Recommendations for BEPC-II Superconducting Magnet Electrical Systems

These recommendations are of a general nature. There is a large amount of details that would have to be developed before a successful design of this electrical system could be finished.

Quench Detector

- Recommend a DSP based quench detection system. System flexibility and data logging are its main advantages.
- All signals should be logged continuously at a slow sampling rate and fast sampling rate transient data recorded upon a quench.
- All analog input voltages and currents should be isolated to ± 2.5 KV.
- Two types of detection schemes can be used. A fast coil difference schemes where the voltage of one coil is compared to another and if the difference exceeds a set limit a quench is detected. Another scheme is a current derivative, where the power supply current is used to calculate the di/dt voltage of the magnet coil and this is compared to the measured coil voltage and if the difference exceeds a set limit a quench is detected.
- For this quench detection system there would be 28 magnet coil signals, 24 superconducting bus signals, 24 gas cooled lead signals and 15 power supply current signals.
- All gas cooled leads would be monitored for an over-voltage condition by the quench detector.
- For all nested (shunt) power supplies the quench detection system will open an IGBT switches at the same time (within 100 usec.). This is to prevent excessive currents from flowing into the nested power supplies upon a quench.

Quench Protection

- The scheme of using an IGBT switch with energy extraction resisters across it and a SCR crowbar across the power supply output terminals is designed the remove current from the magnet circuit without creating dangerously high voltage transients.
- A ground connection in the center of the energy extraction resisters is used to balance voltage transients to ground during a quench. For nested power supplies this connection would not be used.

Power supplies

• All power supplies should be designed so they can operate (or float) 1 KV off ground.

Recommendations for BEPC-II Superconducting Magnet Electrical Systems

Voltage Taps

• All voltage tap locations should have redundant taps. Two voltage taps for each location. Each tap should also have a 200 Ω resistor in series with it. These resisters should be placed as close as possible to the high current tap point. This will prevent damage to circuits in the event that a voltage tap gets shorted to ground

Ganetis 5/23/03

Ganetis 5/23/03

RHIC TYPE QUENCH DETECTION SYSTEM BLOCK DIAGRAM

