Work For Others

Michael Anerella

Superconducting Magnet Division

- DESY HERA
- GSI Darmstadt
- BEPC-II IHEP
- ALPHA CERN
- DANAE

Superconducting Magnet Division

DESY - HERA, Hamburg, Germany

- 1st Major Direct Wind Magnet Program
- Single layer, single pattern coils (lots of splices)
- No iron (magnets go inside detectors)
- "novel" support system
- 2 Types (GO, GG) x 2 IP's + spares = 6 Magnets Total
- GO:
 - 3M long, constant diameter
 - 1 layer of dipole
 - 3 layers of quad
 - 1 layer of correctors (side by side skew dipole / skew quad)
 - 1 layer of sextupole
- GG
 - 1M long, tapered coils / helium vessel /heat shield / cryostat
 - 2 layers of quad
 - 1 layer of dipole
 - 1 layers of corrector (skew dipole / skew quad)
 - 1 layer of sextupole
- Self-contained cryogenics & power leads (in appended towers)

Superconducting Magnet Division

DESY - HERA

Coil Winding (new 3M machine)

Superconducting Magnet Division

Superconducting Magnet Division

BEPC-II

Table 3.2: Coil Winding Layout Table		
Name	Number of Layers	Conductor
SCQ	8	7 Strand cable
SCB (HDC)	2	7 Strand cable
VDC	2	Single strand wire
SKQ	2	Single strand wire
AS1	6	Rectangular Wire
AS2	2	Rectangular Wire
AS3	6	Rectangular Wire

Figure 3.1. Coil Layout Schematic. Coil dimensions, conductor type and number of layers are given in Tables 3.1 and 3.2.

•Similar to DESY, but more complicated coil configuration

- •Serpentine winding technique improved reliability, productivity
- •More difficult mechanical assembly (4K and 80K cooling on inner and outer radii)

Superconducting Magnet Division

ALPHA

Anti-Proton Trap for Anti-hydrogen Laser PHysics Apparatus (CERN)

ALPHA

Superconducting Magnet Division

GSI Gesellschaft für Schwerionenforschung (Institute for Heavy Ion Research), Darmstadt, Germany

Rapid Cycling Magnet:

- •Based on 8cm RHIC dipole (1M long)
- •sst cable core to reduce eddy current heating
- •Cuts in cable insulation to facilitate cooling
- •0.5mm coated yoke lams
- •G-10 sleeves to eliminate eddy current paths
- •Built & tested with and without iron

Superconducting Magnet Division

Summary

- DESY first established the significance of the direct wind style magnets for IP applications
- BEPC-II improved the technology
- GSI new capability for fast ramp magnet applications
- ALPHA the phone keeps ringing for direct wind magnets
- DANAE and ringing...

