

2'nd BEPC-II Videoconference Review Between IHEP and BNL Scheduled for May 28, 2003

Review of Operating Currents, Forces and Torques for the BEPC-II IR Magnets

Presented by
Brett Parker/BNI -SMD

BEPC-II Superconducting IR Magnet Superconducting Magnet Division Coil Parameter Summary

BEPC-II Magnets 12-May-03	B, G (T), (T/m)	R _{in} , R _{out} (mm)	From IP (mm)	Coil Length (mm)	Magnetic Length (mm)	Operating Current (A)
AS1	-	95.1~105.9	630~933	303	-	1120*
AS2	-	115.4~119.0	1035~1381	346	-	1120**
AS3	-	95.1~105.9	1474~1590	116	-	1120**
SCQ	18.744	95.1~108.1	961~1457	496	400	460
SCB (HCD)	0.543 0.056	108.5~111.8	633~1307	674	400	495 (50)
VCD	0.059	111.9~113.5	904~1514	610	380	24
SKQ	0.937	113.6~115.2	954~1464	510	400	45

^{*}Best estimate as of 22-May-03. Previous was 1140 A.

^{**}AS2 and AS3 are in series with AS1 but can have their own independent trim currents.

BEPC-II Anti-Solenoid Design Superconducting Magnet Division Parameter Summary

1/2 BES-III Detector with Anti-Solenoid

 $I_{main} = 1120 \text{ A}$ $N_{AS1} = 732 \text{ turns}$ $N_{AS2} = 260 \text{ turns}$ $N_{AS3} = 280 \text{ turns}$ $N_{Tot} = 1272 \text{ turns}$ $I_{Tot} = 78 \text{ m H}$

BEPC-II Anti-Solenoid Layout & Wiring Schematic

Superconducting Magnet Division

Superconducting BEPC-II Anti-Solenoid Requirements Magnet Division

- Trim circuits will allow fine tuning of the anti-solenoid com pensation scheme as well as left/right adjustment.
- But given skew-quadrupole winding, is fine tuning really needed? (Need answer from IHEP.)
- And if needed is +/-65 A enough? (Need answer from IHEP.)

Anti-Solenoid Longitudinal Superconducting Magnet Division Force Diagram

Anti-Solenoid Longitudinal Superconducting Force Calculation

Magnet Division

Calculation of Torque on Cold Mass Superconducting Due to the BES-III Solenoidal Field

Magnet Division

- There is a net torque on a dipole in a solenoidal field (but not on quadrupole due to symmetry).
- Magnitude of torque is $I_{Dipole} \cdot A_{Proj} \cdot B_{BES-III}$.
- Even though anti-solenoid changes the field seen by the dipole, a net torque remains on cold mass!

$$\overline{\tau}_{\text{Dipole}} = \overline{\tau}_{\text{BES-III}} + \overline{\tau}_{\text{Anti}} = 0$$
 means that

$$\overline{\tau}_{Anti} = -\overline{\tau}_{BES-III}$$

Calculation of Torque on Cold Mass Superconducting Due to the BES-III Solenoidal Field

Magnet Division

Take B_{BFS-III} to be 1 T uniform field then...

Case1: Vertical Dipole Corrector (VDC) A_{Proi} = 59.5 m² For $I_{op} = 24$ A, torque is 1430 N·m (1050 ft·lbs) and $I_{Max} = 65 \text{ A torque is } 3870 \text{ N-m} (2850 \text{ ft-lbs})$ in the horizontal plane.

Case2: Horizontal Dipole Corrector (HDC) A_{Proi} = 26.6 m² For $I_{op} = 50 \text{ A}$, torque is 1330 N·m (980 ft·lbs) and $I_{Max} = 65 \text{ A torque is } 1730 \text{ N-m} (1280 \text{ ft-lbs})$ in the vertical plane.

Calculation of Maximum Allowable Superconducting Magnet Division Torque and a Strong Warning

With VDC and HDC both at 65 A, can add torques in quadrature to get: $\sqrt{3870^2 + 1730^2} = 4240 \text{ N} \cdot \text{m}$ (3130 ft-lbs)

But must be sure that HDC (i.e. SCB) is never run at 550 A with the BES-III Solenoid turned on (e.g. Synrad mode)!

In that case we would have $550 \text{ A} \cdot 26.6 \text{ m}^2 \cdot 1 \text{ T}$ = 14,600 N·m (10,800 ft·lbs) from HDC!

Note: If the anti-solenoid were on, then once the cold mass gets out of line the torque would increase due to mutual repulsion with BES-III.

BEPC-II IR Magnet Operating Superconducting Magnet Division Current, Force and Torque Summary

- Need decision whether to provide trims for lateranti-solenoid fine tuning (0k to om it?).
- Have assum ed 1250 A, 550 A and 65 A power supplies (see G. Ganetis talk) for calculating forces and torques (Are these values ok?).
- Checked that support at endcan is adequate?
- Must interlock SCB current with BES-III to avoid accident (Ormake stronger supports with increased heat leak?)!