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Motto for high-field dipoles:
keep 1t simple, stupid!
The problems for Nb;Sn high-field dipoles:

* Conductor 1s fragile — wind & react,
degradation under Lorentz loading

* Filaments are fat —persistent current
multipoles, snap-back

 Preload 1s immense — how to assemble?

* Conductor 1s expensive — 10 x NbT1



Block-coil designs enable us to
address these problems

Stress management: limit coil stress
Racetrack pancake coils
(bend ends up/down on center layers)

Close-coupled steel reduces amp-fac, suppresses
persistent-current multipoles

Simple assembly, preload using expansion
bladders

Conductor optimization — least superconductor of
any high-field design!



Stress management

 Each block within the coil controls stress so
that 1t cannot accumulate from inside blocks
to outside blocks:

Inconel ribs & plates
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Pancake coils are compartmentalized
so that they are easy to build, and
control axial stress internally

Center double pancake top/bottom single pancakes



We have built a NbT1 practice dipole
to test fabrication, assembly 1ssues

7 Tesla short-sample field
6 layers [UE ,
Single-block pancakes |

Ends planar

Ribs, plates, springs, shear
release, S-glass insulation, EE3333?555;;::::
strain transducers as will be 7
used 1in Nb;Sn models.




* Winding uses simple
tooling, fixtures

 Tolerances held to .002”

e Transitions, leads made
with S-bends




Splice joints

Splices were made as
horseshoe, 4 overlap

Heaters control temp
Splice rigid on coil end

For Nb;Sn we will make
straight splices




Ribs & plates control stres
both transverse and axial

* Ribs are EDM cut, give
dimensional control and
bypass of stress.

e Plates are fabricated as
two half shells, welded
together at the ends to
control axial stress.



Bending ends on a pancake 1s easy!

» Coil package 1s flexible,
ends are easily bent by
hand.

* Practice dipole was built =
with planar coils, Nb3Sn s -~
model will have ends of g
center 2 layers bent 90°. ye




Measure & control coil placement

e Measure coil thickness as

function of compressive
load

* Measure plate, rib locations g
as preload is applied, to |
assure closure of the
rib/plate interface




Quench heaters — how best to insulate?
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» A triple failure: cable frayed
on tight bend, mica paper
frayed in winding, S-glass
fabric shifted in assembly.

e Dilemma between good
electrical insulation, good
heat transport.




» Leads brought out along top
and bottom in support rails



The 7 Tesla NbTi learning model 1s
complete and shipped to LBL for testing
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Pancake coils contain internal
complete internal structure

Side bars give stiff P
support, tie ends . i 2y

Skins welded to side )
bars — preload

Pusher shoes on
ends — axial preload

Straight leads



reload coil within flux return
using additional bladders
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Provide overall preload using

expansion bladders

Flux return split vertically, ~
serves as piston

Bladders filled with low-melt
Wood’s metal

Bladders located between flux
return and Al shell

2,000 ps1 pressure delivers full
field Lorentz load

In cooldown, Al shell delivers
additional preload




Magnetics: planar steel, current program

 Planar steel boundaries
* Suppress persistent current multipoles 10x
to yield b < 10 cm™

e Current program I. | I
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Magnetics: contoured steel, single current

* All windings operate at a single current
* Contour flux return to cancel b, at injection
* b,<10*cm™ over 20:1 field range (no holes!)
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Optimize the conductor

Quench stability — enough Cu to heal microquenches —
much less Cu than...

Quench protection — distribute the energy during a
quench -- j-, < 2,000 A/mm?

The expensive way: draw Cu into SC strand for both

stability and protection. /L strons
The optimized way: N e

draw Cu into SC strand only for stability (~40%)
cable pure Cu strands with SC strands for protection.



Half the outer coils are “tree” Cu
strands = half the cost!
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Suppression of Persistent-Curren
Magnetization Multipoles

 Persistent-current fields are generated from
current loops within the “filaments”.
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The steel boundary 1n a block-coil dipole
suppresses p.c. multipoles at low field

We have evaluated five scenarios for p.c.
multipoles. Same coil assembly 1n all cases.

* Flat-pole flux return
e Curved-pole flux return

« Flat-pole flux return and 3 mm steel sheet

* Curved-pole flux return and 3 mm steel sheet

e No flux return (~equivalent to cos 0)



The steel flux plate redistributes
flux to suppress multipoles
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The flux sheet suppresses
persistent-current multipoles 3x

b2(10(-4) units)
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Magnets are expensive 1n a hadron
collider, but so 1s the tunnel

¢ superconductor m tunnel a total

w
(&)

w
o

N
(&)}

N
o

—
(&)

cost ($M/TeV)

RN
o

()]

o

0 5 10 15 20 25
field strength (T)



