5.3.2. Line Current in a Cylindrical Iron Cavity 36
 1.5.3.3. Line Current in a Cylindrical Iron Shell 40
 1.5.3.4. Field and Harmonics due to Current Blocks in Air 44
 1.5.3.5. Field Harmonics due to Current Blocks in a Cylindrical Iron Shell 47
 1.5.3.6. $\cos(m\theta)$ Current Distribution for Ideal Fields 48
 1.5.3.7. $\cos(m\theta)$ Current Distribution in a Cylindrical Iron Shell 54
 1.5.3.8. Intersecting Circles with a Constant Current Density for Ideal Fields 57
1.5.4. Complex Variable Method in 2-d Magnetic Field Calculations 60
 1.5.4.1. Field due to an array of Line Currents .. 62
 1.5.4.2. Beth's Current Sheet Theorem ... 63
 1.5.4.3. Example – \(\cos(m \theta) \) current distribution 65

1.6. Methods Investigated for Improving Field Quality ... 66
 1.6.1. Improvements in the Computational and Analysis Methods 66
 1.6.2. Field Quality Improvements through Yoke Design 67
 1.6.3. Field Quality Improvements through Coil Design 67
 1.6.4. Field Quality Improvements after Construction ... 68
 1.6.5. Optimized Cross section Designs ... 69

2. IMPROVEMENTS IN THE COMPUTATIONAL AND ANALYSIS METHODS 70
 2.1. Introduction .. 70
 2.2. Computer Aided Cross-section Measurement and Analysis 71
 2.3. IMPROVEMENTS IN THE POISSON GROUP CODES ... 78
 2.3.1. Upgraded AUTOMESH – Input Method No. 1 ... 79
 2.3.2. Upgraded AUTOMESH – Input Method No. 2 ... 83
 2.3.3. Upgraded AUTOMESH – Input Method No. 3 ... 88
 2.4. Conclusions on the Improvements in the Computational and Analysis Methods 91

3. FIELD QUALITY IMPROVEMENTS THROUGH YOKE DESIGN 92
 3.1. Introduction .. 93
 3.2. Reduction in Saturation Induced Allowed Harmonics 102
 3.2.1. Varying the yoke inner radius ... 103
 3.2.2. Varying the yoke outer radius ... 111
 3.2.3. Varying the location of the helium bypass hole in the yoke 116
3.2.4. Additional Saturation suppressor holes in the iron yoke

3.2.5. Yoke-yoke alignment keys

3.2.6. Yoke collaring keys

3.2.7. Tooth at the midplane of the yoke aperture

3.2.8. Cutout or Bump in the iron aperture

3.2.9. Elliptical iron aperture

3.2.10. Two radius aperture yoke

3.3. Saturation Induced Allowed Harmonics in RHIC Arc Dipoles

3.4. Reduction in the Saturation-induced Non-allowed Harmonics

3.4.1. b_1 saturation — Cross talk

3.4.2. a_1 saturation — Cryostat and other sources

3.5. a_1 Saturation in SSC Dipole Magnets

3.5.1. δa_1 variation with axial position within a magnet

3.5.2. Magnet to magnet variations in the integral δa_1

3.5.3. Compensation of the saturation induced a_1 in SSC magnets

3.6. a_1 Saturation in RHIC Dipole Magnets

3.6.1. Magnet to magnet variation in a_1 saturation

3.6.2. Reduction in a_1 saturation in RHIC dipoles

3.7. Conclusions on the Field Quality Improvements through Yoke Design

4. FIELD QUALITY IMPROVEMENTS THROUGH COIL DESIGN

4.1. Introduction

4.2. Sources of Harmonics Allowed by the Magnet Geometry

4.3. Reduction in the Allowed Harmonics through Wedges

4.4. Reduction in the Allowed Harmonics in RHIC Arc Dipoles by Changing the Midplane Gap

4.5. Reduction in b_3 in RHIC Quadrupoles with Midplane Gaps
4.6. Coil Cross-section Iterations without Changing Wedges 216

4.7. Conclusions on the Field Quality Improvements through Coil Design 219

5. FIELD QUALITY IMPROVEMENTS AFTER CONSTRUCTION 220

5.1. Introduction 221

5.2. Tuning Shims in Magnet Body for Extra High Field Quality 222

5.2.1. Tuning Shims in the RHIC Interaction Region

Quadrupoles 222

5.2.2. Tuning Shim and the Magnet Design 224

5.2.3. Procedure for Implementing the Tuning Shim Correction 227

5.2.4. Calculations for Tuning Shim Corrections 229

5.2.4.1. Approximate Analytic Expressions for Low Field Estimate 230

5.2.4.2. Numerical Calculations for Low Field Correction 233

5.2.4.3. Numerical Calculations for High Field Correction 243

5.2.5. Symmetries in the Harmonics Generated by Tuning Shims 249

5.2.6. Independent and Coupled Changes in Harmonics Correction 250

5.2.7. Comparison with the Measurements 250

5.2.8. Tuning Shim Correction Vs. External Correctors 255

5.3. Tuning Yoke Length at Magnet Ends for Field Correction 258

5.3.1. Yoke Length for Integral a_1 Correction 260

5.3.2. Yoke Length for Integral Transfer Function Correction 262

5.4. Conclusions on the Field Quality Improvements after Construction 264

6. OPTIMIZED CROSS SECTION DESIGNS 265

6.1. Introduction 265

6.2. SSC 50 mm Aperture Collider Dipole Magnet Cross-section 266
6.2.1. Coil Design ... 266
6.2.2. Low Field Harmonics .. 268
6.2.3. Iron Yoke Design ... 270
6.2.4. Expected Quench Performance 278
6.2.5. Effect of Manufacturing Errors on the Allowed Harmonics 280
6.2.6. Stored Energy and Inductance Calculations 282
6.2.7. Lorentz Force Calculations .. 283
6.2.8. Summary of the Design ... 284

6.3. RHIC 130 mm Aperture Interaction Region Quadrupole Cross-
section .. 286
6.3.1. Basic Construction ... 286
6.3.2. Coil Cross Section .. 287
6.3.3. Yoke Cross Section .. 293
6.3.4. Expected Quench Performance 300

6.4. Conclusions on the Optimized Cross Section Designs 301

7. CONCLUSIONS AND SUGGESTIONS FOR FUTURE WORK 302

References ... 307

List of Figures .. 322

List of Tables .. 328

COPIES OF PUBLICATIONS ... 332