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Main Goals

Superconducting Materials Development in the Magnet Division (SMD) 
has always focused on magnets for particle accelerators and 
experimental facilities

• Understand conductor requirements of magnets being developed
– Study properties of superconducting wires and tapes made in industry
– Address conductor-related issues that impact magnet performance
– Provide data for use by magnet builders

• Provide superconductor support for programs at BNL/SMD

• Advance  “the state” of conductor art
– Collaborate and provide input to conductor manufacturers
– Play leading role within US-HEP community 
– Collaborate with institutions worldwide to develop superconducting 

technologies 
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This program has unique aspects

• Synergistic interactions between CMPMSD and SMD fertilize 
discussion and promote scientific innovation

• Vertical nature of coordinated effort ( from basic mechanisms to
cables and magnets) provides understanding within a complete 
context

• Direct, synergistic relationships with US industry facilitates 
scientific exchange, faster improvement of properties, better 
responsiveness to program needs, and better reliability of strand 
supply

– Chiefly Oxford Instruments – Superconducting Technology
– Other smaller companies like Supercon, Superconducting Systems, Supergenics, 

HyperTech

Superconducting Superconducting 
Strand R&DStrand R&D Magnet design

Performance analysis

Cable R&D

Superconductor 
materials science

(CMPMSD)
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Recent Advances We Have Pioneered

• High current cable testing
– Supporting projects like CBA, DESY, SSC, RHIC, LHC

• Integrated reaction and test fixtures for high-Jc (critical current 
density) Nb3Sn strands

• Development of “react-and-wind” Nb3Sn technology

! Use of voltage-field (V-H) measurements to determine stability 
threshold of strands, in particular Nb3Sn

! Understanding of the vital balance between stability and 
performance for modern Nb3Sn
– This provided a workaround to make magnets successful (LARP)

• Understanding of superconductor cost

• HTS magnets
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Present Activities

•Low Temperature Superconductor (LTS) Development/Testing
–NbTi

•Strand Testing
–High-Jc Nb3Sn Conductor development

Strand Testing "Critical current (Ic), 
Critical Current density (Jc = Ic/ASC)

• Heat treatment optimization 
Stability Studies

• Reducing effective filament size
• Rutherford Cable testing

–MgB2 wire development (collaborate with Ohio State and industry)
–LHC Accelerator Research Program( LARP) R&D

• High-Jc Nb3Sn strand and cable
•High Temperature Superconductor (HTS)

–Bi-2223 tape and 2nd –generation YBCO tapes (collaboration with 
American Superconductors )
–Bi-2212 wire and cable (collaboration with Oxford Superconducting 
Technology and Showa, Japan)
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Critical Current Ic
“Current-carrying capacity of wire”
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Strand Testing at BNL
Critical currents of superconducting wires- A comparison
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Stability Studies - Key issue for high Jc-Nb3Sn Strand

• High Jc Nb3Sn multi-filamentary strands behave as a 
solid tube of superconductor of large diameter d~ 60-
100 µµµµm . (Typical NbTi filament diameter ~ 6-10 µm.) 
This leads to magnetic instability at low fields which is 
readily seen in magnetization measurements.

d

0.7 mm wire

Nb3Sn Cu
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Magnetization – Flux-Jump Instability
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Stability Current Is 
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Will “flux jumps” initiate a quench in a magnet ?
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Impact of Stability Current on Magnet Performance
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Can Magnets with unstable strands operate safely ?

Yes: if the resistivity ρ of the copper matrix surrounding the 
filaments is low or conversely if RRR is high (RRR ~ 1/ρ). 
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LARP Program – Materials R&D

• Collaboration of BNL, FNAL and LBNL

• Development of stable high Jc Nb3Sn wire and cable for 
high gradient quadrupole magnets G > 200-300 T/m (peak 
field at conductor ~ 12T-15T)
– As shown BNL contributed significantly to this R&D

• SMD has a lead role in conductor R&D
– Management of strand and cable R&D
– Management of strand procurement from Oxford 

Superconducting Technology (OST)
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Conductor Testing Resources

• Strand Testing 
– 8T/10T (4.2/1.9K) 60 mm bore solenoid
– 12T 50 mm bore solenoid
– New testing barrel design for Nb3Sn strands
– Test current 1500 A 
– Strand diameters 0.3 mm to 1.0 mm

• Wish list: 16 T, 2000 A

• SEM, Optical Microscope, at CMPMSD
• Magnetometer for magnetization tests to 5T
• Heat treatment facility for Nb3Sn strand and cable

– Tube furnaces at CMPMSD
– Large furnace at SMD

• Cable Testing
– 7.5T, 75mm bore dipole magnet
– Test current 25 kA 
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Summary

• Superconductor R&D at the Magnet Division provides an important 
resource in the development of magnets

• This program is at the forefront of superconductor technology for 
magnets

• Conductor testing and evaluation is an integral part of the R&D 
effort

• Resources are adequate for most superconducting materials except
high field testing > 12T for strands and > 7.0T for high current
composites like Nb3Sn cables


