Halo Particle Confinement in the VLHC Using Optical Stochastic Cooling

A. Zholents, W. Barletta, S. Chattopadhyay, M. Zolotorev

- Goal
- Smith-Purcell radiation
- Optical Stochastic Cooling
- Results

The VLHC parameter list (high field option)

- Beam energy, E_{0}
- Total number of protons
- Protons per bunch
- Normalized emittance
- Energy spread, σ_{e}
- Bunch length
- Sychrotron radiation damping VLHC

What Optical Stochastic Cooling can and can't do ?

Can not affect beam emittance and energy spread - stochastic cooling of 5×10^{14} protons with a damping time <1 hour is practically impossible.
Can counterbalance a slow diffusion of particles to the aperture at large amplitudes by cooling of halo particles.

Instead of this beam
We want to deal with only $\sim 5 \times 10^{9}$
peripheral particles

Diffusion versus the amplitude

Smith-Purcell radiation of a particle moving over the diffraction grating

$$
\begin{aligned}
& \frac{\lambda+\lambda_{g} \cos (\theta)}{c}=\frac{\lambda_{g}}{\mathrm{v}} \\
& \text { or for } \gamma \gg 1 \text { and } \theta \ll 1
\end{aligned}
$$

$$
\lambda=\lambda_{g}\left(\frac{1}{2 \gamma^{2}}+\frac{\theta^{2}}{2}\right)
$$

wavelength of the radiation
SP radiation $=$ diffraction of the evanescent waves
Bandwidth of the radiation signal: $\Delta \lambda / \lambda \approx 1 / M$
Radiation emitted into the angle: $\theta \pm \Delta \theta$, where $\Delta \theta \approx 1 / 4 M$
Diffraction limited size of the radiation source: $d \approx \lambda / 2 \pi \theta$
Number of radiated photons:

$$
\mathrm{n}_{\mathrm{ph}}=\mu^{2} \pi \alpha \frac{(\gamma \theta)^{2}}{1+(\gamma \theta)^{2}} \exp \left\{-\frac{4 \pi b}{\lambda \gamma} \sqrt{1+(\gamma \theta)^{2} / 2}\right\}
$$

Coulomb field of the proton is represented by the superposition of evanescent waves attenuated in the x direction $E \sim \exp \left\{-|x-b| / d_{\text {dif }}\right\}$, where $d_{\text {dif }}$ is the size of the radiation source viewed in the far field at the wavelength λ. When the proton moves close to the grating these waves are diffracted by the grating and give rise to the propagating reflected waves.

A cross section of the vacuum chamber with the grating

dashed lines show grating positions at injection

We want : $\exp \left\{-\frac{4 \pi 10 \sigma_{\perp}}{\lambda \gamma} \sqrt{1+(\gamma \theta)^{2} / 2}\right\}=10^{-5}$ \qquad

For $\lambda=800 \mathrm{~nm}$ and $10 \sigma_{\gamma}=2 \mathrm{~mm}$ we get $\theta=0.5 \mathrm{mrad}$

$$
\lambda=\lambda_{g}\left(\frac{1}{2 \gamma^{2}}+\frac{\theta^{2}}{2}\right)
$$

grating period $\sim 6 \mathrm{~m}$!

Optical Stochastic Cooling (OSC)

OSC obeys the same principles as the microwave stochastic cooling, but explores a superior bandwidth of optical amplifiers, $\sim 10^{14} \mathrm{~Hz}$

Fluorescence and absorption spectra of Ti:sapphire

Damping time expressed in a number of orbit turns: $\quad n_{d} \approx N_{s}$

In the case of the VLHC the damping is defined by the available power of optical amplifiers

A schematic of the OSC system:

For energy and coordinate cooling a pick-up and a kicker should be installed in a position with a nonzero dispersion function (similar to the Palmer's method of the momentum cooling).

- Coupling is used to share dumping between vertical and horizontal coordinates

Calculation of the energy kick

in the far field $\rightarrow E(\omega, r)=E_{A}(\omega, r)+E_{R}(\omega, r)$ region

Amplified field Field of spontaneous radiation
$\left|E_{A}\right|=g\left|E_{R}\right|$, where g is the amplitude gain of the amplifier
field energy

$$
\begin{aligned}
\rightarrow \mathrm{A} & =\iint|E|^{2} \mathrm{~d} S \mathrm{~d} \omega \\
& =\iint\left|E_{A}\right|^{2} \mathrm{~d} S \mathrm{~d} \omega+\iint\left|E_{R}\right|^{2} \mathrm{~d} S \mathrm{~d} \omega+2 \iint\left|E_{A} E_{R}\right| \mathrm{d} S \mathrm{~d} \omega \\
& =\mathrm{A}_{A}+\mathrm{A}_{R}+2 \iint \mid E_{A}(\omega, r) E_{R}(\omega, r) \mathrm{d} S \mathrm{~d} \omega
\end{aligned}
$$

energy gain

$$
\delta E=2 \eta \sqrt{\mathrm{~A}_{R} \mathrm{~A}_{A}} \sin \left(\frac{2 \pi}{\lambda} \delta z\right)=2 \eta \sqrt{\mathrm{n}_{\mathrm{ph}} \hbar \omega \mathrm{~A}_{A}} \sin \left(\frac{2 \pi}{\lambda} \delta z\right)
$$

efficiency of the field matching

Time-of-flight parameters of the bypass lattice

Errors:

Quadrupole gradient : $\Delta \mathrm{G} / \mathrm{G}=1 \times 10^{-3}$
Bending field: $\quad \Delta \mathrm{B} / \mathrm{B}=1 \times 10^{-3}$
Sextupole gradient: $\quad \Delta \mathrm{S} / \mathrm{S}=1 \times 10^{-3}$
Tilt angle:
0.2 mrad

Misalignment: $150 \mu \mathrm{~m}$
Multipoles:
$\Delta \mathrm{G} / \mathrm{G}=1 \times 10^{-4}$ at $\mathrm{r}=3 \mathrm{cn}$
$\Delta \mathrm{B} / \mathrm{B}=1 \times 10^{-4}$ at $\mathrm{r}=3 \mathrm{~cm}$
Power supply ripple: 1×10^{-4}

Histograms showing a spread of the pathlengths due high order aberrations and all kind of errors

$$
\begin{aligned}
& \sim_{\substack{\text { suppression } \\
\text { number of protons } \\
\text { in the sample } \\
\text { factor }}}^{N_{s} \approx 10^{-5} \times 1.510^{10} \times \frac{210^{-3}}{6}=50} \begin{array}{l}
\text { protons } \\
\text { per bunch }
\end{array} \\
& \text { average power of }
\end{aligned}
$$

Thus, damping time can be estimated as:

$$
\frac{1}{\mathrm{n}_{\mathrm{d}}^{2}} \cong \frac{\delta E^{2}}{\sigma_{e}^{2} E_{0}^{2}}=4 \pi \eta^{2} \mu^{2} \frac{\alpha \hbar \omega P}{N f_{0} \sigma_{e}^{2} E_{0}^{2}} \exp \left\{-\frac{4 \pi b}{\lambda \gamma} \sqrt{1+(\gamma \theta)^{2}}\right\}
$$

For $\eta=0.5, \mu^{2}=1$, and $N=5 \times 10^{9}$:

$$
\begin{aligned}
& \mathrm{n}_{\mathrm{d}}(x) \approx 3 \times 10^{5} \exp \left\{0.57\left(10-x / \sigma_{\perp}\right)\right\} \text { turns } \rightarrow \sim 100 \mathrm{sec} \text { at } \\
& \mathrm{x}=10 \sigma_{\gamma}
\end{aligned}
$$

Amplitude evolution due to the damping and diffusion

$$
\frac{d x^{2}}{d t}=-\frac{x^{2}}{\tau_{\mathrm{d}}}+D\left(x^{2}\right)
$$

Critical diffusion when: $\quad \frac{d x^{2}}{d t}=0$

Then:

$$
\frac{\Delta x^{2}}{\sigma_{\perp}^{2}}\left(\frac{1}{\operatorname{turn}}\right)=\left(\frac{x}{\sigma_{\perp}}\right)^{2}\left[\frac{1}{\mathrm{n}_{\mathrm{d}}(x)}+\frac{1}{\mathrm{n}_{\mathrm{SR}}}\right]
$$

Synchrotron radiation damping $=1.5 \times 10^{7}$ turns

Plots of the critical diffusion for VLHC and LHC

