High Field HTS Solenoid for a Muon Collider
Demonstrations, Challenges and Strategies

Ramesh Gupta, Michael Anerella, Arup Ghosh, Piyush Joshi, Harold Kirk, Seetha Lakshmi Lalitha, Robert Palmer, William Sampson, Peter Wanderer, Holger Witte, Yuko Shiroyanagi, David Cline, Alper Garren, Jim Kolonko, Ronald Scanlan and Robert Weggel (PBL/BNL Team)

23rd International Conference on Magnet Technology (MT-23)
July 14-19, 2013 Boston, USA
One key challenge:

Very High field solenoids (30-50 T)

- Resistive magnets would consume enormous power (hundreds of MW)
- HTS (4K) offers a superconducting solution

Other Applications of High Fields: NMR, SMES, User Facilities
Overview of the Design
Several significant coils (build and test in their own structure):

a) >12 T HTS solenoid (insert): 25 mm, 14 pancakes, 4 mm tape
b) >10 T HTS (midsert): 100 mm, 24 pancakes, 4 mm tape
c) >10 T LTS (outsert): NbTi and/or Nb$_3$Sn, cable (design phase)

- Work initially started with a series of Small Business Innovation Research (SBIR)
- Currently supported by Muon Accelerator Program (MAP)
Basic Design and Construction

- Pancakes coils are made with high strength 2G HTS from SuperPower, Inc.
- HTS tape is co-wound with insulating stainless steel tape to reduce hoop stress and to help in quench protection
- Copper discs are used between the double pancakes to reduce thermal gradient during cool-down of large assembly
- No epoxy impregnation (only surface painted)
- A large number of v-taps for extensive 77 K QA testing
Noteworthy Demonstrations
High Field (16T) Demo of HTS Magnet

- Field on axis: 15.7 T
- Field on coil: 16.2 T
 (original target: 10-12T)

Highest field all HTS solenoid

Overall J_0 in coil: >500 A/mm² @16 T

Insert solenoid: 14 pancakes, 25 mm aperture
PBL/BNL 100 mm HTS Solenoid Test for Muon Collider

- Half midsert operated at 250 A @4 K
 - (6.4 T field on axis, 9.2 T peak field on coil)
- Design value for full midsert: 220 A for 10 T

Peak Field on Coil at 250 A: ~9.2 T
Coil operated with margin at 250 A
Run stopped at 250 A
Challenges and Strategies

• Quench Protection
• High Field Conductor
• Coils/Magnets
Quench protection of high field HTS magnets is a major challenge!

• We take a multi-prong approach to overcome this challenge:
 – Advanced quench detection system to detect onset of “pre-quench” phase and start action while it is still safe to operate for some time
 – Special electronics to tolerate high isolation voltage (> 1 kV) to allow fast energy extraction once the pre-quench phase is detected
 – Inductively coupled copper discs to reduce current instantaneously
 – Spread heating across the coil faster because of SS tape insulation
 – Also possible: quench heaters as used in LTS magnets (NHMFL)
Advanced quench detection system detects onset of small “pre-quench” voltage (<1 \(\mu \text{V/cm} \)) in the presence of large noise and inductive voltage.

Detection at \(\sim 100 \mu \text{V level} \) (1 \(\mu \text{V/cm} \) in 100 m => 10 mV)

Detection while ramp rate is changing.
Advanced Quench Detection System with Fast Energy Extraction

- Fast energy extraction in larger magnets creates high voltages as “L” increases
- Develop electronics that can tolerate high isolation voltage (>1 kV)
- Divide coils in several sections

Cabinet #1 (32 channels, 1kV)
Cabinet #2 (32 channels, 1kV) (expandable to 64 and 3kV)
Instantaneous (<100 µsec) Drop in Current (as soon as the energy extraction started)

- **Bo = ~15.6 T**
- **Bo = ~5.3 T**

25 mm 14 coils

- Inductively coupled Cu discs
- Partial current transferred from coil to disc (simulation show reasonable agreement)
- Partial energy extracted
- Extra margin at critical time
- Cu discs heat up to 50-70 K
Conductor and Coils
• HTS vendors typically measure performance at 77 K and self-field
• Magnets need at operating temperature and operating field
• We observe large variations in in-field scaling of coil and conductor

Correlation - conductor and coil (77 K)

- A potential to improve in-field performance & to make it more uniform
- A production conductor requires spec at operating conditions (4K,8T?)
- We may also need to specify/tighten various mechanical spec

Measured Bperpendicular scaling(4K) at BNL

- High Field HTS Solenoid for a Muon Collider – Demonstrations, Challenges and Strategies - Ramesh Gupta, … 7/19/13
• HTS Insert (14 pancakes, ran at 16 T peak field) and Midsert (24 pancakes, 12 ran at 9 T peak)
• Expected on axis field at 4 K: > 22 T (design)
• All worked well during 77 K Pre-test
Several pancakes got degraded during one @77 K test with LN$_2$

- All coils have been tested successfully several times before this event.
- No further degradation seen after repeated test after this event.
- Likely cause: excessive thermo-mechanical strain during system testing.
Several pancakes (half) could be repaired by simply removing inner-most turn and making a new splice between two single pancakes.
Strategies for Way Forward

• Extended copper discs, etc. to provide better cooling

• Slower cooling to reduce thermal gradient within coil

• A more robust conductor

• Interesting, currently more issues are being seen and reported during the 77 K testing rather than the 4 K high field testing where the conductor is supposed to be exposed to large Lorentz forces.

• Developing a better defined test procedure may help in interim.
Summary

• Record high fields (~16 T) demonstrated in an all HTS coil
• Multiple strategy help in quench protection – particularly the use of copper discs and advanced electronics
• HTS coils are sensitive to thermo-mechanical strain. A more robust conductor and magnet design will help
• High strength ReBCO has demonstrated the potential for creating high field magnets suitable for many applications. The target field of >22 T in an all HTS and >30 T in all superconducting magnet seems within reach
• As with any ambitious R&D program, one has to be prepared for some surprises and some systematic R&D
Extra Slides
Original Design Parameters
(as presented at ASC2010)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Target Design field (optimistic)</td>
<td>~22 T</td>
<td></td>
</tr>
<tr>
<td>Number of coils (radial segmentation)</td>
<td>2 self supporting</td>
<td></td>
</tr>
<tr>
<td>Stored Energy (both coils)</td>
<td>~110 kJ</td>
<td></td>
</tr>
<tr>
<td>Inductance (both in series)</td>
<td>4.6 Henry</td>
<td></td>
</tr>
<tr>
<td>Nominal Design Current</td>
<td>~220 A</td>
<td></td>
</tr>
<tr>
<td>Insulation (Kapton or stainless steel)</td>
<td>~0.025 mm</td>
<td></td>
</tr>
<tr>
<td>J_e (engineering current density in coil)</td>
<td>~390 A/mm²</td>
<td></td>
</tr>
<tr>
<td>Conductor</td>
<td>2G ReBCO/YBCO</td>
<td></td>
</tr>
<tr>
<td>Width</td>
<td>~4 mm</td>
<td></td>
</tr>
<tr>
<td>Thickness</td>
<td>~0.1 mm</td>
<td></td>
</tr>
<tr>
<td>Stablizer</td>
<td>~0.04 mm Cu</td>
<td></td>
</tr>
</tbody>
</table>

Midsert

Outer Solenoid Parameter
- Inner diameter: ~100 mm
- Outer diameter: ~160 mm
- Length: ~128 mm
- Number of turns per pancake: ~240 (nominal)
- Number of Pancakes: 28 (14 double)
- Total conductor used: 2.8 km
- Target field generated by itself: ~10 T

Inner Solenoid Parameter
- Inner diameter: ~25 mm
- Outer diameter: ~90 mm
- Length: ~64 mm
- Number of turns per pancake: ~260 (nominal)
- Number of Pancakes: 14 (7 double)
- Total conductor used: 0.7 km
- Target field generated by itself: ~12 T

External Radial support (overband): Stainless steel tape

- This was thought to be a very ambitious proposal!!!
- We have achieved >60% (6+ T) with only half outer
- We have already exceeded inner by over 25% (15+ T)
77 K QA Test of 100 mm Pancakes

A Large Number of 2G HTS Pass Extensive Initial Testing in LN$_2$

Total conductor: 2.4 km (supplied by SuperPower)

Field @40 A: Bparallel \sim0.5 T and Bperpendicular \sim0.3 T